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Abstract— This paper is concerned with automating fleets
of autonomous robots. This involves solving a multitude of
problems, including goal assignment, motion planning, and
coordination, while maximizing some performance criterion.
While methods for solving these sub-problems have been
studied, they address only a facet of the overall problem, and
make strong assumptions on the use-case, on the environment,
or on the robots in the fleet. In this paper, we formulate
the overall fleet management problem in terms of Optimal
Control. We describe a scheme for solving this problem in the
particular case of fleets of non-holonomic robots navigating
in an environment with obstacles. The method is based on a
two-phase approach, whereby the first phase solves for fleet-
wide boolean decision variables via Mixed Integer Quadratic
Programming, and the second phase solves for real-valued
variables to obtain an optimized set of trajectories for the fleet.
Examples showcasing the features of the method are illustrated,
and the method is validated experimentally.

I. INTRODUCTION

Automating fleets of autonomous robots involves solving
a multitude of problems. These include allocating goals
to robots, computing feasible robot motions to reach these
goals, and ensuring that these motions are coordinated, all
the while maximizing some performance criterion. These can
be seen as sub-problems of an overall fleet management
problem. Fig. 1 shows a simple example scenario: two
goals have to be reached by two of the three robots, and
part of the problem is to decide which robot should reach
which goal; the motions of the robots are constrained by
the obstacles in the environment; and the way in which
goals are assigned to robots will determine whether and how
robot motions should be coordinated. Numerous methods
for solving sub-problems underlying the fleet management
problem have been studied in the fields of AI, Robotics
and Operations Research. In addition to addressing only a
facet of the overall problem, most existing methods make
strong assumptions on the use-case, on the environment,
or on the robots in the fleet. Deploying existing methods
in industrial settings therefore requires catering to these
assumptions, e.g., via additional infrastructure [1], providing
hand-crafted paths [2], or specifying traffic rules for deadlock
avoidance [3].

In this paper, we define the fleet management problem
by formulating it as an Optimal Control Problem (OCP).
From an optimal control point of view, the motion of a robot
fleet is a consequence of control commands which transition
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Fig. 1. Example of Fleet Management problem where two goals need to
be reached by one robot each among the three available robots. The robots
must reach the goals while not colliding with each other or with obstacles
in the environment.

the robots from a given initial state to a desired final
state while obeying potentially time-varying constraints, and
maximizing some performance criterion. Our formulation
of the problem includes both real and boolean decision
variables, the latter being used to model, e. g., constraints
on goal allocation. The formulation is intentionally general
(and intractable), and is intended to highlight the component
problems underlying the overall problem of controlling a
fleet of autonomous robots. We also propose a concrete
instantiation of the fleet management problem for fleets of
non-holonomic robots in environments with obstacles. The
instantiation consists of two problems, which are solved in
sequence: solving the first one decides boolean variables
subject to relaxed constraints on the real-valued variables;
the second problem accounts for the constraints on real
variables, subject to the assignments of boolean variables
decided by solving the first problem. The method is detailed
formally, and evaluated empirically on simulated multi-robot
scenarios.

II. PROBLEM STATEMENT

A. Nomenclature

Robot index r = 1, . . . , R
Discrete time index k = 1, . . . , N
Goal index g = 1, . . . , G
Polygon index p = 1, . . . , P
Halfspace index h = 1, . . . ,H
Circular geometry index c = 1, . . . , C

Bold letters are utilized to denote matrices (uppercase) and
vectors (lowercase).

B. The Fleet Management Problem

We consider a multi-robot system in a two-dimensional
world setting W ⊆ R2. Each robot r is associated with a ge-
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ometry Ar ⊆ R2, a control space Ur = {ur(t) ∈ Rn} and a
state space Xr = {xr(t) ∈ Rm}. For notational convenience
we assume that all robots have uniform control/state space
dimension although this need not be the case in general.
Let U =

{
u(t) ∈ RRn

}
be the compound fleet control space

and X =
{
x(t) ∈ RRm

}
be the fleet state space formed by

stacking the corresponding vectors of the individual robots.
We describe regions covered by obstacles as a polyhedral
space O ⊆ R2 where robots cannot navigate. Furthermore,
the obstacle state space Xo ⊆ RRm is determined by robot-
obstacle and robot-robot collisions and the free configuration
space is defined as Xfree = X\Xo. The fleet starts in an
obstacle-free initial state x0 ∈ RRm and we are given a
set of goal states to reach Xg = {xg ∈ Rm | g = 1, . . . , G}.
Note that there can be less goals than available robots, i. e.,
G ≤ R. Additionally, we leverage boolean variables for
decision making (e. g., for robot goal assignment). These
form the set D = {d ∈ {0, 1}}, for a given problem we stack
all decision variables in the vector d(t) ∈ R|D|.

The objective is to allocate goals to individual robots
in the fleet and to find a corresponding trajectory
τ (t) = [x(t)T ,u(t)T ]T which transitions the fleet from its
initial state to a valid goal configuration while traversing Xfree
in an optimal manner. This fleet management problem can
be formalized as an Optimal Control Problem (OCP) where
a cost functional in Bolza form is minimized

min
x(t),u(t),d(t)

L(x(t),u(t),d(t)) =

∫ tf

t0

l (x(t),u(t), t,d(t)) dt+

+ ψ(x(tf ),d(tf ))

subject to
fr (xr(t),ur(t))− ẋr(t) =0, r = 1, . . . , R (1)

B(x0,xg,d(t)) =0, g = 1, . . . , G (2)
P (x(t),d(t)) ≤0, (3)

u ≤ u(t) ≤u, (4)

and where the constraints need to hold ∀t ∈ [t0, tf ]. In
the above formulation, the constraints in (1) ensure that the
fleet’s motion obeys the dynamics of the individual robots.
Depending on the boolean decision variables, the boundary
constraints in (2) enforce the initial and final states of the
fleet while the path constraints in (3) ensure collision-free
motion. Finally, the box constraints in (4) can be used to
capture actuator limitations.

Finding an optimal solution to the fleet management OCP
in form of a closed-loop policy π∗ = u(x(t),d(t), t) is
daunting as the formulation comprises both real (x, u) and
boolean (d) decision variables. Furthermore, the dynamics of
real-world robots are typically nonlinear. Therefore, in this
work we limit ourselves to solving the trajectory optimization
problem, i. e., finding an optimal trajectory τ ∗(t) for a given
initial state only. In practice, this will require a suitable track-
ing controller to stabilize the resulting trajectory. Here, we
leave this aspect aside and focus on the theoretical foundation
of trajectory optimization for the fleet-management problem.

Fig. 2. Our two-phased approach to the fleet management problem

III. APPROACH

Our solution strategy is based on direct shooting to trans-
form the continuous fleet-management OCP into a finite-
dimensional optimization problem amenable to numerical
solution [4]. To this end, we discretize in time according to
tk = tfk/N , where tf is a given final time. In shooting
methods the optimal states x∗[k] are not directly solved
for. Instead, they are obtained from the controls through
numerical integration of the dynamics in (1), for which we
use a 4th order Runge-Kutta method. Discretizing the OCP
in Section II-B yields a non-convex MINLP (Mixed Integer
Nonlinear Problem) for which only a locally optimal solution
can be found in general. The problem has the following
input:
• Obstacle free polyhedral space Ofree
• Robot geometries A1, . . . ,AR

• Fleet initial state x0

• Discrete robot dynamics
xr[k + 1] = fr(xr[k],ur[k]), r = 1, . . . , R

• Goals to reach x1, . . . ,xG

• Fleet actuator constraints u,u
The solution of the fleet management problem is:
• A feasible sequence of control inputs u∗[0], . . . ,u∗[N ]

which minimizes a given cost function.
In order to leverage efficient existing solution strategies

for integer programming and nonlinear programming respec-
tively, we developed a two-phase solution procedure. The
first phase solves for the boolean decision variables d∗[k]
via Mixed Integer Quadratic Programming (MIQP). The
solution of the MIQP is then used to parametrize a Nonlinear
Programming Problem (NLP) which is solved subsequently.
The latter yields the real-valued decision variables u∗[k] as
illustrated in Fig. 2. The two solution stages will be discussed
in detail in Sections III-B and III-C respectively.

A. Obstacle Avoidance

The obstacle-free space Ofree = W\O is approx-
imated by the union of P1, . . . ,PP convex polygons.
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Fig. 3. A robot is navigating in world W. The obstacle
free region Ofree = W\O is decomposed into polygons P1

and P2, i. e., Ofree = P1 ∪ P2. In turn, Polygon P2 is
defined by the intersection of H = 4 positive half-spaces, i. e.,
P2 =

{
ζ ∈W | aT

h ζ − bh ≥ 0, h = 1, . . . , 4
}

. Robot r’s rectangular
geometry (parametrized by width W and length L) is approximated by
the union Ar of two circular discs with radius s. The desired goal state is
designated as xg .

Let us define a polygon as the intersection of positive
half-spaces Pp =

{
ζ ∈W | aT

h ζ − bh ≥ 0, h = 1, . . . ,H
}

,
where ah ∈ R2 and bh ∈ R denote the unit normal and
offset of half-space h. We model the geometry of robot r
by approximating its footprint in a conservative manner via
the union of circular discs as shown in Fig. 3. For notational
simplicity we assume that each robot geometry comprises
the same number C of discs, that each disc has the same
radius s and that each polygon Pp is formed by the same
number H of half-spaces. However, these assumptions are
not a general requirement in our approach. As in [5] we
achieve obstacle avoidance by imposing linear constraints
ensuring that each disc with center ζr,c (which is a function
of the configuration of robot r) is contained in at least one
polygon Pp. Corresponding constraints enforcing robot r to
be contained in polygon Pp at time tk can be written as

F pζr,c[k]− bp − 1s ≥ 0, c = 1, . . . , C (5)

where the rows of F p ∈ RH×2 are formed by half-
space normals aT

h and the vector bp ∈ RH contains the
corresponding half-space offsets bh. The vectors 1 and 0
in (5) are of appropriate dimension. The decision of which
robot needs to be in what polygon at each time tk is made
during the MIQP stage. Robot-robot collision avoidance is
solved differently in the MIQP stage and the NLP stage and
will be detailed below.

B. MIQP Formulation

In the first phase we relax the overall problem by approx-
imating the robots’ dynamics with the uniform linear model

xr[k + 1] =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

A

xr[k] +


0 0
0 0
1
m 0
0 1

m


︸ ︷︷ ︸

B

ur[k]. (6)

In (6) the robot’s mass is denoted by m, the state is given by
xr[k] = [ζTr , ζ̇

T

r ]
T and the control is defined as ur[k] ∈ R2.

Here, we approximate each robot’s footprint with a single
circular shape, which is a conservative approximation and
can lead to incompleteness. Nevertheless, note that robot
orientation can be represented in the MIQP’s state, allowing a
better encapsulation of the robot’s footprint. Furthermore, the
cost function is chosen to be quadratic. As a result, for each
possible assignment of discrete variables one has a convex
problem with quadratic cost and linear constraints. Although
solving a MIQP is still NP-hard, in practice solutions can be
found efficiently via existing solvers, as we will show in the
evaluation of our method in Section IV.

As obstacle avoidance requires assignment of robots to
obstacle-free polygons at each time step we capture proposi-
tions of the form “Is robot r in polygon p at time tk?” using
RP boolean variables er,p[k]. Similarly, goal assignment “Is
robot r assigned to goal g?” is formalized using RG boolean
variables yr,g . Finally, we formulate robot-robot avoidance
in the MIQP by ensuring that all robot pairs are separated
along at least one world coordinate direction (ζ1 and/or ζ2
respectively). To this end, we introduce boolean variables
li,j [k] whose value at time tk is 1 if robots i and j are
separated along ζ2 and 0 if robots i and j are separated
along ζ1. For example, (e3,2[1] = 1) means that at t1 robot
3 is in polygon 2, (y4,2 = 1) means that robot 4 is assigned
to goal 2 and (l1,2[3] = 1) means that robot 1 and 2 are
separated along ζ2 at t3. All boolean decision variables are
collected in vector d[k]. The overall MIQP reads as

min
u[k] ∈ R2R, k = 0, . . . , N − 1
d[k] ∈ D, k = 0, . . . , N

L (u(·)) =
N−1∑
k=0

u[k]TRu[k] (7)

subject to
x[0] = x0, (8)

xr[k + 1] = Axr[k] +Bur[k], r=1,...,R; k=0,...,N−1 (9)
0 = (xg − xr[N ]) yg,r, r=1,...,R; g=1,...,G (10)

1 =

G∑
g=1

yg,r, r=1,...,R (11)

1 =

R∑
r=1

yg,r, g=1,...,G (12)

1 ≤
P∑

p=1

er,p[k] ≤ P, r=1,...,R; k=0,...,N (13)
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Fig. 4. (Left) Depicted is the initial configuration of a fleet consisting of 9 robots which navigate in obstacle-free space formed by the union of 4 polygons.
In the illustration we use the shorthands ri for r = i and gj for g = j. Also indicated are desired goal locations. (Center) Shown is the fleet trajectory
obtained from the solution of a corresponding MIQP with N = 3 time-steps. Consider, e. g., a subset of the solution for robot r = 4 which was allocated
to goal g = 6 (g6): y4,6 = 1, e4,1[1] = 1, e4,1[2] = 1, e4,3[2] = 1, e4,3[3] = 1. Therefore, the sequence of traversed polygons is P1 → P1∩P3 → P3.
(Right) Represented is the final solution of the problem after the NLP phase with N = 9 time steps (solved by leveraging d∗[0], . . . ,d∗[N ] obtained
from the MIQP solution shown in the center). Spatial and temporal coordination between, e. g., robots r = 7 and r = 9 is evident. The robot paths are
significantly different from the MIQP solution due to the non-holonomic robot dynamics considered in the NLP.

1s ≤ F pζr[k]− bp + 1M(1− er,p[k]), (14)
r=1,...,R; p=1,...,P ; k=0,...,N

P∑
p=1

ep,r[k] ≥
P∑

p=1

|er,p[k]− er,p[k + 1]|, (15)

r=1,...,R; k=0,...,N−1

2s ≤ |ζi,1[k]− ζj,1[k]|+M

[
li,j [k]

1− li,j [k]

]
, (16)

∀(i,j)∈{{1,...,R}×{1,...,R}|j>i}; k=0,...,N

u ≤ u[k] ≤ u, k=0,...,N−1 (17)

where M ∈ R+ in (14), (16) is a large positive number
according to the Big M method. The quadratic cost function
in (7) minimizes control energy and the constraint in (8)
enforces the given initial state of the fleet. Each robot
has to obey the chosen linear dynamics in (9). The task
allocation in (10) ensures that the final states of those robots
whose corresponding assignment variable yg,r = 1 have to
coincide with the corresponding goal states. Therefore, which
robots are assigned to each goal is not decided a priori.
Constraint (11) takes care that each robot is assigned no more
than one goal whereas constraint (12) makes sure that each
goal is assigned to a robot. Additionally, the constraint (13)
ensures that each robot is in at least one obstacle-free
polygon and (14) enforces that all circular geometries of
robot r lie within polygon Pp at time tk if the corresponding
decision variable er,p[k] = 1 (c. f. (5)). Constraint (15)
addresses the corner-cutting problem as shown in [5]. The
right-hand side gives the accumulated number of polygons
robot r enters or leaves between time-steps. As this needs
to be smaller than the number of polygons robot r is
currently in, the constraint enforces two consecutive states
to lie within the same polygon. Consider the example in
Fig. 3, where robot r has to travel from polygon P1 to
P2 to reach goal xg . Constraint (15) implies that it has to
transverse the overlapping region P1 ∩ P2. The partitioning
of the obstacle free space is specified manually, although
several off-the-shelf methods can be utilized, e.g. IRIS [6].

Finally, the constraint in (16) enforces separation of robot
pairs along at least one coordinate direction and (17) takes
care of actuator limitations. Note that the real absolute value
function used in (14), (16) is convex but only piece-wise
linear. However, it can be represented as a composition of
linear constraints by introducing additional discrete slack
variables [7]. Figure 4 depicts an exemplary MIQP solution.
The illustrated configuration sequence of the fleet has been
obtained by forward simulation of the dynamics using the
obtained solution u∗[0], . . . ,u∗[N ] for the controls.

C. NLP Formulation

In the second solution phase we formulate a NLP with
only real-valued decision variables as the boolean decision-
making elements are taken from the solution d∗[k] of the
MIQP. In particular, we exploit the pre-solved goal assign-
ment (y∗r,g) and fix the sequence of traversed obstacle-free
polygons (e∗r,p[k]). For notation purposes we assume the
time-steps N in the MIQP and NLP to be the same, although
this need not be the case. In fact, the amount of time
steps in the MIQP only requires to match the amount of
necessary polygon transitions, leaving a more fine grained
time discretization for the NLP. In the case of adding addi-
tional NLP time-steps, the boolean e∗r,p[k] variables require
post-processing to account for the dimension mismatch. We
do not currently utilize the remaining solution elements
from the MIQP (u∗[k] and l∗i,j [k]) as the NLP builds upon
more expressive robot dynamics and robot-robot avoidance
formulation. Specifically, we approximate robot footprints
with multiple circular discs and use a non-convex modified
Reeds-Shepp model, where speed is not constant:

xr[k + 1] = fr(xr[k],ur[k]) =


vr[k] cos(θr[k])
vr[k] sin(θr[k])
κr[k]vr[k]
v̇r[k]

 . (18)

In (18) the state vector is given by xr[k] = [ζTr , θr, vr]
T

and we define a vector of controls as ur[k] = [v̇r, κr]
T .

Here, θr[k] describes the heading of robot r, vr[k] is the
speed and κr[k] the curvature. Overall, the resulting NLP
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can be stated as

min
u[k] ∈ R2R, k = 0, . . . , N − 1

L (u(·)) =
N−1∑
k=0

u[k]TRu[k] (19)

subject to
x[0] = x0, (20)

xr[k + 1] = fr(xr[k],ur[k]), r=1,...,R; k=0,...,N−1 (21)
0 = (xg − xr[N ]) , (22)

∀(g,r)∈{{1,...,G}×{1,...,R}|y∗
g,r=1}

1s ≤ F pζr,c[k]− bp, (23)

∀(p,r,c,k)∈{{1,...,P}×{1,...,R}×{1,...,C}×{1,...,N}|e∗r,p[k]=1}
0 ≤ ‖ζi,c[k]− ζj,c[k]‖2 − 2s, (24)

∀(i,j,c,k)∈{{1,...,R}×{1,...,R}×{1,...,C}×{1,...,N}|j>i}

u ≤ u[k] ≤ u. k=0,...,N−1 (25)

The cost function in (19), the initial condition constraint
in (20) and the actuator limitations in (25) have the same
structure as in the MIQP. The discrete dynamics in (21)
correspond to the non-holonomic model in (18). The goal
allocation in (22) leverages the result of the previously solved
MIQP and sets the final states of a subset of robots to
their respective goals if the corresponding boolean variable
y∗r,g = 1. In a similar fashion, at each time-step tk every
robot r is assigned to at least one obstacle-free polygon
according to e∗r,p[k]. Robot-robot obstacle avoidance in the
NLP is formulated in constraint (24). It ensures that the
Euclidean distance between all circular discs approximating
the geometries of robot pairs (i, j) does not fall below the
common disc diameter. An example NLP solution is shown
in Fig. 4. Again, the fleet configuration sequence has been
computed by forward simulation using the obtained controls.

IV. EXPERIMENTS AND RESULTS

The approach was implemented in Matlab and tested on
a PC running Ubuntu 16.04 equipped with an 8-thread Intel
Core i7-6820HQ CPU @ 2.70GHz and a Quadro M1000
GPU with 4GB RAM. The formulation described in Sec-
tion III was implemented using the symbolic framework for
algorithmic differentiation CasADi [8]. To solve the MIQP,
we used IBM ILOG CPLEX solver, while the NLP solver
used was IPOPT [9] with the linear solver MA27 [10]. Both
solvers were given a 60-second timeout.

A. Scalability

We conducted test runs on variants of the scenario depicted
in Fig. 4, with a varying number of horizontal and vertical
polygons. Across all experiments we used constant actuator
bounds for the absolute value of all elements of u[k] in
the MIQP (1m/s2) and the speed of robot r in the NLP
(|v̇r| ≤ 1m/s2). The curvature bound of |κr| ≤ tan (φmax)/L,
where φ is the steering angle, was varied across experiments.

We start by investigating which elements of the problem
are computationally the most costly. In all boxplots (Fig. 5,
6 and 8), the vertical axis is computation time, each box
represents a set of 50 experiments, the bottom line indicates
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Fig. 5. Computation time vs. number of time steps in the MIQP and NLP.
The solutions computed with a given number of time steps NMIQP in the
MIQP were provided as input to the NLP solver with NNLP = 3NMIQP
time steps. These experiments were conducted with the following settings:
P = 3, R = 3, C = 2, W = 0.5m, L = 1m, φmax = 50◦. The obstacle
free space is similar to the one depicted in figure 4, although with only two
vertical (4× 12m2) polygons and one horizontal polygon (4× 14m2).

the 25th percentile, the top line the 75th percentile. The
median is represented by the red line. The percentage of
solutions found is also shown in the top of the box plots. We
first investigate how computation time and solution success
is affected by the number of time steps NMIQP and NNLP
considered in the MIQP and NLP phases, respectively. The
results are summarized in Fig. 5.

We also conduced experiments to assess how the approach
scales with respect to the number P of polygons. We found
no relation between P and computation time for P =
2, ..., 6. Additionally, we conducted experiments to observe
the effect of φmax ∈ {10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦}
on solution success rate. Also here, no relation was found,
except for the case in which φmax ≤ 20◦, in which the amount
of solutions found is lower because robots are essentially
limited to moving straight ahead.

Next, we experimented with enabling/disregarding the
robot-robot collisions in the MIQP via the constraints in (16).
Note that their inclusion in the MIQP formulation is intended
as a means to avoid allocations of boolean variables resulting
in unavoidable robot-robot collisions in the subsequent NLP
phase. Omitting these constraints in the MIQP does not affect
the correctness of the solutions computed in phase two, as
the absence of collisions between robots is also enforced in
the NLP formulation. The computation time and percentage
of solved problems after the second phase is shown in Fig. 6,
with and without the robot-robot collision constraints in the
MIQP formulation. Interestingly, the amount of solutions
found is lower and the total computation time is higher when
robot-robot collisions are considered in the MIQP. This can
be explained by observing that the MIQP is a relaxation of
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Fig. 6. Effect of considering robot-robot collision constraints in the MIQP
(left graph) or not (right graph) on the computation time and the percentage
of solutions found after phase two, while increasing the dimensions of the
robot geometries. Robot geometry 1 is W = 0.6(m)L = 1.2(m), robot
geometry 2 is W = 0.8(m)L = 1.6(m), robot geometry 3 is W =
1(m)L = 2(m), robot geometry 4 is W = 1.2(m)L = 2.4(m), robot
geometry 5 is W = 1.4(m)L = 2.8(m), robot geometry 6 is W =
1.6(m)L = 3.2(m). These experiments were conducted with the following
settings: P = 2, R = 4, NMIQP = 6, NNLP = 24, φmax = 60◦. The two
polygons are rectangles crossing each other with dimensions 4× 10m2.

the fleet management problem, where the constraints in (16)
effectively approximate the robot geometry to a square
encapsulating Ar. This overly-conservative approximation of
the robot’s geometry may result in a robot being less able to
traverse narrow passages.
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Fig. 7. Computation time vs. number of goals. These experiments were
conducted with the following settings: P = 4, R = 5, C = 2, W = 0.5m,
L = 1m, φmax = 50◦. The obstacle free space is the one depicted in figure
4

Furthermore, we conducted a set of experiments to evalu-
ate the effect of the number of goals on the computation time,
while the number of robots remains constant (R = 5). As
shown in Fig. 7, the computation time grows as the number
of goals is increased. However, this is not the case when the
number of robots and goals are equal (R = 5 and G = 5).
In general, having more goals than robots leads to a less
constrained fleet management problem. Nevertheless, this
”freedom” makes the robot-goal allocation problem harder as
it requires more decisions to be made. The balance between
these two factors can then explain the outlier (i.e., R = 5
and G = 5). When G = 6, the effect of having a harder
robot-goal decision problem (deciding about which five of
the six goals are going to be fulfilled) is lower than having
a less constrained fleet management problem. On the other
hand, when G < R finding the control input variables for the
non allocated robots is simpler since the best way to reduce
the control energy is to remain in the initial configuration.

Note that, for the case R 6= G the constraints (11) and (12)
have to be designed accordingly.

Finally, we assess how the approach scaled with respect
to number of robots. Fig. 8 plots the total computation time
of both phases versus the number of robots. As shown,
computation time is highly affected by fleet size, and the
majority of problems could be solved within the timeout for
fleets of up to nine robots. Once again, the results were
better both in terms of computation time and percentage
of solutions found when robot-robot collisions were not
considered in the MIQP.
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Fig. 8. Computation time vs. number of robots in the fleet. In the top plot,
robot-robot collisions are considered in the MIQP, while they are not in the
bottom plot. The experiments settings are the following: P = 4, NMIQP =
3, NNLP = 9, W = 0.25m, L = 0.5m, φmax = 50◦. The obstacle free
space is the same as in 4, with vertical polygons with dimensions 4×10m2

and horizontal polygon with dimension 4× 20m2.

B. Case Study

Next, we look at a case study which shows interesting
features of the developed approach. In the problem depicted

Fig. 9. Fleet management problem with initial configuration in the top and
respective solution after the NLP in the bottom. The obstacle free space is
composed of one polygon with dimensions 4× 10m2

in Fig. 9, the motions of the robots are a direct consequence
of the OCP formulation of the fleet management problem.
The problem requires all goals (black dots in the figure)
to be allocated to a robot, while all but two of the robots
are already at goal destinations in the initial condition. The
computed solution requires all robots to move towards the
right, thus achieving complete coverage of the goals. This
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solution shows the complex interplay between constraints
on boolean and real-valued variables, and the fact that these
are adhered to while an overall objective function is being
minimized. The incentive for all robots to shift right derives
from the need to minimize the overall fleet cost; this contrasts
to greedily maximizing the private reward of individual
robots.

V. RELATED WORK

In the multirobot motion planning problem [11], the
objective is to find a path for each robot leading it from
start to final configuration without colliding with other robots
and obstacles. The configuration space within which search
occurs is the Cartesian product of each robot’s configuration
space. Hence, each additional robot that is added to the fleet
increases the size of the search space exponentially. Efficient
graph-based search methods have been studied for multirobot
motion planning, some relying on pre-computed motion
primitives [12], others on the construction of obstacle-free
configuration spaces [13]. None of these methods address the
goal assignment problem, i.e., goal assignments are assumed
given. The combined Target Assignment and Path Finding
(TAPF) problem, where robots are not assigned to targets a
priori, has received some attention [14]. Wagner et al. [15]
propose a method in which the configuration spaces of
robots are considered jointly only when a conflict cannot be
solved. This effectively keeps the increase in search space
size (due to the presence of many robots) to the minimum
necessary; however, if there are no conflicts, the method
will greedily minimize the path costs of single robots, thus
failing to account for possible synergies between them, and
potentially levitating the overall cost across the fleet. Also,
these approaches have been shown to scale to large fleets
only under the assumption of holonomic robot models. As
a result, post-processing methods are required for enforcing
adherence to realistic kinematic models [16].

Another possible strategy to solve the fleet management
problem stated in Section II is to exploit the existence of
efficient motion planning and coordination solvers, and solve
the respective sub-problems separately while defining the
necessary dependencies between them [17]. For example, the
multi-robot motion planning problem has been decomposed
into a motion planning problem (solved for each individual
robot) and the subsequent problem of adaptating the temporal
profiles of robot trajectories to avoid collisions. Conflict-
based scheduling techniques have been used for this pur-
pose [18], [19]. These approaches amount to decoupling the
overall problem into spatial and temporal problems which
are solved in sequence. As a result, these approaches may
require re-planning of robot motions even in trivial cases,
e.g., when robots need to exchange positions in a narrow
corridor. Also, these approaches do not account for goal
allocation, which is assumed given (albeit not necessarily
known in advance [20]).

Advancements in numerical optimization have led to a
surge in optimization-based motion planning approaches in
recent years. Prominent examples include CHOMP [21] and

derived approaches [22]. These methods optimize a perfor-
mance criterion which incorporates penalties for obstacle
avoidance and smoothness, but cannot handle explicit con-
straints such as robot dynamics. Schulman et al. [23] devel-
oped a sequential quadratic programming approach tailored
to solving general motion planning problems formulated as
NLPs. Nevertheless, as the previously discussed methods,
their approach does not include boolean decision variables.
The idea of using mixed integer programming to address dis-
crete decision making in multi-robot path planning has been
addressed by Schouwenaars et al. [24]. However, they rely
on robot models being holonomic, and do not address goal
assignment. A recent efficient approach [5] solves a mixed
integer planning problem for a single non-holonomic UAV
in a cluttered environment, where space is discretized into
obstacle-free polygons. Furthermore, Augugliaro et al. [25]
suggested a method considering hon-holonomic robot models
for multiple UAVs in obstacle-free environments. Similar in
spirit to our work, Kuindersma et al. [26] recently proposed
to combine mixed integer programming for footstep planning
with solving a subsequent NLP for generating trajectories for
a single humanoid robot.

VI. CONCLUSIONS

We have proposed a general formulation of the fleet
management problem, that is, the problem of assigning goals
and computing mutually-consistent trajectories for a fleet
of robots. Our formulation underscores two points: (1) au-
tomating fleets requires solving several sub-problems, which
include goal assignment, motion planning, and coordination;
(2) these sub-problems are tightly connected, hence requiring
a holistic approach that goes beyond current state-of-the-art
methods in motion planning and coordination.

We have also provided a concrete instantiation of the fleet
management problem for fleets of non-holonomic robots in
environments with obstacles. The proposed solution proce-
dure relies on two phases: the first phase solves for the
boolean decision variables under relaxed constraints via
MIQP; solutions of phase one are then used by a NLP
solver to compute jointly-feasible trajectories for the fleet.
Through several examples, we have shown how complex
fleet behavior occurs as a direct consequence of the interplay
between constraints in the problem formulations of the two
phases.

In our approach, the boolean variables considered in the
first phase pertain to goal allocation and transitions through
a polyhedral partitioning of obstacle-free space. It is worth
noting that, as suggested by the general formulation of the
fleet management problem, these may also include other
aspects of fleet behavior we may wish to predicate upon,
e.g., precedences among robot missions, or preferences on
goal assignments. These aspects are often meaningful in
real-world applications, and considering them jointly with
the motion- and coordination-related sub-problems of fleet
management can be very important.

In the future, we intend to transcribe the NLP with a
collocation method which provides a better balance of time
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step discretization and solution quality for many problems.
We also plan to study how this approach can be exploited
for online fleet management. Finally, we intend to integrate
the method into a fleet management framework with real
robots, in which the computed trajectories are executed with
a suitable tracking controller.
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