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Artificial Intelligence for Long-Term Robot Autonomy: A Survey

Lars Kunze!, Nick Hawes!, Tom Duckett?, Marc Hanheide?, Tomas Krajnﬂ<3

Abstract—Autonomous systems will play an essential role
in many applications across diverse domains including space,
marine, air, field, road, and service robotics. They will assist us
in our daily routines and perform dangerous, dirty and dull tasks.
However, enabling robotic systems to perform autonomously in
complex, real-world scenarios over extended time periods (i.e.
weeks, months, or years) poses many challenges. Some of these
have been investigated by sub-disciplines of Artificial Intelligence
(AD) including navigation & mapping, perception, knowledge
representation & reasoning, planning, interaction, and learning.
The different sub-disciplines have developed techniques that,
when re-integrated within an autonomous system, can enable
robots to operate effectively in complex, long-term scenarios. In
this paper, we survey and discuss Al techniques as ‘enablers’ for
long-term robot autonomy, current progress in integrating these
techniques within long-running robotic systems, and the future
challenges and opportunities for AI in long-term autonomy.

Index Terms—Autonomous Agents, AI-Based Methods, Long-
term Autonomy.

I. INTRODUCTION

OBOT technology has improved tremendously over the

last decade. Consequently, autonomous robot systems
have been able to operate in increasingly complex environ-
ments and for increasingly long periods of time, i.e. weeks,
months, or years. When a fully modelled robot is deployed
in a completely known, static environment, the challenge
of long-term autonomy (LTA) reduces to one of robustness,
i.e. enabling the robot to remain operational for as long as
possible. Without these simplifying assumptions autonomous
robots face a number of interrelated challenges. We roughly
characterise these challenges on two dimensions. The first
refers to the application requirements, e.g., the robot plat-
form (hardware and software), environment and tasks to be
performed. The second dimension describes the long-term
nature of these elements, e.g., if and how they change over
time, whether their long-term nature can be fully characterised
in advance (structured vs. unstructured), and how observable
they are. For example, in many long-term applications, the
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environment will change over the lifetime of the system. These
changes could be short-term (e.g. things moving within the
robot’s field of view), medium-term (e.g. furniture moving
between visits to a room, parked cars changing positions on
roads), or long-term (e.g. seasonal changes, plant growth, wear
to surfaces). In addition, parts of the environment may not be
fully known before deployment or new objects may appear.
In Al terms this means dealing with an open world. 1t is
also possible that the end-user may change the tasks or how
the robot should accomplish them, or the robot itself may
need to adapt to new tools, techniques (e.g. Al algorithms)
or knowledge as they become available.

In this paper, we survey systems and approaches that address
the challenges of LTA using techniques from Al. We focus
on both Al techniques used by robot systems deployed for
extended periods in real-world environments (Sec. II), and
techniques that align well with future needs of LTA systems,
but which have not been convincingly demonstrated within
long-term scenarios (Sec. III). We further discuss future chal-
lenges and opportunities for Al in LTA (Sec. IV).

By focussing on the above challenges we purposely exclude
other applications where robots operate for long periods, but
in relatively static, known settings. Specifically this means
we do not cover current systems in manufacturing or intra-
logistics. In both cases the majority of deployed robot systems
have demonstrated significant longevity, but this is typically
achieved through the creation of environments which are
fully known and the dynamics are largely under control of
the autonomous systems. Whilst this does not eliminate the
need for AI techniques (e.g. long-term localisation [1] and
planning [2] for warehouse AGVs), it limits the LTA-specific
challenges (e.g. environmental dynamics, lack of structure,
open-endedness) seen in other domains.

Since autonomous systems research has a long history,
special issues and surveys already exist that relate to LTA.
For example, [3], [4] cover Al methods within integrated robot
systems. In perception, existing collections cover localisation
and mapping in dynamic environments [5], [6], calibration [7]
and visual place recognition [8]. However, this is the first
survey that focuses specifically on Al techniques for enabling
long-term robot autonomy.

II. DOMAINS

Long-term autonomous robots have been deployed in a
variety of domains including space, marine, air, field, road,
and service. Tab. I provides an overview of these domains and
selected systems characterised across common features. In this
survey, we adopt the notation of [4] and characterise domains
by application features: environment variability, task diversity,
semantics, dynamics, partial observability, cost & criticality,
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TABLE 1
SURVEYED AI-ENABLED LONG-TERM AUTONOMY ROBOT SYSTEMS.

Domain Application Features Duration Al Areas System
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Space H H M Years o ° — . o —  Opportunity [9], [10]
Years o ° ° o — IPEX[I1]
Marine M M H H H Days o ° o e — o AUVs[12], [13]
Months o o — o —  —  Gliders [14]
Air M M H H M M Days o . o o — — AtlantikFlyer [15]
Field H M M M M Days . . o — o o VT&R2 [16]
Years . . o - - o  BearNav [17], [18]
Days o . ° o — o  VaMP [19]
Road M M H M H M Days © e ©° o = o ARGOI[20]
Months o . o o - o  PANS [21]
Months o . o o — o  VIAC [22]
Days . o o ° . o  Rhino [23]
Days . o o ° ° o  Minerva [24]
Service H H H H H M pays ° o o o . o  Willow Garage [25]
Months ° ° ° ° ° e STRANDS [26]
Years ° . ° ° ° e CoBot [27]
Legend: | low, M medium, H high, — not integrated, o partially integrated, o fully integrated

interaction & cooperation, and level of autonomy. As in [4],
all features are qualitatively assessed using three levels (low,
medium, high). Please see the aforementioned paper for a
detailed discussion of the features. In this work, we focus
on the assessment of deployed robot systems. To this end, we
assess them by the duration of their deployment (days, months,
years) and the level of integration of different Al areas (nof,
partially, or fully integrated). The three qualitative levels of
integration distinguish between systems that do not employ Al
techniques from a particular area; that use them only partially,
but not for the purpose of LTA; and systems that use them for
LTA (fully integrated).

Space: Due to extreme communication delays and lim-
ited prior access, effective extra-terrestrial exploration requires
autonomous systems. NASA’s Opportunity rover has recently
passed its 5,000th day operating on the surface of Mars. Its
autonomous capabilities come from a mixed-initiative task
planner, and an autonomous navigation system. The planner
(MAPGEN, [9]) is used to automatically create a daily mission
schedule, which is then refined by terrestrial scientists. The
navigation system uses stereo cameras to build 3D models
for terrain traversability and path planning [10]. LTA has also
been a growing part of satellite operations, e.g. the Intelligent
Payload Experiment (IPEX) demonstrating over a year of
autonomous information gathering using planning and image
processing technology [11].

Marine: Due to the limits of communication through
water, and the difficulties in fully mapping deployment en-
vironments, there are parallels between the requirements for,
and benefits of, autonomy in marine and space robotics.
Autonomous wave gliders are routinely deployed for long
durations, with missions measured in thousands of kilometres
and hundreds of days (e.g. 7,400 km in 221 days [14]). Gliders
are relatively simple, low-powered robots. More powerful
systems have been deployed for days of autonomous operation,
e.g. for navigation under ice [12]. The benefits of Al planning
have been shown in field trials [13] and controlled settings
targeting LTA [28].

Air: The fundamental factor that makes long-term oper-
ation of aerial systems difficult is energy. The authors of [15]
argue that to achieve perpetual autonomous flight, the UAV
has to plan its path according to global and local weather
conditions, wind fields, and thermal updrafts. An alternative to
perpetual flight is the ability to interrupt the flight to recharge,
like the lake monitoring system in [29].

Field: Field robotics deals with unstructured and dynamic
environments in diverse domains such as forestry, agricul-
ture, mining, construction, etc. Bechar and Vigneault [30]
characterise such domains according to the level of structure
present in both the environment and the objects relevant to
the robot. The majority of current field robots utilise GPS-
based auto-steer systems that follow pre-determined paths
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with otherwise limited use of Al capabilities. An alternative
approach uses visual ‘teach and repeat’ to enable robust
navigation in field environments. In these approaches systems
are driven along a training route and then they repeat the
route autonomously [31]. Krajnik et al. [17] show that their
teach-and-repeat method is robust to seasonal appearance
changes. Paton et al. [16] showed that the integration of
multiple experience-based representations [39] results in a
system capable of long- term autonomous navigation despite
drastic changes to the environment appearance.

Road: The PANS platform [21] was one of the first
autonomous vehicles that drove a long distance (6,000 miles,
98.2% autonomous driving) on public roads over a period
of six months using a vision-based driving system. It used a
neural network to learn a mapping between road images and
appropriate vehicle turn radiuses from human demonstrations.
At the same time, the driverless car VaMP [19] drove more
than 1,000 miles (95% autonomous driving). The vision-based
driving system of the ARGO project [20] achieved a similar
result (1,200 miles, 94% autonomous driving). Through learn-
ing it was able to adapt to new road conditions (lane width
and lane position). More recently, several vehicles covered a
distance of 13,000 km from Italy to China using a leader-
follower approach in the VisLab Intercontinental Autonomous
Challenge (VIAC) (2010) [22].

Service: We characterise service robots as robots that
work for, or alongside, humans in environments that are not
specially adapted for their presence. Service robots must cope
with: dynamic environments (due to people moving, day-night
changes, etc.); open worlds (due to people); and changing task
requirements. Large-scale research initiatives have deployed
mobile robot systems capable of LTA in museums (the seminal
Rhino [23] and Minerva [24]), offices (Willow Garage [25],
CoBot [27] and STRANDS [26]), stores [32], and care en-
vironments (STRANDS [33] and Tangy [34]). All of these
robots were deployed for at least multiple weeks, and most
around naive users. Most of these systems were deployed at
intervals in the same environment (e.g. daily). The STRANDS
and Willow Garage systems also attempted continuous au-
tonomous operation, managing a maximum of 28 and 13 days
respectively of uninterrupted operation. These research sys-
tems have given rise to the current generation of autonomous
service robots operating in human-populated spaces. Examples
include Bossanova’s stock checking robots in Walmart stores,
Knightscope’s security robots, and Savioke’s robot hotel but-
lers.

Conclusion: With respect to Al areas, Navigation &
Mapping and Perception are the only areas that were present in
all surveyed systems. This is no surprise as they provide robots
with very fundamental capabilities. KR & Reasoning as well
as Planning were both supported by most systems. However,
we hypothesise that work on KR & Reasoning in space and
marine is limited due to the lack of semantics in these domains.
Furthermore, it is interesting to note that systems only partially
(if at all) support Interaction and Learning in most domains
(with an exception of the service domain). Although these
areas are well researched in general, they haven not been
extensively covered in long-term scenarios. Hence, we believe

that there are many open challenges and research opportunities
for both areas (and in their intersection) as we point out in
Sec. IV.

In all domains, LTA systems inherently present an integra-
tion challenge, particularly when different Al abilities need
to work together. Over the past years, there has been an
increasing trend toward the (re-)integration of Al techniques
within robotics. To cope with challenging environments and
tasks, robots typically integrate: localisation and navigation;
object and/or person perception; plus task planning and/or
scheduling. However, although the integration of Al tech-
niques at system-level is an essential part of all research
projects, there is no standard solution and little research on
how to combine modules from different areas of AL

Robotic software development [35] and robotic middleware
projects such as the Robot Operating System (ROS) [36]
provide researchers with common methods to integrate their
software components and components of others in a structured
way. Some frameworks build on top of such middlewares and
integrate particular AI methods in the context of long-term
navigation planning and task scheduling (STRANDS [26]),
planning and execution (ROSPlan [37]), and knowledge-
enabled perception (RoboSherlock [38]). In general, these
frameworks make it easier to integrate and use different Al
methods. However, overall, there is still a lack of understand-
ing and research in the area of system-Ilevel integration. Hence,
we believe system-level integration of Al methods and their
evaluation will continue to be a major challenge in autonomous
systems research.

ITII. AI AREAS

In this section we discuss how different areas of Al can
enable autonomous robot systems to perform in real-world
environments over extended periods of time. This includes
navigation & mapping, perception, knowledge representation
& reasoning, planning, interaction, and learning.

A. NAVIGATION & MAPPING

Navigation is an essential ability for purposeful movement
by autonomous robots. One approach uses visual ‘teach and
repeat’ to enable robust navigation in field environments,
where the robot learns a map while being driven along a
training route and then repeats the route autonomously [31],
[17], [16], as discussed earlier in Sec. II. Recent work [39]
demonstrated over 140 km of autonomous driving with an
autonomy rate of 99.6%, including driving at night-time.

Over the past 30 years there has been huge interest in
autonomous learning of environment models by robots, espe-
cially the problem of simultaneous localisation and mapping
(SLAM) [6]. However, most approaches assume a static world
and do not consider long-term updating of robot maps to reflect
environment changes. Here we briefly characterise several
complementary strategies to enable long-term mapping and
localisation in changing environments, primarily using long-
term data sets for their experiments.
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Multiple representations: Long-running robots need to
consider environment mapping as a never-ending process, and
thus make decisions on what to remember and what to forget.
However, deleting information from a map is risky since an
observed change may only be temporary and the environment
may yet revert to a previously observed state. One approach
is thus to maintain multiple environment representations [8],
then to select the most relevant model at the current time for
localisation and planning. Early work [40] developed dynamic
maps that handle changes through use of robust statistics
and multiple local maps at different timescales, where the
map that best explains the current sensor data is used for
localisation. The short-term maps are updated online while
the longer-term maps are adapted offline based on long-term
experience. Stachniss & Burgard [41] cluster local grid maps
created at different times and learn distinct configurations of
these locations. A related approach for pose-graph SLAM [42]
maintains multiple view-based representations of mapped lo-
cations, while discarding obsolete views, thus limiting overall
map size. Similarly, Churchill & Newman [43] propose to
integrate similar observations at the same spatial locations into
‘experiences’ which are then associated with a given place. For
localisation, they select the experience that best matches the
visual input of the robot. An alternative approach is to keep
the data from all mapping sessions and integrate them offline
into a single, high fidelity representation [44].

Robustness to appearance change: A parallel strategy at-
tempts to select the representation which is most stable in time.
Valgren & Lilienthal [45] demonstrated the robustness of local
image features for localisation across seasons. SeqSLAM [46]
attempts to match sequences of images rather than individual
images, achieving robust place recognition across seasons. A
method for learning long-term stable features is described by
Dayoub et al. [47], where image features detected across map-
ping sessions are first stored in a short-term memory, which is
used to filter out spurious observations, before being admitted
to long-term memory. A further approach involves learning to
predict appearance changes across seasons [48], by learning
the expected translation between a vocabulary of superpixels
for different seasons and using this to generate predicted
images for localisation at run-time. Recent research showed
that season-specific images can also be predicted using gen-
erative adversarial networks [49], [50]. Lowry & Milford [51]
compare a similar appearance prediction technique with a
change removal method and conclude that change removal
is more robust and less data-intensive to train. Related work
on laser-based localisation [52] uses long-term experience to
learn error distributions for individual points in 3D point-cloud
maps, which are then used during localisation to suppress the
observations corresponding to map points with high errors.

Learning about dynamics: While the above approaches
are mainly concerned with learning the persistent elements of
the scene, another strategy attempts to model the dynamics.
Tipaldi et al. [53] use dynamic occupancy grids, which model
the occupancy of each cell as a two-state Markov process, and
showed that their approach improves localisation robustness in
a car park environment. Kucner et al. [54] learn conditional
probabilities of neighbouring cells in an occupancy grid to

model typical motion patterns in dynamic environments. Kra-
jnik et al. [55] proposed to represent rhythmic or periodic
processes in the environment using Fourier analysis, and
showed that the resulting spectral models obtained from long-
term experience enable prediction of future environment states,
improving localisation and navigation in human-populated
environments.

Notable applications of long-term mapping include visual
survey of natural environments by an autonomous surface
vessel surveyed a lake shore over a 14-month period [56],
and a 4D reconstruction approach to crop monitoring over
time [57]. The latter comprises a 3D SLAM pipeline, data
association to find correspondences between crop rows and
sessions, and optimisation of the full 4D reconstruction.

Finally, complementary work on topological and semantic
mapping may further enhance long-term robustness to change,
by abstracting away from the finer details of metric and
feature-based representations, although a detailed review is
beyond the scope of this paper. Current trends suggest that
future work on long-term navigation and mapping will include
more application-specific developments across all domains, as
long-running systems continue to be deployed in practice, and
development of richer environment representations including
especially more semantics and integration of more perceptual
and contextual cues.

B. PERCEPTION

In addition to perception algorithms for navigation and
mapping, autonomous robots need general perception routines
for object recognition and scene understanding. Indeed, early
approaches to mapping of dynamic environments were object-
centric. These methods identify moving objects and remove
them from the maps [58] or use them as moving landmarks
for self-localisation [59]. However, not all dynamic objects
actually move at the moment of mapping, meaning that their
identification requires long-term observations.

To address this challenge, Ambrus et al. [60] processed
several 3D point clouds of the same environment recorded over
several weeks to identify and separate movable objects, and
refine the static environment structure at the same time. Biswas
& Veloso [61] proposed an approach for long-term localisation
based on explicit reasoning about object categories including
mapped objects, unmapped static objects and unmapped dy-
namic objects. Bore et al. [62] detect and localise objects
in large environments, where objects can change locations
between observations by the robot, while assuming a closed
world to ensure computational tractability.

Other approaches enable open-ended learning of new ob-
ject categories during long-term operation, e.g. using spatial
context information to query possible category labels from
semantic knowledge on the web. Recent work includes an
embodied system for open-ended learning and manipulation of
new object categories, based on human-robot interaction [63],
and a lifelong learning framework in which a human user
can direct a robot to capture domain-relevant data for training
classifiers of household objects [64].

Future service robots would also benefit from tech-
niques to improve their perception of people over time,
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e.g. by integrating long-term experience in tracking-learning-
detection [65] and tracking-learning-classification [66] ap-
proaches, and learning the long-term activity patterns of peo-
ple [67]. This would in turn enable robots to adapt to and move
more harmoniously with the expected flow of humans. Long-
term applications involving interaction with specific people
also require algorithms for person re-identification at different
temporal scales (very short term, same day, different day).
For these cases, different assumptions can be made based on
the persistence of supporting cues (e.g., position at dinner
table, clothing, size/stature, hair colour, facial features). Re-
cent work integrates person re-identification with multi-target
multi-camera tracking [68], however, adaptation of person-
specific appearance models over long time-periods remains an
open challenge for autonomous robots. Direct parallels may
be drawn for other related challenges such as recognition of
human activities, where long-term experience can be leveraged
to improve performance over time [69]. In general, most
prior work on perception considers only the initial training
phase prior to deployment of the robot, but not the ongoing
adaptation of learned models during operation.

C. KNOWLEDGE REPRESENTATION & REASONING

Knowledge representation (KR) is concerned with repre-
senting the world (in particular domains with rich semantics,
see Tab. I), and is closely linked to many other Al areas
including perception, planning, and learning. The previous
sections already discussed important aspects of representations
in the context of navigation and perception.

In general, KR goes hand and hand with reasoning as both
decision making and inference are tightly coupled with the
way the knowledge is represented. Long-term, autonomous
robot systems that are deployed in a real-world environments
require KR and reasoning capabilities to represent various
aspects of the world and reason about them, in particular when
they change over time. Therefore, Al areas such as spatio-
temporal reasoning, non-monotonic reasoning, and belief re-
vision are of great importance in long-term scenarios.

Several works investigated models that infer locations of en-
tities in space and time. Mason et al. [70] proposed an object-
based semantic world model for long-term change detection
in dynamic environments, and [71] modelled the temporal
persistence of objects. Similarly, Krajnik et al. [72] proposed
frequency-based spatio-temporal models for reasoning about
the location of people. Such spatio-temporal information is
essential in long-term scenarios as it can inform Al planners
(cf. Sec. III-D) about non-stationary costs and/or rewards.
Santos et al. [73] presented a first lifelong information-driven
approach to spatio-temporal exploration that incrementally
completes and refines environment maps.

In LTA it is of great importance that robots can access
and learn from their own experience. OPEN-EASE [74] is a
KR infrastructure that makes experience data from robots and
human manipulation episodes semantically accessible. Users
can retrieve experiences and query what the robot perceived,
reasoned and did. Balint-Benczedi et al. [75] propose a more
specialised framework for storing and retrieving perceptual

memories for long-term manipulation tasks. Similarly, [76]
propose a long-term knowledge acquisition framework using
contextual information in a memory-inspired robot architec-
ture. The framework allows robots to memorise their percep-
tions and to recall them, e.g. in a manipulation task.

To cope with the challenges of open worlds, novelty and
anomaly detection is of great importance. To this end, [77]
proposed a framework for anomaly reasoning which includes
the recognition and interpretation of unfamiliar and familiar
objects appearing in unexpected contexts. This aspect of KR
and reasoning is strongly linked to work in adaptation and
learning (Sec. III-F) as it can trigger learning in LTA systems.

D. PLANNING

Al planning and scheduling technologies, which determine
the sequence of actions necessary to achieve a task, are often
used to adapt the robot’s behaviour online to account for
environment or task dynamics [4]. We have seen planning
systems deployed on almost all LTA systems. For example,
planning approaches were used to produce daily task lists and
the associated action sequences for the Opportunity rover [9],
and the STRANDS [26], CoBot [78] and Tangy [34] service
robots, allowing these robots to adapt their behaviour to
the needs of their users. AUVs used planning to deal with
changing environmental conditions and resources [13], while
logistics systems used planning to enable large numbers of
robots to cope with variety in customer orders [2].

Planning approaches vary in their ability to represent critical
elements of a system’s long-term experience. The aforemen-
tioned systems vary in terms of whether or not they model the
effects/dependencies of a robot’s actions on time or resources
(such as battery), or under uncertainty. They also vary in
how they handle oversubscription (choosing between multiple
goals, a key issue in integrating exploration). In general,
planning algorithms in LTA robots are embedded in a wider
integrated system which handles the parts omitted from the
planning model (e.g. replanning on failed on actions, or
reactively triggering charging on low battery, or managing
goal choices). More generally, an executive control system
which manages tasks, and responds to opportunities and
failures, is an essential part of a robot architecture for long-
term autonomy [28], [13], [26], [79], [23]. Such a system
prevents the robot getting stuck in behavioural loops, and
provides recovery mechanisms to address autonomy-hindering
failures. This behaviour can be seen in simple yet effective
form in the finite state controller of Willow Garage’s office
marathon system [79], through the planner-based executives of
Rhino [23] and Minerva [24], through to the T-Rex executive
used on fielded AUV teams [13].

The planned behaviour of the STRANDS [26] and
CoBot [78] robots was generated using models learnt dur-
ing execution: STRANDS robots created optimal task and
navigation plans from learnt MDP models of environmental
dynamics [80], [81]; CoBot robots learnt and planned with
models which predicted when humans would be available to
help complete a task [82]. These robots were therefore able
to adapt their task and navigation plans over the long term.
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As robots become more adept at navigation and manip-
ulation in less structured environments, we expect to see
planning playing an even more prominent role in logistics,
since a greater degree of variation will need to be managed
autonomously over the life of the robot. We also expect to
see overlap in learning and planning/optimisation processes in
autonomous transport systems [83], where system performance
will need to be managed over variation in demand and execu-
tion resources. Current trends also include the augmentation of
plans or policies created by mission or task planning systems
with richer execution knowledge [84]. This hybrid approach
allows mission planning to address long-term or large-scale
problems with abstract, computationally tractable models, but
at execution time behaviour is guided by richer models which
allow appropriate responses to dynamic events.

E. INTERACTION

Some of the most challenging application domains for long-
running robots involve interacting autonomously with a diverse
range of users, offering opportunities for the robots not only
to learn and adapt from this experience, but also facilitating
longitudinal studies to gain a better understanding of long-term
engagement of humans with autonomous robots. In general,
humans and other actors introduce a level of dynamics and
non-predictability into any application scenario, and hence
pose dedicated challenges for LTA systems, also indicated
in Tab. I, where environment variability is considered high
in domains with a high level of interaction and cooperation.
However, long-term Human-Robot Interaction (HRI) studies
with truly autonomous social robots are still a rarity today,
as many researchers resort to Wizard-of-Oz settings [85],
where subjects in studies are deceived into believing a robot is
acting autonomously while it is in fact remote-controlled by a
human operator. Among the most explored domains for long-
term autonomous systems with an emphasis on interaction are
museums [24], [86], care [33], domestic [87], retail [32], [88],
hospitality [89], and educational environments [90], [91], [92].

A recent survey [93] identified key domains for long-term
interactive robotic systems including ‘Health Care and Ther-
apy’, ‘Education’, “Work Environments and Public Spaces’,
and ‘At Home’, discussing a total of 45 different studies in
these fields. From their analysis, the key conclusion drawn
regarding autonomy is the lack of but also need for more
learning and adaptation. Indeed several systems mentioned
above (e.g. [88], [92]) develop personalised models to maintain
an interaction context. Such individualised user profiles are
one of the key abilities required to enable interaction in long-
running autonomous systems [94].

Hence, interaction in the context of long-term autonomy
must not only be seen as a challenge, but also as an oppor-
tunity, where representations can be learned or adapted in an
in-situ fashion to improve a system’s autonomous behaviour
from exploiting long-term interactions with users. [82] propose
a model enabling the robot to predict when humans are most
likely available to help a robot, while [33] follow similar ideas,
learning spatio-temporal usage patterns to maximise the utility
of the mobile robot.

F. LEARNING

Machine learning plays a role in many of the above areas,
and is clearly a key enabling technology for LTA. Beyond this
component role, a cluster of learning types are specifically
suited to LTA. In general we see techniques that allow a robot
to learn during operation (rather than during a design phase) as
crucial to success in LTA applications. Long-term deployment
in open/dynamic worlds means that any knowledge or experi-
ence the robot starts with is unlikely to be sufficient to cover
the behaviour required of it during operation. Thus learning
during operation is essential to delivering good performance.
We have seen this from the relatively low level of estimating
cost and probability models for planning [26], up to learning
new object [95] and activity models for service robotics
tasks [96]. Since it is hard to receive supervision signals
during long-term autonomous operation, the majority of the
online learning techniques employed by LTA systems are
unsupervised.

By definition, a robot is restricted to a fixed viewpoint in
space and time. This means that it is limited in the experiences,
and thus training data, it can generate to facilitate online learn-
ing. Therefore many LTA systems also include an exploration
component which drives the gathering of new experiences.
For example, CoBot robots were able to choose navigation
routes which provided updated observations for environmental
models [97], and the STRANDS robots balanced exploration
and exploitation to maximise interactions with humans during
an information provision task [33] and to build 3D maps for
object discovery [60], [73].

Given the richness and diversity of techniques in machine
learning, many approaches could influence the ability of LTA
systems to learn on the job in the future. Techniques which
allow robots to continually learn from experience such as
reinforcement learning, or focus on particular experiences (e.g.
failures, novelty) such as learning from demonstration should
allow online improvement of capabilities. Problems due to
limited training in a particular domain (or open worlds) can be
addressed by transfer learning, and supported by work from
the exploration and active learning communities. Ongoing
research is also investigating deep learning methods for long-
term autonomy, including recent work on prediction of human
trajectories from long-term observations [98].

IV. FUTURE CHALLENGES

This paper discussed the LTA-related challenges in different
areas of Al and the importance of system-level integration for
unlocking the potential of Al technologies. In addition, we
see the following major future challenges for LTA systems in
real-world environments:

Human-in-the-Loop Systems: How can LTA systems
leverage human knowledge in unforeseen situations within
long-term scenarios? As LTA systems have to deal with open
worlds, they will certainly require additional information when
facing situations that were not foreseen at design time. This
additional input might be given by end-users, maintainers,
and/or domain experts. It might also be provided through
direct control (i.e. teleoperation), natural interaction (e.g. via
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language or gestures) or labelled examples and/or data sets
(e.g. via crowd-sourcing). To this end, LTA systems require
mechanisms to integrate new, but potentially conflicting and/or
untrustworthy, information in their KR about the world. This
also requires that representations have some kind of semantic
abstraction that can be linked to human knowledge. The fan-
out [99], or number of robots a human can control simultane-
ously, will help drive the mixture of human supervisors and
robots in such a paradigm.

Knowledge Transfer between LTA Systems: What infor-
mation about the world should be exchanged by LTA systems,
and when? As more and more LTA robot systems get deployed,
they can exchange important information to help bootstrap
other systems and/or to improve their performance. As it is
not realistic that all logged information is exchanged, it is im-
portant to investigate what information should be exchanged,
and when. This also opens up privacy and security concerns.
In this context, we believe that cloud-enabled knowledge bases
[100] and other approaches in cloud robotics [101] will play
an important role.

Systems Integration: Building robotic systems capable of
long-term operations is inherently also a software engineering
challenge, as they require the close integration of different Al
techniques, a challenge also highlighted by [3]. While ROS has
established itself as a de-facto standard framework for building
integrated robotic systems, it provides only few instruments to
ensure reliable and robust system architectures. Here, model-
based approaches [102] might pave the way towards more
dependable and verifiable integrated systems in the future.

More Domain Specialisation: Alongside the development
of general principles of Al for long-term autonomy, there
will be many interdependencies and synergies from solving
the application-specific challenges in parallel. For example, in
precision agriculture the accuracy of relative positioning and
navigation, e.g. with respect to crop rows, is more important
than that of absolute navigation and position as provided by
RTK GPS. Therefore, any improvements in recognition of
crops would in turn improve the robustness and accuracy of
navigation in crop care and harvesting tasks.

Verification and Evaluation of LTA Systems: How can
the behaviour and the performance of LTA systems be verified
and evaluated when robot system (including its models), task
specification, and environment are constantly changing (at
different timescales)? This requires LTA systems to keep a
record of all their internal models that were used at a given
time. Furthermore, it requires novel ways to provide formal
guarantees under the assumption that parts of the environments
might change (with some probability) [103].

Conclusion: Further to these technological challenges,
we also see ethical, social, and legal issues when realising
LTA systems, though these are beyond the scope of this paper.
Overall, we believe strongly that AI methods can provide LTA
systems with many of the capabilities needed to overcome
these challenges. In turn, rather than merely extending the
lifetime of existing Al-enabled robots, Al approaches may
actually help to solve some of the really tough open problems
in robotics, e.g. perception-based mobile manipulation in real-
world settings, by leveraging long-term experience. However,

we recognise that, despite recent progress, there are still many
exciting open challenges.
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