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Abstract— Understanding how people are likely to behave in
an environment is a key requirement for efficient and safe robot
navigation. However, mobile platforms are subject to spatial and
temporal constraints, meaning that only partial observations
of human activities are typically available to a robot, while
the activity patterns of people in a given environment may
also change at different times. To address these issues we
present as the main contribution an exploration strategy for
acquiring models of pedestrian flows, which decides not only
the locations to explore but also the times when to explore
them. The approach is driven by the uncertainty from multiple
Poisson processes built from past observations. The approach is
evaluated using two long-term pedestrian datasets, comparing
its performance against uninformed exploration strategies. The
results show that when using the uncertainty in the exploration
policy, model accuracy increases, enabling faster learning of
human motion patterns.

I. INTRODUCTION

As robots increase their presence in environments shared
with humans, such as care homes, hotels, warehouses or
shopping centres, new challenges arise. It is important to
know how the people are likely to behave and move in
the environment so the robot can act accordingly, navigating
in a more natural way. For example, a robot may use this
knowledge to look for people if it has to interact with them,
or go with the main direction of flow in a given area to
minimise the possibility of collisions and increase safety.

Traditional exploration strategies assume a static environ-
ment. Their aim is to build a spatial model that covers the
operational environment as quickly as possible, considering
that a robot cannot see the entire environment at once.
However, when modelling human motion, the environment
tends to change over time, e.g. with different flow patterns
at different times of the day. But, as in the spatial domain, a
mobile robot cannot explore in a continuous manner due to
temporal limitations, e.g. needing to recharge its batteries
or perform other tasks not related to exploration. Hence,
apart from deciding where to explore, it is also important
to consider the temporal dimension (i.e. when to explore).

To address this problem, we present, as the main contribu-
tion, a mobile robotic exploration method which decides not
only the locations from which to gather information about
the people’s motion but also the times of observations. The
data captured by the robot is used to determine where and
when to perform future observations based on the uncertainty
levels of multiple time-varying Poisson distributions, which
are built by counting detections of pedestrian motions at the
chosen locations and times.

The main aim of this work was to build and refine a time-
dependent probabilistic map that is able to model and predict

flow patterns of people in indoor environments. This model
is also based on counting detections of pedestrians together
with their observed directions of travel. For the experimental
evaluation, we used two long-term term pedestrian datasets,
which provide complex time-varying human motion patterns,
to measure the performance of the novel exploration ap-
proach compared to other uninformed policies. One dataset
was obtained from a shopping centre [1] and the other was
recorded by the authors in office corridors at the University of
Lincoln, providing 52 and 14 days of data, respectively. The
results show that the proposed exploration system can learn
the flow patterns and increase model quality more quickly
than the corresponding uninformed strategies.

II. RELATED WORK

Exploration methods are aimed at guaranteeing model
completeness by giving the robot ability to autonomously
create an accurate model of the environment. One of the ear-
liest approaches is frontier-based exploration [2][3], which
drives the exploration towards the boundaries of the known
and unknown until the map is complete. Another approach is
adopted by next-best-view strategies, which focus on build-
ing the initial map based on optimising different criteria. For
example, [4] optimises the estimated time to reach a location
and the amount of information expected to be gathered there,
[5] calculates the entropy decrease in the robot configuration
space and uses the estimates for robot mapping, [6], [7]
use the Poisson uncertainty of neutron counts to drive the
observation and mapping of soil moisture, and [8] presented
an information-gain-based exploration approach that takes
into account the uncertainty from both the map and the
robot’s localisation. However, all the above approaches do
not attempt to maintain the environment models after their
acquisition, meaning that the model will lose accuracy as
new changes appear in the environment.

To deal with this problem, another branch of algorithms
aims to create models of the environment which allow
them to predict where and when to make observations of
specific phenomena, reasoning about the best times and
locations. In [9] and [10], for example, the decision making
for environmental surveillance and monitoring is based on
Gaussian Processes, which allow the robot to learn the
temporal patterns in the environment. Other approaches [11],
[12] are instead based on the assumption that some of the
environmental variations observed are caused by people’s
daily routines; [11] present a method for life-long spatio-
temporal exploration of dynamic environments, using the
entropy of binary state predictions in an occupancy map to



create a scheduler that determines which areas and times
to explore for each day. However, reasoning about human
motion requires more complex model representations, and
binary states are not sufficient to describe the pedestrian
flows covered in this paper.

Modelling human motion has also been a recent topic
of study; [13] present a probabilistic directional grid map
to represent long-term angular motion, and [14] also takes
in to account the observed speed of people. Despite being
focused on representing human motion, these methods do no
take into account temporal variations, instead modelling the
average flow patterns, resulting in many cases in less accurate
predictions. Thus, in the work developed by [15], periodic
Poisson processes are used to characterise the behaviour in
time of different rooms of a building.

Our exploration method is built on the concept presented
in [16], which creates a time-dependent probabilistic map
that is able to model and predict patterns of people in indoor
environments. However, in [16], all the models were built
assuming that the environment is fully observable both in
time and space, which is unlikely in a real-world scenario.

III. SPATIO-TEMPORAL MODEL

In this work, we propose to use a representation that
models the likelihood of motion directions on a grid-based
map by a set of harmonic functions, which capture long-
term changes of crowd movements over time. The model is
updated after some time, e.g., end of every day, with the
information gathered from the environment, which is then
used to calculate the places and times to visit the next day.

A. Spatial representation

The underlying geometric space is represented by a grid,
where each cell contains k temporal models, corresponding
to k discretized orientations of people motion through the
given cell over time. Since the total number of temporal
models, which are of a fixed size, is k × n where n is the
total number of cells, the spatio-temporal model does not
grow over time regardless of the duration of data collection.

B. Temporal Framework - FreMEn

The temporal models, which can capture patterns of people
movement, are based on the FreMEn framework [17]. Fre-
MEn is a mathematical tool based on the Fourier Transform,
which considers the probability of a given state as a function
of time and represents it by a combination of harmonic
components. The model not only allows representation of
environment dynamics, but also prediction of future envi-
ronment states based on the patterns learned. The idea is to
treat a measured state as a signal, decompose it by means
of the Fourier Transform, and obtain a frequency spectrum
with the corresponding amplitudes, frequencies and phase
shifts. Then, transferring the most prominent spectral com-
ponents to the time domain provides an analytic expression
representing the likelihood of that state at a given time in
the past or future. Assuming that the directions of people
movement are affected by patterns that might be periodic,

we apply the FreMEn concept to discretised directions of
people movement through a particular cell.

C. Building the model

Our model assumes that it is provided with people de-
tection data, comprising the person position, orientation and
timestamp of the detection (x, y, α, t). We associate each cell
with k bins, corresponding to the discretised orientations of
people motion, each with an associated (FreMEn) temporal
model. When building the model, the x, y positions are
discretised and assigned to the corresponding cell and the
orientation α is assigned to one of the k bins, whose value
is incremented by 1. After a predefined interval of time, we
normalise the bins and use their values to update the spectra
of the temporal models using the scheme described in [17].
Then, we reset the bin values to 0 and start the counting
again. The same count values are also used to calculate the
uncertainty measures, as explained further in the paper.

D. Making predictions

To predict the behaviour of human movement through a
given cell at a future time t, we calculate the likelihood for
each discretised orientation associated with that cell as

pθ(t) = p0 +

m∑
j=1

pjcos(ωjt+ ϕj), (1)

where p0 is the stationary probability, m is the number of
the most prominent spectral components, and pj , ωj and
ϕj are their amplitudes, periods and phases. The spectral
components ωj are drawn from a set of ωs that covers
periodicities ranging from 1 to 24 hours with the following
distribution: ωs = s · 3600, s ∈ 1, 2, 3, ..., 24.

IV. EXPLORATION

We define an exploration strategy as the process that
determines both the locations to visit and the times to do
so, considering that a robot is limited by time and visibility
constraints. The strategy has to deal with partial observability
arising from the fact that a mobile platform only has a
limited field of view due to sensor limitations. Also a mobile
platform usually has to perform other tasks besides the
environment exploration activities, so only a percentage of
the total time, known as the exploration ratio, can be devoted
to exploration. Thus, we need to define a metric that drives
the exploration towards the areas that are more uncertain.

A. Defining uncertainty

When working with people, the appropriate probabilistic
model for counting and modelling their occurrences is the
Poisson distribution. Since the events occur independently,
the number of events occurring in an interval can take
only natural number values and two events cannot occur at
exactly the same instant [15]. Hence, we propose to use the
relative standard uncertainty from a Poisson distribution as an
uncertainty measure, using this metric to define how unsure
we are about the estimated people flows in a particular cell
of the map during a given interval of time.



We assume that all n cells in the map follow a Poisson
distribution. So the probability of people detections occurring
at every interval in every cell is distributed as:

P (j;λ) =
λje−j

j!
, j ∈ 0, 1, 2, 3, ..., (2)

where λ is the average number of detection counts in
the corresponding interval, and j is the number of event
occurrences.

The value λ for every cell evolves over time and so does
Eq. (2), so in our case we work with inhomogeneous Poisson
processes. As we want to work with partially observable
environments, resulting in relatively few samples in each cell,
we used a confidence-sensitive estimate for λ. In Bayesian
inference, the conjugate prior for the rate parameter λ of
the Poisson distribution is the Gamma distribution [18]:
λ ∼ Gamma(α, β), where α and β are the shape and
inverse scale parameter, respectively. As we update λ for
every interval, we can define the relative standard uncertainty
of each cell as:

ur =
√
λ/λ. (3)

This measure infers that the more people we see within the
boundaries of a cell, the more sure we become about how
the people behave. An exception to this rule is introduced
to define the uncertainty when λ = 0. According to the
function, the uncertainty here would be infinite, however we
introduce a threshold value to indicate that even though there
is no one in that cell, in some way we are increasing the
certainty of knowing that there is no one there. This threshold
value (u0) is chosen experimentally.

B. Exploration strategies

In this work, we test a total of 4 different exploration
policies. The Monte Carlo strategy, which represents the
main contribution of this paper, is driven by the uncertainty
levels. This takes into account the experience from previously
gathered data to infer the exploration actions at future times.
– In the Monte Carlo (MC) strategy, the places/times are

chosen randomly, but the probability of selecting a given
location/time interval is proportional to the uncertainty.
For comparison purposes we also implemented 3 different

uninformed exploration strategies. In these cases, we do not
take into account the environment dynamics, neglecting the
uncertainty levels.
– The Random (R) strategy chooses the locations and times

for exploration in an uniformly random way.
– The Round Robin (RR) strategy visits all the regions/time

intervals of the environment with the same frequency.
– The Range (RA) strategy picks a region with probability

proportional to the number of cells that can be seen inside.
In initial comparisons, we also implemented a Greedy

exploration strategy, driving the exploration towards the
region with the highest uncertainty. However, in all the
experiments this method performed poorly compared to the
other strategies. For this reason, we decided to omit the
greedy approach from the results presented.

V. EVALUATION

A. Datasets

To evaluate the approach, we ran experiments using two
real pedestrian datasets. Both feature complex human move-
ment and enough days to train the models and evaluate the
different exploration strategies in the long term.

The first one is a pedestrian tracking dataset recorded at the
ATC shopping centre in Osaka, Japan [1]. From this dataset,
we selected the first 52 consecutive days (26 Wednesdays
and 26 Sundays), using 46 to perform exploration and the
other 6 days as the evaluation data for result comparison. The
recording of each day provides people trajectories starting
from approximately 09:00 until 21:00, so for the rest of day
we assume there are no occurrences of people.

The second dataset was collected at one of corridors in the
Isaac Newton Building building at the University of Lincoln
(UoL). The data collection was performed by a stationary
robot equipped with a 3D lidar and a 2D laser. The robot
was placed in a junction, covering a total area of around
75 m2 (Fig. 1). To detect and track the people, we used an
efficient and reliable method developed by Yan et al. [19].
Our dataset spanned from mornings to evenings for 14 days,
sparsely recorded over a four week period. From these, 12
days were used for training and the remaining 2 for testing.

Fig. 1: UoL dataset: Robot location in the corridor and
example of a person walking seen by the 3D lidar scans.

B. Model parameters

In our experiments, we discretised the space into 1× 1 m
regions for the ATC dataset and 0.5 × 0.5 m for the UoL
one, resulting in a total of n = 1248 and n = 465 active
cells, respectively. The number of bins chosen to discretise
the orientations is in both cases k = 8, as shown in Fig. 2
in the upper right corner.

Moreover, we assume in our experiments that it is not
possible to observe the state of the whole environment at
every point in time, and instead we have defined a set of
observable regions for each dataset. Each of the regions
comprises a different number of reachable cells (shown in
black in Fig. 2). For the ATC enviroment we defined 49
regions, each one measuring 7×7 m (in red in Fig. 2), while
the UoL scenario comprises 10 regions of 5× 5 m. During
exploration only the people passing within the boundaries
of the current region will be taken into account to update
the model at a given point in time, and the rest of the
environment is unseen.

Regarding time, we used the same parameters for both
datasets. The interval for creating the histograms used as the



Fig. 2: Example of the shopping center map with 1 m cell
grid and 49 regions (7×7 m) available for exploration. Upper
right corner: 8 bins discretised at 45 degree intervals.

input for model creation was set to 10 minutes. The same
interval was used to provide a single observation, i.e. every
10 minutes the policy can decide whether the robot should
stay in the same region or instead move to a different region.

To build the Poisson processes in each cell we impose a
global period of 1 day. This value comes from our previous
work [16], which considered the same two datasets, where
it was found that a daily rhythmic pattern gave the best fit.
These periodicities were provided by the FreMEn tool, which
analyses the temporal patterns of the data provided to it.

So in our case, the average people detection ratio is built
using the same interval of time, for example from 10:00
to 10:10, across different days. As we use the conjugate
distribution, the rate λ for each cell and time interval is
updated by updating the Gamma distribution.

In these simulations using real pedestrian data we are
currently not reproducing a robot moving from point to
point, and it is assumed that the robot can observe the
contents of only one of the regions for spatial exploration
purposes. A more realistic robot simulation is beyond the
scope of this paper, since we are mainly concerned with
obtaining consistent results that enable direct comparisons
of alternative exploration strategies.

C. Experiments

We divided the experiments into 3 parts. The first focuses
on the problem of where to explore, the second on the
problem of when to explore, and the last part considers both
aspects.

In the where experiments we evaluate the strategies as-
suming that the space is partially observable, but the time
is not. The mobile platform can dedicate all of its time to
performing exploration (exploration ratio = 100%), however
in each 10 minute interval it is possible to observe only
one of the regions in the map. In the case of the Monte
Carlo strategy, the region to explore is chosen based on the
total uncertainty of each region, which is the sum of the
uncertainties of all cells belonging to that region:

uregion =

nregion∑
c=1

√
λc
λc

. (4)

In the second part, we simulate the opposite situation,
where the whole map is fully observable but we need to
decide when to explore it based on time constraints. For

Fig. 3: Model predicition over 24h with m = 1, and proba-
bility distribution of each orientation at t = 18:00.

example, considering that a single day has 144 10 minutes
intervals, setting the exploration ratio to 50%, means that 72
out of 144 will be used to update the models and the rest
will be unseen.

Finally, we combine both cases and decide both where
and when to perform the exploration. In all experiments,
after the end of each day, the models and the uncertainties
for the entire map are recalculated with the new measured
detections.

VI. EXPERIMENTAL RESULTS

To evaluate the exploration strategies, we compare the
predictions made by the model in the testing days against
the ground truth at the end of each day of exploration. The
output of the trained FreMEn models provides a function
for each of the 8 orientations in every cell. So for each
time t, we are able to obtain a distribution describing how
likely it is to find a person moving in each direction. For
example, Fig. 3 presents the prediction graph for a single
cell in the map (using m = 1 FreMEn component) over
24 hours after some days of training. In this cell, there are
2 predominant orientations, one with higher probabilities in
the morning and the other more prominent in the afternoon.
At t = 18:00, the distribution of the 8 normalised orientation
probabilities is shown in the polar histogram on the right,
which is what we compare against the ground truth. However,
obtaining the same orientation distribution with real data at
a single time instance t is not possible, because we cannot
count sufficient detections to build a meaningful distribution.
Instead, the idea is to compare the distribution obtained
with the predictions from the ground truth during a defined
interval of time, which we set to 10 minutes in all the
experiments.

To make the comparison between the predicted and actual
histograms for each interval, we use the Chi-square distance
to indicate the level of similarity. The higher the distance the
less accurate is our model prediction compared to the ground
truth. So at the end of every day during the exploration
experiments, we compute the total error of all 144 intervals
in all the corresponding testing days. The error of the whole
map for a single interval is defined as:

emap =

n∑
i=1

k∑
b=1

(xb − yb)2

(xb + yb)
, (5)



where n is the number of cells, k = 8 is the number of
angular bins for the direction of people motion in the cells,
xb is the value of bin b in the predicted orientation histogram,
and yb is the value of the same bin b obtained from the
ground truth.

For all the experiments in this work, the predictions for
the model are calculated using only 1 spectral component,
as we impose only one periodicity.

The parameter u0 was adjusted depending on the environ-
ment. For the ATC dataset it was defined as 1 during the
‘where to explore’ experiments and 0.1 for the ‘when’ case.
For the UoL dataset, the parameter was set as 0.5 and 0.1,
respectively. These values are specific to the environments
and for the experiments carried out in this work.

In all the following plots, we provide a baseline model
error corresponding to a fully observable environment, both
in time and space (in black in Figures 4, 5 and 6). Also,
since the MC, R and RA strategies are based on stochastic
policies, the result is shown as the average together with
a 95% confidence interval, using a Student’s t-distribution,
over 5 runs.

A. Where?

Fig. 4 shows the evolution of the errors in the model pre-
dictions using the different strategies in both environments.
As a general overview, the results are consistent between
datasets, with MC providing the best results and R the worst.
However, all policies end up with similar accuracy values
after the 46 and 12 days explored, respectively.

Observing the results of the ATC experiments, the MC and
RA strategies perform closely in the first days, having a very
similar learning ratio. By contrast, the R and RR strategies
are slower in the first stage. Looking after day 10, we see
that the RA strategy starts to fall behind the other methods,
while MC maintains a slightly lower error. So biasing the
exploration towards the regions where a larger number of
cells can be seen is not always the recommended behaviour,
as other regions, even with fewer cells, can be less certain.

For the UoL dataset, we notice that there is not as big
a difference in the initial stage as in the previous dataset,
however after day 5 MC maintains a lower error as before.

B. When?

The results shown in Fig. 5 correspond to experiments
performed with 10% and 50% exploration ratios, so 14 and
72 intervals out of 144 are explored in each day, respectively.

In the 10% case, the MC and RR strategies are the
ones performing better. In the ATC dataset, the best overall
strategy is RR, mainly because in the first stage, the learning
ratio is faster than the MC and R policies. We believe the
reason behind the better performance of RR could be due to
the temporal model being based on periodicities. With this
policy, the robot explores the time domain in a structured
manner, which helps to find the rhythmic patterns of the
environment more quickly. With the UoL dataset, all three
strategies perform similarly over the initial days, probably
because the temporal rhythmic patterns are not as strong as

in the previous dataset. Only the R strategy seems to drop
in performance after the 4th day with respect to the other
strategies. For the 50% case, all strategies learn really quickly
in both environments, and after just 5 days, the performance
is very close to the baseline for all three strategies. The fact
that we assumed full spatial observability in this experiment
makes the choice of strategy almost irrelevant with high
exploration ratios.

The RA strategy was not included as the number of ob-
servable cells would remain invariant across all the intervals.
Since all the intervals would have the same probability, this
strategy would behave the same as R.

C. Where and When?

For the last part of the experiments, the strategy decides
both where and when to explore. The comparison is done
with 5 different combinations, R-R, RR-RR, MC-MC, MC-
RR and RR-MC, with the first named strategy indicating the
policy for choosing the location and the second indicating
the one in charge of deciding when to explore. Fig. 6 gathers
the model prediction error over 46 days for the spatial and
temporal combinations mentioned, for both exploration ratios
(again 10% and 50%) and the two datasets.

As a general outline, independently of the dataset and
exploration ratios, the strategies that include the uncertainty-
driven exploration for the spatial domain (MC-MC and MC-
RR) obtain a consistently better performance over their
uninformed counterparts (R-R and RR-RR). This is more
noticeable in the ATC enviroment with faster learning speeds,
but in the UoL environment, MC-MC also ends with the
lowest error among all strategies for both exploration ratios.

Looking at the ATC dataset, when comparing both explo-
ration ratios, we see that the policies behave in a consistent
way in both cases. MC-MC and MC-RR present similar re-
sults with the 50% ratio, but with 10% ratio the combination
that also takes into account the uncertainty to decide when
to explore performs slightly better on average after day 25.
For the UoL dataset, there is not much improvement in the
learning speed, however the MC-MC strategy maintains a
slightly lower error than the rest, especially looking at the
50% case.

As a general conclusion, the comparison between MC-
MC, MC-RR and RR-MC suggests that the selection of the
strategy to decide the location has a higher impact on model
accuracy than the temporal policy. While MC-MC and MC-
RR obtain similar results, RR-MC results in a decrease in
performance compared to MC-MC.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes an exploration approach for mobile
robots which is able to build and refine a spatio-temporal
model of pedestrian motion. The exploration strategy uses
the uncertainty of an nonhomogenous Poisson process built
from past observations to infer the locations and intervals
to explore at future times. The experiments show that using
the uncertainty measure over the data already gathered, we
can increase the learning speed over non-informed strategies,



Fig. 4: Comparison of exploration strategies with partial spatial observations (’where to explore?’). ATC (left) and UoL
(right).

Fig. 5: Comparison of exploration strategies with partial temporal observations (‘when to explore?’). Dashed and solid lines
represent a 10% and a 50% exploration ratio respectively. ATC (left) and UoL (right).

Fig. 6: Comparison of the exploration strategies with both spatial and temporal partial observations (‘where and when to
explore?’). Dashed and solid lines represent a 10% and a 50% exploration ratio respectively. ATC (left) and UoL (right).

which leads to a better understanding of how the people will
behave in certain areas, hence enabling the robot to plans its
activities around humans in a more optimal way.

One of the limitations of the method developed lies in
the fact that once the number of periodicities m is chosen
(in our experiments m = 1), all the cells in the map and
the corresponding uncertainties are predicted using the same
m. In some scenarios, it is unlikely that all cells in an
environment will experience the same rhythmic activities.
Future work could therefore analyse the cells individually
and choose for each one the best model order to fit the data.

Also in this work we are not simulating a realistic be-
haviour of the robot, omitting many complex actions that
would occur in the real world, such as people avoidance,
occlusions, battery charging, sensor noise, etc., which could
affect the final results and therefore should be investigated
further.
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