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Abstract

We explore how we can use synthetically generated RGB-D
training data from a near photo-realistic game engine to
train modality-specific person detectors. We perform abla-
tion studies on a challenging, real-world dataset which we
recorded using a Kinect v2 RGB-D sensor in multiple ware-
house environments. Through extensive use of domain ran-
domization techniques, we synthesize a realistic and highly
varied training set of challenging intralogistics scenarios as
observed from a mobile robot, comprising persons in con-
fined and cluttered indoor spaces. We then train the detec-
tor layers of a YOLOv3 model from scratch on our synthetic
RGB and jet-encoded depth images. While for the RGB
case, we still observe a domain gap of 6 points in mAP com-
pared to a pretrained COCO model, results indicate that by
exploiting simulation, an immense manual labeling effort
needed to prepare large-scale datasets such as MS COCO
might be unnecessary for the depth modality. We further
find that filtering of highly occluded groundtruth bounding
boxes during training, as well as modeling of time-of-flight
sensor noise characteristics has a positive impact on model
performance. We also provide an initial set of qualitative
results on our real-world dataset.

1. Introduction

Robust detection and tracking of persons in real-time from
an ego-perspective is important for robots to operate safely
and efficiently in human environments. One challenge en-
countered when training object detectors for robotics ap-
plications is that the sensor setup can be multi-modal, and
vary significantly between robots. Furthermore, the partic-
ular application domain may provide additional challenges
which are underrepresented in commonly utilized object de-
tection datasets, such as persons wearing protective clothing
and thus being of similar appearance.

Figure 1: Using Unreal Engine 4, we synthetically generate
crowded RGB-D sequences to train robust person detectors.
We evaluate performance of the resulting YOLOv3 models
on a challenging intralogistics dataset which we recorded.
In the top image, red contours denote small groundtruth ob-
jects that we filtered out during training for better results.

In this work, we want to examine if we can replace large-
scale annotated object detection datasets such as MS COCO
with synthetically generated data from game engines, in our
case Unreal Engine 4. In particular, we are interested in syn-
thesizing RGB-D sensor data, as no COCO-scale object or
person detection datasets exist in RGB-D. As a step towards
training a joint RGB-D detector from scratch, we attempt to
train modality-specific person detectors from synthetic data
to gain further insights into which aspects are particularly
important for the modality at hand.

The contributions of this work are the following: (i) We
synthesize a realistic dataset for challenging intralogistics
scenarios with persons in confined and cluttered spaces, ob-
served by a robot with an RGB-D sensor. (ii) We train a
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real-time capable single-shot detector (YOLOv3) with our
synthetic data and evaluate it on a real RGB-D dataset con-
sisting of 3,100 labeled frames, which we acquired in three
different warehouse environments using two different AGV
platforms. The preliminary results show that by using syn-
thetic images, we may avoid the huge labeling effort needed
to prepare large-scale datasets like MS COCO, especially
for the depth modality. (iii) To the best of our knowledge,
we are the first to attempt to train a person detector on
synthetically generated depth data. (iv) Furthermore, we
perform an ablation study to investigate how the different
simulation aspects influence the performance of the trained
model on real-world data.

2. Related work

Large-scale annotated datasets such as ImageNet [22] and
MS COCO [12] enabled a rapid advancement and bench-
marking of deep learning methods in the RGB domain. Ex-
amples of benchmarks specific to person detection in RGB
images from urban environments include Caltech [3] and
CityPersons [27, 2]. However, for robotic applications usu-
ally full 3D awareness of surroundings including humans
is required [13]. Therefore, additional sensing modalities
such as depth are used to facilitate real-time processing.

In the robotics community, various RGB-D datasets have
been introduced for person detection covering different
depth sensing technologies such as structured light, time-
of-flight, or stereo [23], [9]. Existing available Kinect v2
datasets for person detection have been recorded in in-
door and outdoor environments at a university campus
[1, 18, 17, 26] or a hospital [10]. Some lack person anno-
tations when depth is not available [17], or are destined for
multi-class detection involving persons with walking aids
[10]. In addition, all these datasets are an order of a magni-
tude smaller and show much less variation in comparison to
the datasets available for the RGB modality.

Besides transfer learning [8] and other weakly supervised
approaches, one of the means to deal with the lack of an-
notated data is simulation. Synthetic data generation with
game engines has been explored in autonomous driving set-
tings [21], [20]. Although the corresponding datasets in-
clude person annotations, they are focused on outdoor ur-
ban environments. A large-scale synthetic dataset based on
realistic human models [14] was introduced in [24]. The
dataset is focused on human pose estimation and contains
one person per scene. Also, there seems to be a lack of
3D and physical awareness in the scenes. A photorealis-
tic dataset for multi-person pose estimation and tracking
was generated using a game engine in [5]. It covers urban
indoor and outdoor environments, different lighting con-
ditions, crowded scenes, occlusions and variety of view-

Figure 2: Two types of autonomous guided vehicles which
were used to record the real-world RGB-D intralogistics
dataset (with a Kinect v2) for validation and testing.

points. However, it does not focus on the egocentric view-
point typical to robotic applications and more importantly
does not provide depth images.

Synthetic RGB-D data generation for a variety of scene un-
derstanding tasks, including object detection, has been ex-
plored in [16, 15, 6]. However, in contrast to our work, they
focus on static environments and rigid objects, and not hu-
mans with their large variation in shape and appearance.

3. Dataset

Real-world intralogistics dataset As a basis for our ex-
periments with synthetic data, we use a real-world RGB-D
dataset for validation and testing, recorded using two au-
tonomous forklifts with different sensor setups, which we
initially described in [13]. We significantly extended the
number of frames labeled with 2D person bounding boxes
to around 3.1k images total (1.5k train + 0.5k validation
+ 1.1k test), spanning several days at four different loca-
tions (two warehouses, a small food factory, and a robotics
laboratory with forklifts and warehouse shelves). The real-
world dataset contains both sequences with very few peo-
ple, and very crowded scenes with up to around 20 people,
sometimes all in very similar clothing (Fig. 1 bottom). This
makes it difficult for standard RGB detectors to discern and
properly localize individual persons, such that proper use of
depth information could be highly beneficial.

Synthetic dataset from UE4 For our experiments, we have
built a synthetic RGB-D dataset using Unreal Engine 4, cur-
rently consisting of six scenes and 15k frames in total. From
each scene, we generate 2.5k RGB-D image pairs with cor-
responding instance segmentation masks, which are used to
compute groundtruth bounding boxes. Scenes 1-3 (Fig. 3a)
are custom-made and contain various warehouse shelves
and objects. The background of these scenes is randomized
at regular intervals from 25 publicly available HDR images.
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(a) Scenes 1–3

(b) Scenes 4–6

Figure 3: Our synthetic training set comprises 6 different scenes. The first three contain real 2D HDR images as backgrounds,
whereas the latter three are completely composed of 3D objects. Lighting, foreground 3D objects, etc. are randomized.

Scenes 4-6 (Fig. 3b) are based upon publicly available en-
vironments representing a warehouse, a train station, and an
outdoor factory environment. All of the scenes feature ran-
domization of light sources in terms of their placement and
intensities.

3D augmentation We enrich all scenes with random flying
3D objects (by using the UE4 physics engine to prevent ob-
jects from overlapping), moving forklifts and pallet trucks.

Synthetic humans We use a set of 24 person meshes that
were generated synthetically using Adobe Fuse. Around
50 different animations, including idling, 8 walking styles,
dancing and jumping, are applied randomly. Using the ex-
isting material masks, we randomly augment the clothing
colors and texture.

Character navigation and camera movement For mov-
ing the human characters, as well as the robot platform with
the RGB-D sensor, through the scene, we rely on UE4’s
navigation mesh system to perform pathfinding in walka-
ble areas. Simplified collision meshes are used to prevent
colliding with the environment and other characters.

Sensor modeling The RGB and depth imagers are each
simulated by a separate virtual camera, with resolution
of 1920×1080 and 512×424 px, respectively. Via back-
projection, we simulate the ∼5 cm offset between IR emit-
ter and receiver, leading to shadowing effects especially
at close-range (for instance visible in Fig. 4c). Based
upon experimental measurements from [11] and compar-
ison with our real-world data, we also empirically model
several acquisition-based errors such as depth and ampli-
tude distortion, axial noise, illumination interference, and

material IR responses (which is particularly important e.g.
for dark clothing, and approximated via PBR material dif-
fuse and roughness values). More complex effects such as
flying pixels or multi-path interference are currently not im-
plemented, and would require e.g. raytracing techniques.

The depth sensor’s horizontal field of view is smaller than
the field of view of the color sensor. Therefore, we filter and
adjust the groundtruth bounding boxes in post-processing
such that depth groundtruth boxes do not extend beyond the
field of view of the depth sensor. Registration of RGB and
depth images is performed, like for the real-world dataset,
using iai kinect2 [25] while assuming a perfect intrin-
sic and extrinsic calibration.

4. Experiments

We use the MxNet implementation of the YOLOv3 detec-
tor [19] (with DarkNet53 pretrained on ImageNet) for our
experiments, which showed the best compromise between
speed and accuracy during our initial experiments on real-
world data, and outperformed the original implementation.
We train YOLOv3-416 on single V100 (32 GB) GPU at a
batch size of 64. Standard 2D image augmentation tech-
niques are used. For training from scratch, we train with a
single output class (person) and use a learning rate schedule
with 5 initial warmup epochs leading to a learning rate of
0.001, which is decayed by a factor of 0.1 at epochs 160 and
180. We disable input shape randomization for faster train-
ing at a larger batch size. For fine-tuning over 40 epochs, an
initial learning rate of 0.0001 is decayed by a factor of 0.3
after 20 epochs.
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(a) No shading / Default / No static 3D objects

(b) No shading / Default / Strong post-processing effects

(c) No Kinect v2 sensor noise model / Default / No static 3D objects

Figure 4: Example synthetic RGB and depth images showing effects examined in ablation studies. Our proposed configura-
tion, which yielded the best results in our experiments, is depicted in the center of each row.

To train on depth images, we use a jet color map encoding
as proposed by Eitel et al. [4] since it is faster than other en-
codings such as HHA encoding [7] which rely on expensive
surface normal computations. Also, it allows for transfer
learning by applying pretrained ImageNet RGB weights to
depth data. An alternative, besides also training the feature
extractor on synthetic data, might be cross-modal distilla-
tion [8] for training directly on 1-channel depth images.

Ablation studies We perform a series of ablation studies,
where we selectively disable or enable certain effects (shad-
ing, static 3D objects, stronger post-processing effects in
RGB / sensor noise modeling, static 3D objects in depth)

as visualized in Figure 4. All these variations of the dataset
are generated in parallel (by pausing the simulation), in or-
der to ensure deterministic behavior and otherwise identical
content. We also conduct trainings with only 7.5k instead of
15k training images, where we either uniformly subsample
all frames, or selectively only use scenes 1-3 with random
HDRI backgrounds, or only scenes 4-6 which are entirely
modeled in 3D.

Finally, we also examine if filtering the generated synthetic
groundtruth bounding boxes (by minimum area in pixels, in
order to omit very tiny or highly occluded boxes) can im-
prove training performance. Otherwise, groundtruth boxes
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Figure 5: Qualitative results for depth-based person detection on the real-world test set. Groundtruth in gray, YOLOv3
detector trained on 15k synthetic depth images in magenta, and in combination with 1.5k real training images in yellow.

may be generated for image regions which a human annota-
tor would never label as ‘person’, leading to a different dis-
tribution of bounding boxes in synthetic training and real-
world test/validation data.

5. Results

Quantitative results for training with synthetic RGB and
depth data, respectively, are visualized in Fig. 6 and Fig. 7.
In each figure, the top diagram compares different combi-
nations of synthetic and real data when either fine-tuning
a COCO-based model, or training all detector layers from
scratch. The bottom diagram shows how performance de-
grades (from the proposed default configuration) if certain
effects are selectively disabled. Qualitative results for the
depth-based detector are shown in Fig. 5.

Overall, detection performance on RGB is much better than
on depth, while groundtruth bounding boxes for the latter
have already been filtered to accommodate for the limited
range and depth sensor’s field of view. When training the
detector layers from scratch, adding synthetic data clearly
boosts the performance (+10.3% mAP on RGB, +6.5% on
depth), compared to just training on the available 1.5k real
RGB-D frames. One reason for the domain gap when using
only synthetic depth data could be the lack of flying pixels
in our simulation, which appear quite prominently in real-
world data.

Combining both our synthetic and real-world depth data
leads to detection results which are quite close to, or better
than, a COCO model fine-tuned on real data (-0.4% mAP
on test, +1.7% mAP on validation set; qualitatively, mainly
bounding box localization seems to improve). This means
that we essentially do not need MS COCO pretraining any-
more for learning a depth-based detector.

However, a model pretrained on MS COCO still shows bet-
ter performance on RGB, which could be either due to lack
of realism, or lack of diversity in our synthetic RGB data.
On RGB, the number of training images (15k vs. 7.5k)
seems to have a much larger impact (-5.2%) than on depth
(-1.3%). Instead, for depth, the absence of static 3D objects

seems to have a stronger impact (-3.3% vs. -2.0% on RGB).

Also, in our experiments on the RGB modality, we find
that filtering of synthetic groundtruth bounding boxes based
upon a minimum amount of visible pixels in the instance
mask (Fig. 1, top), can improve mAP by approx. +2%.

The performance gain by modeling ToF depth sensor noise
is somewhat limited (+1.2% on test / +0.2% on validation).
However, not all noise sources have been modeled, and reg-
istration shadowing (IR emitter offset) was always enabled.

6. Conclusion

The main focus of our work is on person detection in spe-
cialized use-cases, characterized by different sensory setups
(e.g. multi-modal, first-person perspective) and a lack of
relevant training data. Available datasets poorly cover such
use-cases in relevant quantity and variation. Thus, we took
initial steps towards exploring the use of synthetic data from
simulation (of environments, objects of interest and sen-
sors), combined them with a small real-world dataset, and
performed ablation studies to explore the impact of differ-
ent data combinations, rendering effects and sensor mod-
els as well as static object configurations. Specifically, we
evaluated this approach for the problem of RGB-D person
detection in professional environments from a mobile robot
platform. What makes this additionally a challenge is that
in the considered warehouse and factory environments, peo-
ple often look alike due to their work-wear and are occluded
frequently.

Our results indicate that training depth-based person detec-
tors from synthetic data can achieve performance compara-
ble to, or even better than, transfer learning from a COCO-
based model.

This is an important step towards training a joint RGB-D
detector from synthetic data (which we purposefully did
not do so far to allow for studying the characteristics of
the RGB and depth modalities independently). ImageNet,
MS COCO and other common large-scale datasets do not
provide any depth data, allowing only for transfer learning
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Figure 6: Synthetic Depth training results. Validation and testing on real-world intralogistics dataset.
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Figure 7: Synthetic RGB training results. Validation and testing on real-world intralogistics dataset.

methods to be applied that rely on reusing RGB information
and do not capture the qualitative differences between the
two sensor modalities. Instead, we explicitly want to ex-
ploit complementary depth information where RGB alone
may not suffice, e.g. when discriminating partially occluded
persons of very similar appearance.

Future work We also want to increase the overall size of
our synthetic dataset, and experiment with the variety and
type of human models, incorporating also photogrammetri-

cally derived (3D-scanned) meshes. It could also be inter-
esting to study the effect of clothing animation on RGB-D
detection performance. It would make sense to also learn
the feature extractor from synthetic data, which has been
shown in [16] to yield results superior to ImageNet pretrain-
ing for RGB-D indoor room segmentation. Finally, extend-
ing the groundtruth of our dataset to cover additional tasks,
such as articulated 3D human pose estimation from RGB-D
[28] (where manual annotation is very challenging), would
not pose much extra effort.
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EXPERIMENTAL RESULTSAT A GLANCE SYNTHETIC DATASET + METHOD

MOTIVATION

In this workshop paper, we present initial findings on training
person detectors for robots from synthetic RGB-D data using
various domain randomization / augmentation techniques.

1. We synthesize a diverse RGB-D dataset using Unreal
Engine 4, with persons in cluttered + confined spaces

2. We train modality-specific (depth / RGB) single-shot person
detectors from synthetic data, and evaluate on real-world data
acquired by AGVs in multiple intralogistics environments

3. We are the first (to our best knowledge) to report on training
depth-based multi-person detectors solely from synthetic data

4. Several ablation studies, e.g. Kinect v2 depth noise modelling

REAL DATASET FOR TESTING + FINE-TUNING

We model depth distortion, reg. offset, lateral/axial noise, material IR response
We train all YOLOv3 detector layers from scratch using synthetic data
Currently still relying on ImageNet pre-training for feature extractorCan we rely mostly on synthetic data for training RGB-D person detectors?

RGB-D important for robotics because 3D localization of objects is essential
Leverage complementary depth information where RGB fails (bad lighting, 
reflections and pictures of humans on walls lack of 3D geometry, etc.)
Most existing papers/datasets in RGB-D focus on static scenes (e.g. indoor 
segmentation), not humans with highly varying shape and appearance
No COCO- or ImageNet-scale datasets in RGB-D for person detection with 
sufficient scene diversity (due to lack of crowdsourcing)
Manual labelling for some 3D tasks is very difficult
Initial focus on 2D bbox detection (later 3D centroids/bboxes + 3D body joints)

Robotics Research

Key insights – tested on our real-world RGB-D dataset:
Qualitative results look promising when training just on synthetic data
Adding synthetic data (15k frames) to limited available real training data (1.5k 
frames) clearly boosts performance (mAP +10.3% on RGB, +6.5% on depth)
On depth: Using synthetic data + only 1.5k real images, we almost reach 
performance of transfer-learned COCO model may not need COCO anymore! 
This could become useful for joint end-to-end training on RGB-D
Depth sensor noise modelling leads to small improvement (+1.2%)
But: Still domain gap on RGB add more human models, more background 
augmentation, more scenes, try style transfer using GANs
Filtering of groundtruth bounding boxes based upon distance and visible area 
is more important (shown on RGB: +2%)
Excessive visual effects (blur, lens flares, etc.) hurt model performance
Combination of synthetic + real data (10%) overall gives best results

Icons by FreePik, DinoSoftLabs, Flat Icons, Smash Icons from flaticon.com

Recorded in 3 different warehouse environments by 2 different AGVs
Manually labelled 3,100 RGB-D frames with 2D person bounding boxes
1,100 test images + 1,500 for fine-tuning + 500 for validation
Challenges: Heavy occlusion, persons look alike due to protective clothing
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