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Abstract— Ensuring safety is a primary goal in physical
human-robot interaction. In various collision experiments it was
found that the robot’s effective mass, velocity, and geometry
are the key parameters which influence the human injury
severity during an impact. Recently, a velocity controller was
proposed that limits the robot speed to a biomechanically safe
value, taking into account the mass and the curvature in the
direction of movement for a given point of interest. The mass
and the geometry depend on the mechanical design, however,
the effective mass also depends on the robot configuration.
In this paper, we exploit the redundant degree(s) of freedom
of a joint torque controlled seven- and eight-DOF robot to
minimize the effective mass without affecting the desired
Cartesian end-effector trajectory and with the goal to improve
the performance of the safe velocity controller at the same time.
Given recent results in robotics injury analysis, we analyze when
such a redundancy resolution scheme actually improves safety.
For the considered robots, we find reflected mass extrema that
can be obtained by null space motions, and propose a real-time,
torque-based redundancy resolution scheme, which is finally
verified in experiments.

I. INTRODUCTION

Safety in physical human-robot interaction (pHRI) is an
important topic in current robotics research and industry. In
recent years many contributions were made to this field. In
terms of control, there exist collision detection & reaction
schemes [1] as well as pre-collision methods to avoid haz-
ardous impacts. In addition to obstacle avoidance [2], [3], a
control scheme referred to as the Safe Motion Unit (SMU)
was recently proposed, which ensures that a certain level of
injury (e. g., a contusion) is not exceeded upon a dynamic
collision between a robot and a human [4].

Many of today’s collaborative robots have more degrees of
freedom (DOF) than necessary to accomplish a desired end-
effector task. This property enhances the robot’s dexterity
and allows to fulfill secondary tasks that are added to
the main task. Besides classical secondary tasks such as
singularity or joint limit avoidance, several safety-related
schemes have been proposed. These works include, e. g.,
collision avoidance [5], [6], collision detection and reaction
[7], the reduction of the impact force [8], [9], [10], [11], or
the amount of dissipated energy in blunt inelastic impacts
[12]. In [8], [9], contact models were used to determine the
relationship of robot parameters and the resulting collision
force. It was stated that a reduction of the reflected mass
results in lower force. In robotics injury analysis, however,
it was shown that a reduction in reflected mass does not
always lead to lower injury probability as a saturation effect
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in reflected mass may take place [13], [14]. Furthermore, the
consistency of injury prediction obtained by contact models
was shown to be often insufficient w. r. t. the actual medically
observed injury [4].

In this work, we follow the data-driven line of research
where robot input parameters (mass, velocity, geometry)
are related to injury probability instead of using complex,
however insufficient models or intermediate physical quan-
tities like force or stress [4]. We aim for improving the
performance of biomechanically safe velocity control, i. e.,
to avoid a possible velocity reduction by the SMU. For
this, we elaborate a redundancy resolution scheme that
minimizes the reflected mass of a given point of interest
(POI). First, we provide an analysis when such a null space
strategy would actually improve safety, given recent results
in robotics injury analysis. While previous works on reflected
mass minimization considered velocity control, we develop
a null space controller for robots with joint torque control,
that systematically takes joint position limits into account.
Using a seven-DOF KUKA/DLR Lightweight Robot (LWR),
we combine the null space strategy with the SMU and
provide experimental results that show the effectiveness of
our approach. Finally, we extend the idea to an eight-DOF
system consisting of a LWR and a linear axis and present
first results for this robot.

The remainder of this paper is organized as follows. In
Section II, we review the concept of the reflected robot
mass, the SMU, discuss when a null space effective mass
minimization scheme may improve safe velocity control,
and describe our contribution. In Section III we describe
the proposed optimization scheme. Experimental results for
verifying the controller performance in combination with the
SMU are presented in Section IV. The extension of the
controller to the eight-DOF system is briefly explained in
Section V. Finally, Section VI concludes the paper.

II. PRELIMINARIES & PROBLEM FORMULATION

In this section, we briefly review the reflected mass model,
the SMU, and analyze when a null space strategy for mini-
mizing the reflected mass actually improves collision safety.
Then, we describe the considered problem and contribution
in detail.

A. Robot Model & Reflected Mass

The considered robot dynamics can be expressed as

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext, (1)

where q ∈ Rn are the generalized link coordinates, M(q) ∈
Rn×n is the symmetric, positive definite mass matrix,
C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal matrix,
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and g(q) ∈ Rn is the gravity torque vector1. The joint
torques and the external torques are denoted by τ ∈ Rn

and τ ext ∈ Rn.
The so-called reflected or effective mass is the mass

perceived during a collision with the robot [17]. The Jacobian
matrix J(q) ∈ R6×n associated to the impact location can
be partitioned as

J(q) =

[
Jv(q)
Jω(q)

]
. (2)

The translational Cartesian velocity at the impact location
is v(q) = Jv(q)q̇. The velocity in normalized Cartesian
direction u ∈ R3 is

vu(q) = uTv(q). (3)

The relationship between the manipulator joint-space mass
matrix M(q) and the Cartesian mass matrix Λ(q) ∈ R6×6

was derived in [17] and is well known to be

Λ(q) =
(
J(q)M(q)−1JT(q)

)−1
. (4)

The inverse of the kinetic energy matrix can be decomposed
into

Λ−1(q) =

[
Λ−1v (q) Λvω(q)

Λ
T

vω(q) Λ−1ω (q)

]
. (5)

The scalar mass perceived at the end-effector given a force
in unit direction u is

mu(q) = [uTΛ−1v (q)u]−1. (6)

This quantity is referred to as the reflected mass in direction
u. For a certain u, the reflected mass is influenced by the
mass properties of the robot and the current kinematic joint
configuration. Possible ways to reduce the reflected mass are
a), to reduce the robot weight by design, or b), to modify
the joint configuration (if possible). In redundant robots, the
configuration for achieving a certain end-effector position
is generally not unique. Therefore, one can make use of
reconfiguration, i. e., perform self-motions, to minimize the
reflected mass in a certain Cartesian direction.

B. When Should the Reflected Mass be Minimized? Influence
of Reflected Mass on Injury Severity

A fundamental question that arises with the minimization
of the reflected mass is which benefit a reduced mass will
have on human injury probability and in which situations
one should use a null space minimization scheme to improve
collision safety.

The role of mass and velocity on human injury was
extensively studied in [13], [14]. For blunt, unconstrained
impacts it was shown that a saturation effect in reflected mass
takes place when a certain impactor mass is reached. If the
robot mass has a considerable weight, then a minimization

1The LWR has flexible joint dynamics, where the motor and link side
dynamics are coupled via an elastic joint torque. These dynamics are taken
into account in the used control framework [15]. For the development
of the proposed control scheme, however, the link dynamics is sufficient.
Furthermore, in [16] it was shown that for the LWR III (and also other
elastic joint robots) the link inertia is decoupled from the motor inertia
during collisions, which means that only the link side inertia is required
to determine the reflected mass. For sake of clarity, we therefore do not
mention the motor side dynamics in this paper.

0 5 10 15
Mass [kg]

0

1

2

3

4

V
el
o
ci
ty

[m
/s

]

v$u;safe

vu;safe

m$
u mu

Fig. 1. Effect of mass minimization on biomechanically safe velocity for
a spherical impactor with 12.5 mm radius. For the reflected mass mu the
safety curve provides the velocity vu,safe. When reducing the reflected robot
mass to m∗

u a larger v∗u,safe is obtained.

of the reflected mass will have negligible effect on injury
probability. In contrast, the impact velocity always has a
significant influence on injury severity. For lower reflected
inertias which are inherent to typical pHRI-robots, a change
of the reflected mass does have an effect on contact force.
However, the injury severity is typically low for the consid-
ered mass and velocity range during blunt impacts [16]. A
minimization of the reflected mass is therefore rather relevant
for sharp and edgy contact as shown in [4].

C. Safe Motion Unit

The SMU ensures that a certain level of injury (e. g., a
contusion or even no injury at all) will not be exceeded
upon a dynamic collision between a robot and a human [4].
For all points of interest along the robot structure (in most
applications they are located at the end-effector), the current
reflected mass and geometry are related to a biomechanically
safe velocity through so-called safety curves. A safety curve
for a spherical geometry with 12.5 mm radius is exemplarily
depicted in Fig. 1. Given the current reflected mass in the
Cartesian direction of motion at the point of interest, one can
determine the maximal permissible velocity by evaluating the
safety curve. The safety curves can be derived from various
collision experiments or simulations, e. g., [4], [18], [19].
When activated, the controller monitors the reflected mass
and the maximum allowable velocity of each point of interest
on the robot structure. If the current task velocity exceeds
the (conservative) permissible speed, the controller reduces
the velocity such that all safety constraints are met.

D. Contribution

Especially in industrial applications it is desired that the
robot moves as fast as possible while still ensuring human
safety. The possible velocity reduction imposed by the SMU
guarantees safety but deteriorates performance in terms of
cycle time. A measure to regain performance, i. e., increase
the velocity, is to modify the end-effector geometry and
select geometries that allow higher safe velocities given
the same reflected mass. Alternatively, the reflected mass
in redundant robots may be reduced by suitable use of
redundancy.

In this paper, we extend the SMU scheme by developing a
null space controller that minimizes the reflected robot inertia
without affecting the six-DOF end-effector task in order to
further exploit potential performance (speed) increase. Please
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note that when minimizing the reflected mass, it may be
possible that the maximum permissible velocity becomes
higher than the desired task speed. In this situation, one can
either travel with the nominal velocity or speed up the robot
until the maximum feasible velocity of the system is reached.
In this paper, we only consider the problem of avoiding a
velocity reduction by the SMU. If the SMU does not limit
the robot speed, i. e., the mass/velocity pairs are below the
safety curve, then mass minimization has no benefit on safety
because the motion is regarded as safe already. The mass
minimization is therefore only advantageous if the SMU
would reduce the desired velocity.

Practically, we mainly consider the seven-DOF LWR III.
In Section V we also give first results on the extension to an
eight-DOF system consisting of a LWR IV and a linear axis.
We assume that the points of interest with sharp or edgy
geometry, which will be modeled in the SMU, are located at
the end-effector. The robot’s links are assumed to be blunt
and collisions with these surfaces may be regarded as safe,
given the light mass properties and maximum velocity of the
robot. The reflected mass minimization shall be added as a
redundancy resolution scheme to joint torque control, e. g.,
the impedance control framework [15]. It may furthermore be
integrated into a hierarchical redundancy resolution scheme
[20], [21], which is, however, not the scope of this paper.
The null space strategy and the SMU shall be usable in a
modular fashion. They may either be used independently or
simultaneously, while we strive for the latter to maximize
performance and ensure safety at the same time.

III. MINIMIZING REFLECTED MASS VIA SELF-MOTIONS

In this section, we introduce local, real-time capable
optimization methods to minimize the reflected robot inertia.

A. Gradient-Based Minimization
To obtain the null space joint torque that minimizes the

reflected inertia, an intuitive idea is to project the gradient of
the reflected mass onto the null space of the Jacobian matrix,
i. e.,

τ d = τ prim − k
(
I − J(q)T

(
J(q)M+

)T)∇mu(q), (7)

where k is a scaling factor, I ∈ Rn×n the identity matrix,
and J(q)M+ the mass-weighted generalized inverse of the
Jacobian matrix to obtain static and dynamic consistency
[17]. The output of the primary control law, e. g., a Cartesian
impedance controller, is denoted τ prim. The compensation
for gravity is included in this term. The gradient of the
reflected mass is given by

∇mu(q) =
∂mu(q)

∂q
=
∂[uTΛ−1v (q)u]−1

∂q
. (8)

With this approach, that has been used by other authors for
velocity control previously, the reflected mass is minimized
locally.

Close to extrema the gradient is typically very low and so
is the commanded torque. When applying the joint torque
controller (7) to the LWR and having a joint configuration
that corresponds to an extremum in reflected mass, the robot
does not move due to link side friction, even for large k. To
systematically overcome such friction effects, we propose a
novel method in the following.

B. Attractive Potential for Mass Minimization
In contrast to the previous scheme we propose to use the

gradient of an attractive potential that has its maximum at
the configuration of minimal reflected mass. It is defined as

U(q) =
1

2
(q∗mu

− q)TK(q∗mu
− q), (9)

where q∗mu
is the joint position that corresponds to a min-

imum in reflected mass. The positive definite, symmetric
controller gain matrix is denoted K = diag{k1, . . . , kn}.
By differentiating (9) w. r. t. the joint position we obtain the
desired control torque

τ ∗mu
= −∂U(q)

∂q
= K(q∗mu

− q). (10)

We project the torque onto the null space of the Jacobian
matrix using the mass-weighted pseudoinverse and add it to
the output of the primary controller, which yields

τ d = τ prim +
(
I − J(q)T

(
J(q)M+

)T)
τ ∗mu

. (11)

Next, we address the problem of how to obtain the desired
position q∗mu

. First, we describe how the achievable null
space positions can be determined for the LWR. Secondly,
we propose an algorithm that finds the desired position
efficiently and takes joint position limits into account.

1) Achievable Null Space Joint Positions: Since the task
trajectory has six DOF and the LWR has seven DOF, the
null space dimension of the Jacobian matrix is one for a
non-singular Jacobian matrix. The vector w(q), where

w : q 7→ ν ∈ ker(J(q)) ⊂ Rn×1, (12)

can be regarded as a joint velocity that results in zero
operational speed since 0 = J(q)w(q). The analytical form
of the LWR’s kernel was found in [22]. By successively
integrating w(q) for the initial position qns(0) = q0 we
obtain all joint positions qns that correspond to self-motions
(see Fig. 2 (lower)):

qns(t) =

∫ t

t0

±w(qns(t̃)) + CxJ(qns(t̃))
+ex(qns(t̃)) dt̃.

(13)
The integration includes a correction term that is based
on the end-effector position and orientation error ex(q) =
xd(q) − x(q) between the goal pose and the current pose
to compensate for integration drift from a practical point
of view [23]. The weighting matrix for the correction term
is denoted Cx, the Moore-Penrose pseudoinverse of the
Jacobian matrix is denoted J(q)+. We assume that the
third entry of w is greater than zero during integration. The
resulting null space motion of the LWR, i. e., the rotation of
the so-called elbow, is 2π-periodic. The positions qns(t) can
be associated to reflected masses, given a certain Cartesian
direction u. In Fig. 2 (lower) it can be observed that q3
strictly increases over the self-motion. We can therefore use
it as a coordinate that represents the self motion, i. e., the
elbow rotation. The resulting reflected mass over q3 plot
for a typical pose of the LWR is illustrated in Fig. 2 b).
In the figure, it can be observed that the LWR has two
minima and two maxima for this end-effector position. For
u = zEE = −z0 the minima are the “elbow left” and
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Fig. 2. Reflected robot mass perceived at the end-effector in zEE -direction.
The reflected mass over one full elbow rotation, i. e., all possible null space
positions, is depicted in b). The red solid line indicates joint positions which
are not reachable due to joint limitations. Red and green dots represent
maxima and minima in reflected mass. In a), the positions associated to
the extrema are applied to the LWR. In the lower figure, the 2π-periodic
null space configurations are depicted (joints 5-7 are omitted for sake of
readability).

“elbow right” position, the two maxima are the “elbow up”
and “elbow down” configuration, respectively. As the LWR
has (symmetric) joint limits |q| ≤ qmax, it is generally
possible that not all extrema are reachable. This occurs at
∆q3 ≈ 3/4π rad in Fig. 2 b), for example. Due to the joint
position limitations which are represented by the red solid
line, the “elbow down” position is not reachable.

2) Finding the Goal Position: For determining the target
position q∗mu

, we follow the gradient in the mass/q3 plane
until either a minimum in reflected mass or a position
constraint is hit. The gradient of the current reflected mass
w. r. t. q3 is obtained by numerical differentiation

∂mu(q)

∂q3

∣∣∣∣
qns(ti)

≈ mu(qns(ti+1))−mu(qns(ti−1))

q3(ti+1)− q3(ti−1)
. (14)

For determining the next position in the direction of
the gradient descent, we select a Euler forward integration
method with constant step size and the same correction term

that was used in (13). The integration step is

qns(ti+1) = qns(ti) +

sign

(
∂mu(q)

∂q3

∣∣∣∣
qns(ti)

)
w(qns(ti))

||w(qns(ti))||2
∆t+

CxJ(qns(ti))
+ex(qns(ti)). (15)

Here, the gradient of the reflected mass determines the direc-
tion of the null space motion, i. e., the velocity w(q) given
by the kernel of the Jacobian matrix, which is normalized
here. The step size is denoted ∆t. The third term in (15)
corrects the deviation from the desired end-effector pose as
in (13).

If no joint position constraints are present, one can simply
follow the gradient until the next local minimum is reached.
The position bounds, however, necessitate stopping at a limit
or even reverse the iteration direction. In our algorithm, we
use conservative bounds, i. e., |q| ≤ qconsv < qmax, to avoid
hitting the hardware limits. We illustrate the behavior of the
optimization algorithm in the presence of position limits in
Fig. 3. There, five cases are depicted that are explained in
the following.

1) The current position does not violate bounds, the gradi-
ent is followed until the unconstrained local minimum
is found.

2) In case the minimum is not reachable, the border of
the conservative bounds is selected as the goal position
if it is close to a minimum.

3) If the current position violates the conservative joint
limits and following the gradient would further violate
the constraint, then the direction is reversed and fol-
lowed until the boundary of the joint limits is reached.
This ensures that a reasonable distance to the hardware
limits is kept.

4) The current position violates the joint limits but the
robot moves from the constraint in direction of the
gradient. The gradient is therefore followed until the
constraint is not exceeded anymore.

5) In direction of the gradient, the joint limit is hit close to
a local maximum. In this case, the algorithm reverses
direction to pass the local maximum and move towards
the next local minimum.

Please note that the cases mainly show the termination of
the optimization process or the behavior at the initial con-
figuration. Several cases may be active during the iteration
process until the goal position is reached. Examples:

1) The initial configuration violates the conservative
bounds (case 4)). When following the gradient descent,
the process terminates at another constraint (case 2)).

2) The initial configuration violates the conservative
bounds (case 3)). The direction is reversed until the
boundary of the constraint is hit. If this position is
close to a local maximum (case 5)), then the iteration
continues until the next minimum or constraint is
reached.

On our experimental setup, we are able to determine the
goal position in real-time, i. e., at 1 kHz control frequency.
In order to avoid large step responses in the commanded
joint torque, which may occur in case 5), e. g., the number
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Fig. 4. Schematic of the pick and place task trajectory in the y0/z0 plane.

of iterations is limited. For large ∆t, chattering may occur
as the minimum is generally not found exactly. Therefore,
the integration step size must be kept reasonably small.
Furthermore, a damping term may be added to (10).

In the next section we show experimental results for a dy-
namic end-effector trajectory to demonstrate the performance
of the proposed controller.

IV. EXPERIMENT

For evaluating the performance of the mass minimization
scheme in combination with the SMU, we carry out a pick
and place experiment. Although the experiment is relatively
simple, the results allow us to determine the benefits and
limitations of our approach, as will be discussed later.

The desired Cartesian trajectory is depicted in Fig. 4. The
motion sequence is 1 → 2 → 1 → 3 → 4 → 3 → 1. The
same trajectory was commanded for three control schemes.
Firstly, the Cartesian impedance controller was used without
SMU or redundancy resolution (see black line in Fig. 5).
Secondly, the SMU was activated (blue) and finally SMU &
local mass minimization (green).

For the SMU we only assign one point of interest for
sake of clarity, namely the end-effector tip. The shape of
the closed gripper brackets is very similar to the spherical
impactor with 12.5 mm radius, which was analyzed in [4].
Therefore we assign the same safety curve (see Fig. 1) to
this POI. The mass/velocity pairs of the LWR III almost
always remain below this safety curve. Therefore, the offset
of the curve is conservatively shifted such that the effect of
the SMU becomes visible. The SMU may reduce the robot
speed when the zEE-axis of the end-effector (see Fig. 2) is
(partly) moving in the direction of travel.

As mentioned previously, the mass minimization is only
beneficial when the safety curve would reduce the velocity.

However, to evaluate the performance of the mass minimiza-
tion, it is activated for the entire trajectory. The reflected mass
is minimized in the direction of the end-effector movement.
For the motions 1↔ 3 the mass is minimized in yEE = y0-
direction, for 1↔ 2 and 3↔ 4 in zEE = −z0 direction.

The performance of all controllers can be seen in the
attached video. The recorded signals and a classification of
the results in terms of safety and performance are depicted
in Fig. 5. The results can be interpreted as follows.

Movement 1 → 2: In the first movement, the robot is
traveling in negative z0-direction. The end-effector zEE-axis
points in the direction of movement, which is the potentially
dangerous direction. The SMU thus reduces the velocity to
a biomechanically safe value (see third plot in Fig. 5). The
motion with activated SMU is thus slower than the nominal
trajectory, however, the reflected mass is not altered. When
activating the minimization of the reflected mass (enabled
before starting the trajectory), we see that the mass is being
reduced in comparison to the original trajectory. Due to lower
reflected mass, the safety curve outputs a higher safe velocity.
Therefore, the mass minimization allows the robot to travel at
the same speed as the nominal trajectory while still ensuring
collision safety. As a result, the motion including mass
minimization has reached the desired position earlier than
the trajectory with SMU only, namely at ≈ 1.2 s instead of
≈ 2.6 s. The robot could now initiate the motion to the next
goal position. In Fig. 5, however, this motion is delayed. For
better comparison of the results, the motion segments start
at the same time for all controllers.

Movement 2 → 1: In the second motion segment the
robot moves in positive z0-direction. The zEE-axis of the
end-effector points in the opposite direction of travel. The
SMU therefore does not reduce the operational velocity. The
velocity is the same for all controllers, while the reflected
mass is additionally reduced by the third controller.

Movement 1 → 3: The motion from position 1 to 3 is
along the y0/yEE-axis only. As in the last movement, the
end-effector is not pointing in the direction of travel and
therefore the SMU has no influence on the robot speed.
Please note that the jump in reflected mass from the second
to the third movement is due to the change from u = zEE

to u = yEE . For the first two movements, the reflected mass
with activated minimization was always lower than the mass
in the other two experiments. During this movement, it can
be observed that between 4.3 s and 4.9 s the minimization
scheme outputs a larger reflected mass than the nominal
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Fig. 5. Performance of SMU and local mass minimization in a pick and place task. The nominal trajectory without SMU or mass minimization is
represented by a black line, the result with activated SMU by a blue line, and the trajectory with SMU & mass minimization by a green line. The Cartesian
position of the end-effector, denoted 0pEE,y and 0pEE,z , are depicted in figure one and two, the absolute Cartesian velocity of the end-effector in figure
three, and the reflected mass in current u-direction figure four. In the top figure, the start and goal position of the each movement are indicated according
to Fig. 4. In the bottom figure, a classification of the results in terms of safety and performance is provided. Green segments indicate a safe motion with
nominal speed, green/yellow hatched segments a safe motion where the velocity is below the nominal speed, red segments an unsafe motion with nominal
speed, and white segments an idle position.

trajectory. This is due to the fact that the initial position
in this motion segment is different for both methods. For
the trajectory including mass minimization and SMU, the
elbow moves from the right to the upper and finally to the
left position. For the nominal trajectory the elbow is always
in the upper position.

The remaining three movements 3→ 4, 4→ 3, and 3→ 1
are not described in detail because the analysis is identical
to the one of the first three motion segments.

Classification of Safety and Performance: In the lower plot
in Fig. 5, safety and performance of the three trajectories are
classified for this example. In segments 1 → 2 and 3 → 4,
the nominal trajectory partially exceeds the biomechanically
safe velocity because no safety constraint is taken into
account (red). By activating the SMU, we always ensure
safety but the performance is decreased, i. e., the robot takes
more time to reach the target frame (green/yellow hatched).
Finally, the combination of SMU and mass minimization
keeps the performance of the original trajectory and ensures
safety (green).

A. Discussion

For the considered task, we showed that the proposed
method improves the performance of safe velocity control,
i. e., the overall cycle time is reduced. However, the method
has limitations due its nature of being local.

In the timely evolution of the reflected mass in Fig. 4,
one can see at t ≈ 4.5 s that the optimized reflected mass is
higher than the one of the original trajectory. Firstly, this is
because the trajectory consists of different motion segments
and the elbow position for the nominal trajectory and the
one including minimization scheme is different at the initial
position of each segment. Secondly, the robot dynamics are
limited, which is why the minimum in reflected mass cannot
be reached instantaneously. If another POI were present at
the end-effector that points in Cartesian y0-direction, the
increase in reflected mass could result in a reduction of the
operational velocity by the SMU.

If only the minimization of the reflected mass was con-
sidered without usage of the SMU, one could use a time
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scaling approach similar to [24] to synchronize the null
space strategy with the end-effector trajectory. The difference
of the current reflected mass and the next local minimum
could serve as a measure to reduce the velocity of the end-
effector. The higher the difference in reflected mass, the
lower the velocity. This may result in a lower speed, but one
would ensure that the minimum in reflected mass is always
achieved. However, for sake of clarity and consistency in this
paper, we left this for future work.

In the experiment, the changes in u were abrupt, which
lead to significant reconfigurations of the LWR’s elbow
position. In practice, one could try to include transitions such
that u changes smoothly and the minimization scheme has
more time to reconfigure the elbow. Furthermore, one could
use instants where the end-effector manipulates an object or
is in a steady state to kinematically reconfigure the elbow
such that a minimum in reflected mass is achieved already
at the start of the next dynamic movement.

Lastly, if the trajectory was available offline, one could
formulate an optimal control problem that, e. g., minimizes
the final time while taking the safety curves as inequality
constraints into account. However, this solution has limita-
tions as well because it is not sensor-based.

V. EXTENSION TO LWR MOUNTED ON LINEAR AXIS

In this section, we provide first results on the extension
of the method to an eight-DOF robot. It consists of a
LWR which is mounted on a linear axis. The generalized
coordinates are q = [qx, q1, q2, q3, q4, q5, q6, q7]T, where qx
is the position of the linear axis and qi, i = 1, . . . , 7 are
the positions of the LWR. For a six-DOF task the robot has
two redundant degrees of freedom when the Jacobian matrix
is non-singular. Again, we seek for a joint configuration
that corresponds to a minimum in reflected mass and does
not alter the end-effector task. Having once found the goal
configuration, we may apply the control law (10), (11) to the
impedance-controlled system [15], [25].

The following description of our approach and the simu-
lation results is kept very brief. More details on the theory
and experimental results will follow in a subsequent paper.

In Section III-B, we showed that q3 may represent the
null space elbow rotation, because it (locally) strictly in-
creases/decreases over the 2π-periodic self-motion. Also for
this robot, we seek for (two) coordinates, which represent
the self-motion and can be understood intuitively. These
coordinates shall be the position of the linear axis and the
3rd LWR joint.

From singular value decomposition (SVD) of J(q) ∈
R6×8 we obtain the orthogonal matrix V (q) =
[V 1(q) |V 2(q)], where V 1(q) and V 2(q) constitute the
orthonormal bases for the range space of J(q)T and the
null space of J(q), respectively. The matrix V 2(q) =
[v21(q),v22(q)] contains two null space vectors that are
orthogonal w. r. t. each other.

We now seek to decouple the motion of the manipulator
and the linear axis as done in [26]. Firstly, we want to find
a null space vector w(q) = [0, ∗, . . . , ∗] ∈ ker(J(q)) where
the first entry is zero and the other entries are arbitrary. By
projecting any joint velocity onto this part of the null space,
we obtain zero velocity in the linear axis, i. e., only a motion

of the LWR is considered. The vectorw(q) can be calculated
by a linear combination of v21(q) and v22(q), namely

w(q) = v21(q)− v21,1(q)

v22,1(q)
v22(q), (16)

where v21,1(q) and v22,1(q) are the first elements of v21(q)
and v22(q), respectively. If v22,1(q) = 0, then we may
select w(q) = v22(q). The second null space vector w⊥(q)
shall be independent from w(q), i. e., orthogonal. To obtain
w⊥(q), we use the Gram-Schmidt process to orthogonalize
w(q) and either v21(q) or v22(q). While a velocity that
is projected onto w(q) halts the linear axis, the projection
onto w⊥(q) maximizes its velocity. To sum up, we obtained
two vectors which are orthogonal w. r. t. each other and span
the entire null space of the Jacobian matrix like v21(q) and
v22(q).

We can now systematically integrate w(q) and w⊥(q)
and use qx and q3 to represent the self-motions. In Fig. 6
we display the reflected robot mass in Cartesian y0-direction
over qx and q3. All points illustrated in the qx/q3 plane
correspond to configurations that do not alter the end-effector
position. Using this grid, we may calculate the gradient
descent of the reflected mass and determine the next local
minimum. This procedure was applied in iterative form to
minimize the reflected mass for a dynamic trajectory. The
initial configuration was similar to the one depicted in Fig.
2 a) (red configuration). While keeping the same orientation
and Cartesian x0- and z0-position, the end-effector moves
1.5 m in Cartesian y0-direction. The timely evolution of the
reflected mass with and without reflected mass minimization
is depicted in Fig. 6. The results indicate that the reflected
mass is minimized effectively and our approach is promising
also for this system. The simulated motion is shown in the
attached video. In the video, also the controller behavior in
the presence of external joint torques is shown for the real
system.

VI. CONCLUSION

In this work, we considered the problem of minimizing
the reflected robot mass by exploiting redundancy of a
LWR manipulator and combining this redundancy resolution
joint torque control scheme with the Safe Motion Unit.
The minima and maxima in reflected mass were determined
for static end-effector poses of the LWR. Then, a real-
time capable local minimization scheme was proposed that
provides a desired joint torque based on an attractive field
spanned between the current joint position and the position
associated to the next local minimum in reflected mass. The
controller performance was verified experimentally. Using
the experimental results, we highlighted the advantages and
limitations of our approach. Finally, the method was ex-
tended to a system that has two redundant DOF.

In the experimental part, we modeled only one POI on
the robot structure so far. In future work we will consider
several POI and integrate the SMU with the mass minimiza-
tion more tightly. Also, the benefit of both the SMU and
mass minimization on collision safety will be verified by
conducting suitable collision experiments. Furthermore, we
will work on the generalization of the optimization scheme
to systems with more DOF and integrate it into a hierarchical
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Fig. 6. Reflected mass in Cartesian y0-direction of the eight-DOF system
over the position of the linear axis and the third LWR joint (upper). Here,
a configuration similar to the one depicted in Fig. 2 a) (red configuration)
was selected. The timely evolution of reflected mass for a movement in
Cartesian y0-direction is depicted in the lower figure. The black and green
line represent the reflected mass without and with enabled minimization
scheme, respectively.

redundancy resolution scheme that also considers singularity
avoidance, for example.
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