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Abstract— The problem of minimizing cost in nonlinear
control systems with uncertainties or disturbances remains a
major challenge. Model predictive control (MPC), and in par-
ticular sampling-based MPC has recently shown great success
in complex domains such as aggressive driving with highly
nonlinear dynamics. Sampling-based methods rely on a prior
distribution to generate samples in the first place. Obviously,
the choice of this distribution highly influences efficiency of the
controller. Existing approaches such as sampling around the
control trajectory of the previous time step perform subopti-
mally, especially in multi-modal or highly dynamic settings. In
this work, we therefore propose to learn models that generate
samples in low-cost areas of the state-space, conditioned on
the environment and on contextual information of the task to
solve. By using generative models as an informed sampling
distribution, our approach exploits guidance from the learned
models and at the same time maintains robustness properties
of the MPC methods. We use Conditional Variational Autoen-
coders (CVAE) to learn distributions that imitate samples from
a training dataset containing optimized controls. An extensive
evaluation in the autonomous navigation domain suggests that
replacing previous sampling schemes with our learned models
considerably improves performance.

I. INTRODUCTION

Fast and reliable local motion planning is a key technique
for efficiently accomplishing robot navigation tasks. The
challenge is to compute smooth controls to steer autonomous
systems to the desired goal, taking into account dynamics
and additional constraints such as closeness to the global
path, while avoiding un-foreseen obstacles. Model predictive
control (MPC) [14], [13] is an efficient technique to perform
local motion planning and control by solving a receding-
horizon model-based open-loop optimal control problem.
Classical MPC techniques work well when the goal is the
stabilization of constrained systems around some equilibrium
points or trajectories [2], [6], [19]. Modern numerical solvers
can solve efficiently (non-)linear constrained optimization
problems for convex cost function and accurate approxima-
tion of the system dynamics [12]. Lately several algorithms
have extended MPC with machine learning [10], [26] to solve
more challenging problems coming from the robotics domain
with more difficult nonlinear dynamics and interactions with
the environment.

Recently a novel information-theoretic approach to MPC
(IT-MPC) [25] has been introduced to overcome some of the
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Fig. 1: Example path (in red), controls (in dark purple) and
samples in (light purple) generated by our approach for a
wheeled mobile robot considering control uncertainties. With
our method the robot is capable of successfully navigating
among un-foreseen obstacles and following the obstacle-
unaware global path (in green) differently from the IT-MPC
(its resulting path in blue), which could not find a solution.

natural limitations of standard (non-)linear MPC techniques.
Contrarily to standard MPC techniques, IT-MPC can work
considering arbitrary system dynamics and cost functions.
The approach shifts its attention to stochastic domains and
extends the path integral control method (MPPI) [22]. IT-
MPC generates open-loop sequences of sampled controls by
minimizing the Kullback–Leibler (KL) divergence between
the current control distribution and the optimal one, derived
by the desired cost-function. The control scheme converges
to the optimal distribution as the number of samples in-
creases. The authors show in [25] that IT-MPC can achieve
good performance in an aggressive-driving scenario. Control
samples for IT-MPC are generated in [25] by a normal
distribution centered around the previous control sequence.
This method performs well as long as the optimal control
sequence only changes slightly from one step to the other. If
this is not the case, for example due to a new goal location
or dynamic obstacle, local sampling around the nominal
trajectory leads to poor convergence to the optimal control
sequence.

To overcome these limitations, in this work we propose to
extend IT-MPC by adding an informed sampling process, i.e.,
a learned distribution, that is aware of the robot dynamics,
of the environment and of the global task to accomplish.
We use Conditional Variational Autoencoders (CVAE) [21]
to learn distributions that imitate samples from a training
dataset containing optimized controls. Sampling from this
distribution leads to improved performance since less sam-
ples fall in costly parts of the state space. Furthermore, to
learn task-driven robot behaviors, differently from its original
formulation, we propose a novel loss function for the CVAE.



The latter considers also the environmental conditions in its
reconstruction error. In a series of experiments, we show that
our approach outperforms a set of baselines in different en-
vironments in terms of final trajectory cost, traveled distance
and task success.

The paper is structured as follows: in Section II we
detail the related work. In Sections III, IV we introduce our
approach. Section V describes the setup of experiments and
Section VI discusses the obtained results.

II. RELATED WORK

Several approaches adopt MPC-based techniques for solv-
ing robotics tasks in combination with machine learning [10],
[26], [3]. In [10] the authors combine an MPC controller
with a deep architecture for physical prediction of the robot
model. Similarly, we learn the model used for the optimiza-
tion but use the IT-MPC framework for generating motions.
In [26] an MPC algorithm is used in combination with guided
policy search [11] for the offline learning of control policy.
Differently, our approach uses IT-MPC for the on-line system
control and offline learning of the environment-aware sam-
pling distribution. Williams et al. [24] propose a robust IT-
MPC framework, a Tube-MPC approach for solving general
optimal control problems, with a sampling based nominal
controller. Its generality allows our approach to be extended
in a future work to this framework. Drews et al. [3] combine
MPPI with a deep network that predicts future cost maps
directly from images taken from a monocular camera. On
the contrary, in our approach we learn a context and task
aware distribution that generates samples towards promising
areas of the state space and use a hand-crafted cost function.

Learning sampling distributions in the context of global
motion planning has recently received a lot of interest [7],
[16], [18], [8]. Ichter et al. [7] use CVAE for learning
sampling distributions for sampling-based motion planning.
This work considers as conditional variables of the CVAE
obstacles encoded in a grid map, start and goal poses. CVAEs
are also adopted in [18], [8] to learn multi-modal probability
distributions of human-human interactions. Differently from
[7] they use recurrent neural networks (RNN) and long short-
term memory (LSTM) to model the encoder and decoder
part of the CVAE. Perez et al. [16] use a fully convolutional
neural network to enhance sampling-based motion planning
capabilities: in particular the sampling distribution is biased
towards areas where the network predicts a path. As in [7],
[18], [8], we use a CVAE for learning a sampling distribution,
that differently from the latter methods, will directly generate
controls based on system dynamics, the context and the task
to solve. This is achieved by introducing a novel loss function
for CVAEs. Moreover, as opposed to [7], [18], [8], we use
the learned distribution in an MPC-based local planner.

III. PRELIMINARIES

In this section we introduce preliminaries needed to de-
scribe our approach: the Information Theoretic-MPC frame-
work in Sec. III-A and Conditional Variational Autoencoders
in Sec. III-B.

A. Information Theoretic-MPC

Here we recap the Information Theoretic-Model Predictive
Control (IT-MPC) approach [25] that considers stochastic
nonlinear discrete time systems of the form xxxt+1 = F(xxxt ,vvvt),
where xxxt ∈ Rn is the system state at time t of dimen-
sion n, vvvt ∈ Rm is the input control variable of dimension
m with white noise applied to nominal control uuut , i.e.,
vvvt = uuut + εεε t with εt ∼ N (0,ΣΣΣ). Let us define the input
sequence as (vvv0,vvv1, . . . ,vvvtf−1) = VVV ∈ Rm×tf , its mean input
as (uuu0,uuu1, . . .uuutf−1) = UUU ∈ Rm×tf and the disturbance as
(ε0,ε1, . . .εtf−1) = E . We denote the resulting joint proba-
bility distribution that generates VVV as QUUU ,ΣΣΣ.

The goal of IT-MPC is to solve the stochastic optimal
control problem of the form

UUU∗ = arg min
UUU∈U

EQUUU ,ΣΣΣ

(
tf−1

∑
t=0

c(xxxt)+φ(xxxtf)+λ (uuuT
t ΣΣΣ
−1uuut)

)
,

(1)
where U is the set of possible input sequences for the
system, c(xxxt) is a state based cost, φ(xxxtf) a terminal cost
and λ > 0. Williams et al. [25] derive the optimal control
distribution Q∗ as

q∗(VVV ) =
1
η

exp− 1
λ

S(VVV )p(VVV |000,ΣΣΣ) (2)

where S(VVV ) denotes the state cost of an entire trajectory, p is
a Gaussian with covariance ΣΣΣ and η is a normalization factor.
This optimal control distribution is not necessarily Gaussian,
depending on the state cost function. To approximate the
original problem (1), the authors propose to minimize the
KL divergence between the optimal control distribution Q∗
and QUUU ,ΣΣΣ

UUU∗ ≈ arg min
UUU∈U

DKL(Q∗,QUUU ,ΣΣΣ). (3)

In case the optimal control distribution is Gaussian, the
approximation is correct and the resulting control trajectory
is optimal. Given samples VVV k around a nomial control
trajectory ÛUU as described above with disturbances Ek, Eq. 3
can be solved by an importance sampling scheme

UUU∗ ≈ ÛUU +

(
K

∑
k=1

wkE k

)
(4)

where wk are importance sampling weights. Even though in
theory (4) approximates the optimal control distribution in
one shot, in practice it is more robust to use (4) as an update
rule in an iterative manner. The resulting algorithm is detailed
in Algorithm 1, without the blue line. For a derivation of
the importance sampling weights and more details about the
overall algorithm we refer to the original paper [25].

B. Learning sampling distributions with CVAE

In this work we will use Conditional Variational Autoen-
coders [21] to learn a model that can be used to generate in-
formed sampling distributions for IT-MPC-based controllers,
i.e., to provide samples in low-cost areas of the state space
to improve efficiency of the controller in the desired task.



Algorithm 1 Informed IT-MPC algorithm. Blue represents
the pseudocode to remove to obtain the original IT-MPC.
1: Input: UUU∗: Initial control sequence, K: Number of samples,

tf: Time horizon, F : Transition model, φ , c: State cost
Σ, λ : Hyper-parameter, CCC decoder conditions

2: while task not completed do
3: xxxo← GetStateEstimate()
4: UUU∗← InformControls(xxx0, uuu∗,CCC,Σ,φ ,c,F)
5: for k← 0 to K−1 do
6: xxx← xxx0
7: SSSk ← 0
8: E k ← (εk

0 , . . . ,ε
k
tf−1),ε

k
t ∈N (0,Σ)

9: for t← 1 to tf do
10: xxx← F(xxx,uuut−1 + εk

t−1)

11: SSSk ← SSSk + c(xxx)+λuuuT
t−1ΣΣΣ

−1
εk

t−1
12: end for
13: SSSk ← SSSk +φ(xxx)
14: wwwk ← ImportanceSamplingWeights(SSSk , λ )
15: UUU∗←UUU∗+∑

K
k←1 wwwkE

k

16: end for
17: ApplyControl(uuu∗0)
18: for t← 1 to tf−1 do
19: uuu∗t−1← uuu∗t
20: end for
21: uuu∗tf−1← Initialize(uuu∗tf−1)
22: end while

Algorithm 2 Generate control trajectory using the learned
CVAE model.
1: Input: xxx0, UUU∗,CCC,F,φ ,c,Σ,λ
2: ÛUU ← CVAEDecoder(CCC)
3: x̂xx,xxx∗← xxx0
4: ŜSS,SSS∗← 0
5: for t← 0 to tf−1 do
6: x̂xx← F(xxx, ûuut),xxx∗← F(xxx∗,g(uuu∗t ))
7: ŜSS← ŜSS+ c(x̂xx)+λ ûuuT

t ΣΣΣ
−1ûuut , SSS∗← SSS∗+ c(xxx∗)+λuuu∗Tt ΣΣΣ

−1uuu∗t
8: end for
9: ŜSS← ŜSS+φ(x̂xx), SSS∗← SSS∗+φ(xxx∗)

10: if ŜSS < SSS∗ then
11: UUU∗←

(
1− ŜSS

ŜSS+SSS∗

)
ÛUU +

(
1− SSS∗

ŜSS+SSS∗

)
UUU∗

12: end if
13: return UUU∗

A Conditional Variational Autoencoder (CVAE) is trained
to imitate a distribution of observed data XXX (i) ∈ RNx con-
ditioned on CCC ∈ RNb using an unobserved, latent represen-
tation ZZZ ∈ RNz , i.e., p(XXX |CCC) =

∫
zzz p(XXX |zzz,CCC)p(zzz|CCC)dzzz of the

states. Fig. 2 illustrates the two components of a CVAE,
an encoder and a decoder. The encoding process finds a
parametric function (e.g., a neural network) that maps the
input XXX and conditions CCC to a normal distribution q(zzz|XXX ,CCC)
with a mean µ and variance Σ in the latent space zzz. The
decoder can be intuitively interpreted as the reverse process
of encoding. It finds a parametric function that given a latent
variable and conditions computes samples from the input
distribution, that is p(XXX |zzz,CCC). The main idea of CVAE is not
to directly maximize the marginal likelihood log p(XXX (i)|CCC),
but its Variational Lower Bound of the form

log p(XXX (i)|CCC)≥−DKL[q(zzz|XXX (i),CCC)||p(zzz|CCC)]

+Eq
(zzz|XXX(i),CCC)

[log(p(XXX (i)|zzz,CCC))].
(5)

Here, the first term on the right-hand side is a KL-Divergence
between the distribution of q(zzz|XXX (i),CCC) and the desired latent
space distribution p(zzz|CCC). The log-likelihood of p(XXX (i)|zzz,CCC)

Encoder

µ
(XX X

)
Σ
(XX X

)

z = µ +Σ⊗ ε

⊗
⊕

⊕
Decoder

ε ∈N (0, I)

DKL = [q(zzz|XXX ,CCC)||p(zzz|CCC)]

floss(XXX ,CCC)

XXX

CCC

X̄XX

Fig. 2: Scheme of the CVAE, in which the decoder generates
an approximation X̄XX of the given inputs XXX . The network
receives two concatenated vectors with the input values
and the conditions CCC. The encoder and decoder are both
composed of four fully connected layers with a ReLU as the
activation function, each circle in the figure represents 100
nodes. Texts in the dotted boxes describe components of the
loss function.

can be interpreted as the reconstruction loss. After training,
by sampling in the latent space, the decoder can be used to
generate samples from p(XXX |zzz,CCC), which is an approximation
of the desired distribution p(XXX |CCC).

IV. INFORMED INFORMATION THEORETIC MPC
The goal of IT-MPC is to find a control distribution that

minimizes the expected cost (1). This distribution depends
strongly on the the cost function, which in turn depends on
contextual information such as the desired global path or
obstacles. The sampling-based approach (4) is more accurate
if the initial sampling distribution is already close to the
optimal one. Instead of naive initialization such as zero- or
constant velocity we propose to inform and guide the sam-
pling distribution towards low-cost areas of the state-space
by using offline learned context- and task-aware generative
models.

In the following, we first describe how to learn informed
control distributions from data and then present how we
combine the learned generative models with IT-MPC.

A. Learning Informed Control Distributions
The main idea of our approach is to generate control

samples that optimize the original objective. Given environ-
mental conditions, we train a CVAE to output a distribution
that is close to the training samples, i.e., that minimizes
the reconstruction loss in (5). However, it needs to be de-
fined what “close” means in terms of trajectories. Assuming
Gaussian control distributions, the log probability in (5) can
be computed using Euclidean distances between the input
samples and the output [7], [18]. In contrast to this, we
use a reconstruction loss that directly captures the original
cost function, i.e., low cost corresponds to high probability,
similar to [23], [1]. To this end we use a domain-specific loss
function floss(XXX ,CCC). The resulting loss we use for training
is thus

Litmpc = DKL[q(zzz|XXX ,CCC)||p(zzz|CCC)]+ floss(XXX ,CCC), (6)

where the first term is the KL-divergence in latent space
as in (5). In Sec. V we will provide details on the loss
function floss(XXX ,CCC) for specific applications. Since we use



loss functions that depend on the environmental context, the
cost and thus on the state xxx, we need to have access to an
analytical form of the system dynamics for backpropagating
gradients. This is in contrast to using log probability that is
computed directly on the controls.

B. Combining IT-MPC with Informed Sampling

The original IT-MPC sampling scheme computes the op-
timal control in the limit, if the assumptions described in
Section III-A hold. This result is independent of the initial
distribution. In practice, however, the initial distribution con-
siderably affects the efficiency of the method due to a limited
number of samples, cost functions that lead to non-Gaussian
optimal distributions and due to model inaccuracies.

In this work, we choose to use the learned models to
compute the nominal trajectory, i.e., the mean of the initial
distribution in a way that provides samples in low-cost areas
of the state space to improve efficiency of the controller in
the desired task. Modifying the nominal trajectory does not
affect theoretical properties of the original algorithm itself.

Williams et al. [24] propose to use the optimized trajectory
UUU∗ as an initialization in the next iteration. We follow the
same line but in addition use the learned model to allow
for a more efficient initialization. We modify the original
algorithm by calling InformControl given the current
approximation of the optimal trajectory UUU∗ (or an arbitrary
initialization in the first loop), as shown in Algorithms 1
and 2. InformControl generates a control trajectory ÛUU
using the learned CVAE model in line 2 of Alg. 2. In
particular, from the decoder based on the conditions CCC, we
draw the Nd likely samples and choose the best one ûuu. It
then computes the state cost of both ÛUU and UUU∗ by forward
propagating system dynamics (lines 3–10). If the generated
trajectory has lower cost compared to UUU∗, the algorithm
returns a weighted combination of both control sequences,
with weights depending on the respective cost (lines 9–14).
Otherwise, it returns the current control sequence.

In the next section we present a quantitative comparison
between previous methods and the proposed informed sam-
pling approach, which shows the benefits of using learned
control distributions.

V. EVALUATION

In this section we describe how we evaluate our approach
in terms of path quality and planning efficiency. We detail the
experiments (i.e., the simulated scenarios and the metrics) in
Sec.V-A and describe the loss and cost functions in Sec. V-B.

A. Experiments

We evaluate our approach and compare it to several
baselines in two different settings. In Experiment 1, we
ask the planners to execute a path tracking task, i.e., the
robot has to reach the goal and meanwhile stay as close
as possible to the global path. In Experiment 2, we extend
the previous task by also performing obstacle avoidance,
while reaching a goal and tracking a global path, which was
generated not considering the obstacles. For each setting we
define multiple environments of varying difficulty and use

(a) Map 1 side view (b) Map 2 side view

Fig. 3: Maps for testing our approach and the baselines in
Experiment 1.

different floss definitions. For the experiments we consider an
autonomous forklift, modeled as a front-wheel drive bicycle
kinematic model as in [20], controlled with the longitudinal
acceleration ua and steering velocity uϕ , see Fig. 4-5.

1) Environments: In each experiment we test our ap-
proach and the baselines in different environments.

In Experiment 1, the main task for the controllers involves
tracking a reference path generated by a global planner
(i.e., A*). The computed path does not fully respect the
dynamics of the vehicle. For the experiments we adopt two
offline computed maps (see Fig. 3a, 3b), and randomly
drawn initial poses and goals. For each pair of start and
goal poses we perform 200 runs and average the obtained
metrics. In this experiment, we compare our approach to
two baselines: the original IT-MPC, and an IT-MPC based
controller informed by a network trained with the standard
Euclidean loss function (IT-MPC+CVAE). The latter baseline
is used to show the benefit of the modification we applied
to the CVAE structure and its loss function as described in
Sec. III-B. For each map we use two different setups. The
first uses 500 control samples and variance of 0.25 and for
the second the samples number is reduced to 100 samples.
For the inverse temperature and alpha values of 1 and 0.01
are used respectively. If the goal is not reached after 60s the
simulation is considered as a failure.

In Experiment 2, we test the baselines on 150 environ-
ments. For each, obstacles, start and goal poses are drawn
randomly. In these scenarios, we compare our method to
two baselines using the same cost function (as described in
Sec. V-B.2, see Eq. 7): the original IT-MPC, and a Dynamic
Window based planner [4]. In these experiments 500 control
samples were drawn with a variance of 1.0 for the IT-MPC
and 0.25 for the IIT-MPC. The inverse temperature and alpha
values remained the same as Experiment 1.

2) Metrics: We evaluate our approach and baselines in
terms of: average time to the goal (Tg), accumulated distance
to the global path (dacc), average cost of the solution (Cs),
maximum distance to the global path (dmax), success rate.
In all the experiments, we consider a tangential velocity v
range of 0.6 m

s to −0.4 m
s , a steering velocity range of 1.0 rad

s
to −1.0 rad

s and a control rate of 10Hz.

B. Datasets and Learning Parameters
For each experiment we collect a specific training set

using state-of-the-art planning techniques and specify task-
dependent loss and cost functions.



IIT-MPC

Fig. 4: Comparison between the trajectories sampled by
the controls distributions, learned by IIT-MPC (blue) and
computed by IT-MPC (red) for a path-tracking task. The
green line represents the reference path and the grey areas
correspond to obstacles. Our approach is informed about the
global path positions and generates samples which are closer
to it, leading to a lower cost solution.

Fig. 5: The IT-MPC unimodal distribution (see blue samples)
is mainly centered around the previous controls, while our
approach generates samples (in green) from a context and
task-aware multi-modal distribution that helps the robot to
better perform obstacle avoidance and achieving the desired
task (see blue path in the right figure, global path in red).

1) Training sets: In Experiment 1, we define the input
XXX to the CVAE as a sequence of controls to perform path
tracking. Conditions CCC are the reference path, the initial
robot forward velocity and initial steering angle. Learning is
performed on a dataset composed by two parts: one generated
by forward propagating the best of randomly drawn controls
(400000 data points) and another obtained by simulated IT-
MPC robot operations (250000 samples). In this latter case,
firstly an A* global path is computed and the original IT-
MPC is used to generate optimal control samples.

In Experiment 2, the training dataset contains control
samples XXX computed by a planning pipeline that performs
obstacle avoidance and trajectory tracking. Conditions CCC
include obstacles, goal position (taken by the global path),
initial forward velocity and steering angle. The training
dataset is composed of 350000 entries with different random
obstacles positions, start and goal poses and global paths.
For each sample, obstacle avoidance is achieved by applying
initially the Informed-RRT* algorithm [5] for generating
an obstacle-aware path, post-smoothed with cubic splines.
Final control samples are computed by performing trajectory
tracking with an LQR optimal controller. Global path and
obstacles are given in x,y coordinates in the robot frame.
The latter are generated by a simulated laser scanner with a
field of view of 120 degrees.

2) Loss and Cost Definitions: We now detail the different
loss functions used for learning and the cost functions used
for motion planning in each experiment setting.

In Experiment 1, the planners solve a path-tracking
task. The reconstruction term is defined as f 1

loss(XXX ,CCC) =
1

t f−1 ∑
t f−1
t=0 ||xxxt−Pt ||, with t f being the number of path points,

xxxt being Cartesian point t of the local trajectory (a sample
generated by the CVAE) and Pt Cartesian point of the global
path. The cost function used for the controllers minimizes
the Euclidean distance between the computed Euclidean
coordinates of the local trajectory xxx(x,y) to the reference
path P. An extra obstacle cost Ot is also given in order to
avoid collision to obstacles, i.e., their positions and costs are
computed from an occupancy grid map. The final cost is
given by c(xxx) = ||xxx(x,y)−P||+Ot . In this experiment we use
a latent space dimension of 1.

In Experiment 2, the robot follows the global
path while performing obstacle avoidance. The
reconstruction term is defined as f 2

loss(XXX ,CCC) =

||xxxt f−1−G ||+∑
Nobst
i=0

2
σ
√

2π
e−(xxx−pi

o)
2
/

2σ2
, with xxxt f−1 being

the last point of a CVAE sample, pi
o the position of the

obstacle i and G the goal position. The cost function used
for motion planning is defined as follows:

c(xxx) = w1||xxxt f−1−Plh||+w2

Nobst

∑
i=0

2
σ
√

2π
e−(xxx−pi

o)
2
/

2σ2
, (7)

with w1,w2 > 0. The first term in (7) represents the task
of reaching a sub-goal Plh selected from the global path
(based on a defined lookahead distance), while in the loss
function we consider a final goal G . The second term for both
functions is responsible for obstacle avoidance. Positions are
represented in the robot coordinate frame. For the second
experiment we have a latent space dimension of 5.

For the training of the CVAE we use the Adam optimizer,
with a learning rate and weight decay of 1×10−5, β s =
(0.9, 0.999) and ε = 1×10−8. The network architecture is
detailed in Fig. 2 and implemented in Pytorch [15], Nd set to
10. We use Gazebo [9], ROS [17], and implement algorithms
in C++ (for Experiment 1) and Python (for Experiment 2) to
simulate robot operations and evaluate metrics.

VI. RESULTS AND DISCUSSION

In this section we discuss the results collected for both
Experiment 1 and Experiment 2.

A. Results Experiment 1

Firstly we consider the results collected in Tables I, II, III.
In all the tables we show the results of the comparison
reported as relative improvement of our approach compared
to the other baseline per metric. Positive values indicate
better performance for our approach. In Tables I, II collect
the results concerning the comparison of our approach with
IT-MPC. Table III shows the results for the comparison of
IT-MPC with a simple loss function (i.e., Euclidean distance)
and the classical IT-MPC. Our approach, as documented by
the results in Tables I, II, achieves overall better performance
than IT-MPC, thanks also to its possibility to learn context



Map 1
Setup 1 Setup 2

Tg 3.76% 0.99%
dacc 9.72% 8.50%
Cs 5.66% 7.36%

dmax 6.15% 7.19 %
Success(IIT-MPC/IT-MPC) 89.5/87.5% 92.5/80.5%

TABLE I: Results of the Experiment 1 for map 1. Comparing
IT-MPC and IIT-MPC.

Map 2
Setup 1 Setup 2

Tg 1.70% 1.84%
dacc 3.55% 5.40%
Cs 3.16% 5.63%

dmax 3.01% 4.75%
Success(IIT-MPC/IT-MPC) 98.0/96.5% 96.5/97.0/%

TABLE II: Results of Experiment 1 for map 2. Comparing
IT-MPC and IIT-MPC.

Map 1
Setup 1 Setup 2

Tg -3.02% 0.58%
dacc -0.83% 4.41%
Cs 4.76% 9.60%

dmax 1.68% 3.94 %
Success(IT-MPC + CVAE /IT-MPC) 89.0/89.0% 93.5/85.5%

TABLE III: Results of Experiment 1 for map 1. Comparing
IT-MPC and IT-MPC+CVAE (i.e., Euclidean loss function).

and task-aware multi-modal distributions see also Figures
4, 5. In average, it needs less time to achieve the required task
while keeping a lower distance to the global path (in average
5% closer). Same behavior is achieved when reducing the
number of samples, see setup 2 columns of the tables. The
approach also finds in average solutions with a lower cost,
i.e., in average 5% better. Success rates of the both are on
par. The naive implementation of the combination IT-MPC
with CVAE trained using only Euclidean distance, achieves
good results in terms of solution costs but other metrics are
lower in average to the ones obtained by our algorithm. Time
to achieve the goal is also larger than the one obtained by
using the standard IT-MPC.

B. Results Experiment 2

In Table IV we report the results obtained for the obstacle
avoidance case. Also for this case we report the relative
improvement per metric of our approach with respect to
each baseline. Our approach achieves better performance in
every metric compared to the Dynamic Window Planner,
including success rate. IT-MPC shows better results in terms
of dmax, keeping the vehicle closer to the reference path: this
meaning that this baseline performs less obstacle avoidance
behaviors although having the same cost function of our
approach. Moreover, the original IT-MPC also requires more
time to complete the task, leading to a worst dacc rate. The
experiments demonstrate how the information provided by
the network guides the sampling procedure towards an area

Dynamic Window IT-MPC
Tg 3.07% 18.39%

dacc 6.96% 7.00%
Cs 16.04% 22.44%

dmax 9.67% -8.42 %
Success(IIT-MPC/Other) 83.3/76.6% 83.3/57.3%

TABLE IV: Experiment 2 results. Comparing our approach
to Dynamic Window Planning and IT-MPC.

Fig. 6: Obstacle avoidance experiment using our approach
(left) and IT-MPC (right). The obstacles are represented by
the black circles and lines. The green and blue lines are
the obstacle-unaware reference and driven path respectively.
The indigo dots represent the samples and the red line their
expectation. Our approach is able to follow the global path
and to successfully avoid obstacles.

of lower cost, in which no obstacles are found, see Fig. 6. For
the cost metric (Cs) our approach shows a large improvement
of 16% and 22.44% respect to each baseline.

VII. CONCLUSIONS

In this work we present an Informed approach to Infor-
mation Theoretical Model Predictive Control (IIT-MPC). By
using Conditional Variational Autoencoders (CVAE) to learn
distributions that imitate samples from a training dataset
containing optimized controls, we guide the sampling distri-
bution of IIT-MPC towards less costly area of the state space.
This allows our approach to achieve better minimization
of the designed cost function. An extensive evaluation in
the autonomous navigation domain suggests that replacing
the previous IT-MPC sampling scheme with our learned
models considerably improves performance in terms of path
quality and also planning efficiency (i.e., completions of path
tracking and avoiding obstacles tasks, reducing the number of
necessary samples) compared to a set of baselines. Moreover,
we show in the evaluation that learning the CVAE parameters
by using task-dependent loss functions (i.e., reconstruction
term) results in better planning performance compared to a
standard Euclidean distance loss. We plan to extend the ap-
proach to dynamic environments by including into the CVAE
conditions also human attributes, positions and velocities.
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