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Abstract— 3D point cloud-based place recognition is highly
demanded by autonomous driving in GPS-challenged envi-
ronments and serves as an essential component (i.e. loop-
closure detection) in lidar-based SLAM systems. This paper
proposes a novel approach, named NDT-Transformer, for real-
time and large-scale place recognition using 3D point clouds.
Specifically, a 3D Normal Distribution Transform (NDT) rep-
resentation is employed to condense the raw, dense 3D point
cloud as probabilistic distributions (NDT cells) to provide the
geometrical shape description. Then a novel NDT-Transformer
network learns a global descriptor from a set of 3D NDT cell
representations. Benefiting from the NDT representation and
NDT-Transformer network, the learned global descriptors are
enriched with both geometrical and contextual information.
Finally, descriptor retrieval is achieved using a query-database
for place recognition. Compared to the state-of-the-art methods,
the proposed approach achieves an improvement of 7.52% on
average top 1 recall and 2.73% on average top 1% recall on
the Oxford Robotcar benchmark.

I. INTRODUCTION

There is a high demand for point-cloud-based naviga-
tion systems that are able to robustly localise robots or
autonomously driving cars in GPS-challenged environments.
Point-cloud-based global localisation can also be employed
as a loop-closure detection module, which is an essen-
tial component of Simultaneous Localisation And Mapping
(SLAM) systems. A practical method is to use GPS to
acquire the coarse global location and point cloud registration
methods, such as ICP, to obtain a more accurate pose
estimate. However, GPS is not always available and reliable,
so that alternative solutions using only sensory data are
required.

The conventional point cloud registration methods and
particle filtering methods are not scalable for large-scale
environments. The core challenges for current robot local-
isation systems are generality and scalability. For example,
model-based methods [1], [2], [3] can learn the 6 DOF global
pose as a regression model and infer the pose in real-time.
Sadly, regression-based methods cannot be generalised to
novel environments. SegMatch-like methods [4], [5], [6], [7]
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Fig. 1: 3D point (NDT)-based loop-closure detection in a
large-scale environment (Oxford city centre).

register two point cloud maps on intermediate representations
(e.g. semantic segments), which has proven to be robust but
not computationally efficient.

This paper addresses large-scale localisation as a large-
scale point cloud retrieval problem, where the continuous
robocar trajectories are discretized into consecutive ‘places’.
Inspired by the success of the Transformer model [8] in
natural language processing, we propose a novel approach
– NDT-Transformer – to transform the point cloud into a
‘long sentence’ of geometry-enriched NDT cells and then
to a site-specific feature signature. During the inference,
only the descriptor of the query data is required to be
computed online, while the other descriptors in the database
can be computed once offline and stored in memory, thus
enabling real-time topological localisation in large-scale en-
vironments. Consequently, both scalability and generalisation
can be achieved.

The main contributions can be summarised as follows: 1)
A computationally efficient method is proposed for large-
scale point-cloud-based localisation where NDT is used as an
intermediate representation. Our approach condenses a dense
point cloud into a lightweight representation with maximal
preservation of the geometrical features; 2) A novel neural
network architecture, named NDT-Transformer is devised
to learn a global descriptor with contextual clues from
a set of 3D NDT cell representations; 3) The proposed
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method achieves the state-of-the-art performance in point-
cloud-based place recognition, which can be an important
supplement for NDT-based SLAM and Monte-Carlo locali-
sation methods.

The processed data, code and trained model can be
found on our project website: https://github.com/
dachengxiaocheng/NDT-Transformer.git

II. RELATED WORK

A. Point cloud-based global localisation

The state-of-the-art point cloud based localisation methods
can be categorised into three main streams: regression-based
[1], [2], [3], intermediate-representation-based [4], [5], [6]
and global-feature-based [9], [10], [11], [12], [13], [14], [15].

Following the success of deep pose estimation in image-
based global localisation, some methods [1], [2], [3] propose
to use deep regression networks to learn the 6 DOF global
pose. These model-based approaches are extremely efficient
but not generalisable. In other words, a new model is required
to be trained for new environments.

Intermediate-representation-based methods [4], [5], [6],
[7] first segment the map into intermediate representations
(i.e. semantic segments) then register the segmented parts,
rather than directly registering the point clouds. The inter-
mediate parts can be described as distinctive features [4] or
deep-learned features [5], [6], [7] may be used to eliminate
the false positives. Though the matching efficiency can be
improved by using intermediate representations, significant
running time is spent on cloud segmentation, and thereby,
real-time performance cannot be guaranteed.

The mainstream methods for point-cloud-based localisa-
tion are based on global features, where a generalisable
feature extractor is designed or learned to obtain the place
signature for retrieval. Before deep learning began dominat-
ing the machine learning community, handcrafted features
such as M2DP [9], Scan Context [10] and DELIGHT [11]
were well-studied to represent the 3D point cloud for the
localisation. In terms of learning-based methods, the Scan
Context Image-based network [12] and OverlapNet [13]
convert the 3D lidar scan to a 2D image according to
geometric knowledge, then deploy a 2D convolution-like
network to learn a representation.

Instead of using hand-crafted features, Point-
NetVLAD [16] combines PointNet [17] and NetVLAD [14]
to learn a global descriptor based on metric learning.
However, the PointNet-like architecture ignores the spatial
distribution and contextual cues within the 3D point cloud.
Extracting efficient contextual information from the irregular
3D point cloud is another challenge for 3D loop-closure
detection. The following work LPD-Net [15] employs a
classical DGCNN [18]-like network to enhance the feature
descriptor by KNN-based aggregation in both feature space
and Cartesian space. They also introduce ten different
kinds of geometric local features to feed the network
during training, achieving the state-of-the-art (SOTA)
performance. Most of these point-cloud-based methods
require a downsampling operation on the original 3D dense

point cloud due to the limitation of GPU memory. However,
this downsampling operation can cause a degeneration
of the local geometric information. Lastly, as part of the
real-time SLAM system, the run-time performance of 3D
loop-closure detection needs to run in real-time, which
means that lightweight networks are required.

B. NDT-based localisation

The Normal Distribution Transform (NDT) is a classic
method to represent a 2D or 3D point cloud as differential
multi-variant Gaussian distributions for 2D laser [19] and
3D lidar mapping [20], [21]. Compared to point cloud or
grid-map based representations, NDT-based relocalisation,
i.e. NDT-MCL [22], demonstrates advanced localisation
precision and repeatability, as the NDT is an inherently
probabilistic and geometrical representation to model the
likelihood. In other words, the structural and geometrical
information of the map is implicitly interpreted by the NDT
cell parameters. Benefiting from this characteristic, NDT-
based localisation can condense the bulky point cloud map to
memory efficient NDT cells to make the localisation scalable.
Submap-based NDT [23] can eliminate the uncertainties
caused by different robot perspectives, and further improve
the localisation accuracy and scalability in large-scale and
long-term applications [2]. Moreover, NDT can be used
to provide place signatures for loop closure detection, e.g.
using NDT histograms [24] and semantic-NDT histograms
[25], semi-supervised place categorisation [26], and to create
interest point descriptors [27] for efficient registration or
localisation.

III. METHODOLOGY

A. Problem Formulation

Given a 6 DOF trajectory of the robotcar and the syn-
chronised lidar scans, submaps M = {m1, · · · ,mN} can
be built by dividing the trajectory into fixed range intervals
and mapping the point cloud into a local reference frame.
Then the obtained submap can be further represented as NDT
cells. Specifically, the space of a submap will be uniformly
divided into grid cells, and the 3D points within a cell will be
used to estimate the NDT parameters. Practically, the number
of cells varies greatly due to the different density of each
submap. A spatially distributed sampling filter G is applied
to guarantee that the numbers of cells in all submaps are
the same, i.e. |G(m1)| = · · · |G(mN )|. A deep model called
NDT-Transformer is proposed to learn a function f(.) which
represents the input NDT cell representations as a fixed-
size global descriptor f(F) where F = G(m). Then the
Euclidean distance function d(.) can be adopted to measure
the similarity, i.e. d(f(F), f(Fpos)) < d(f(F), f(Fneg)),
where F is similar to Fpos and dissimilar to Fneg .

Hence the problem of 3D loop closure detection is for-
mulated as follows. Denoting the query submap as mq , the
task aims at searching the database M for the most similar
submap m∗. The problem can be resolved by searching
for the nearest neighbour of a submap m∗ ∈ M in the
feature space, i.e. f(Fm∗), which has the smallest Euclidean
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distance to the query point cloud (feature) f(Fmq
). That is,

d(f(Fmq ), f(Fm∗)) < d(f(Fmq ), f(Fmi)), ∀mi ∈ M, i 6=
∗.

An example of 3D place recognition is illustrated in Fig. 1.
The red line on the map shows the entire route navigated by
an autonomous vehicle in the city centre of Oxford, UK.
A set of point clouds for this run can be constructed by
combining the scans with global poses. The objective is to
identify the nearest match of the query point cloud from
another run. This paper represents all point clouds as a fixed
number of 3D NDT cells (as shown in Fig 2) and utilises
the NDT-Transformer to convert them to site-specific global
descriptors. Moreover, only the query descriptor is required
to be computed online, while the other descriptors in the
database are computed once offline and stored in memory,
to guarantee the real-time performance.

B. 3D NDT Representation

In contrast to most of the existing work, we represent
the point cloud submap using the 3D Normal Distributions
Transform (NDT) [21] rather than downsampling the 3D
point cloud to a fixed number of points. As illustrated in
Fig. 2, the 3D-NDT representation is a compact ‘spherical’
structure, which can not only preserve the geometrical shape
of a group of local 3D points but can also significantly
decrease the memory complexity. In other words, we can
use memory efficient resolutions such as (1m × 1m × 1m)
without losing significant geometrical details. The normal
distribution N(µ,C) of each NDT cell consists of a mean
vector µ and a covariance matrix C defined as,

(µ,C) = (
1

n

n∑
k=1

xk,
1

n− 1

n∑
k=1

(xk − µ)(xk − µ)T ). (1)

where xk=1,··· ,n are 3D points in each cell.
We employ a spatially distributed sampling approach G to

generate evenly distributed NDT cells,

F : ms → G([µi,Ci]i=1..k), (2)

where ms refers to submap of size s and G refers to NDT
representation of size k cells.

The spatially distributed sampling can reduce the point
density from an arbitrary input size s to a fixed number of
points k and simultaneously preserve structural information
from the original submap. This operation consists of three
steps. Firstly, we downsample the original submap: ms of
size s to mk∗c±t% (within some tolerance factor t), where
c > 1.0+ t is an oversampling factor that makes sure that an
excessive amount of points are produced. The downsampling
is implemented by performing binary search to find the
voxel size that produces k ∗ c ± t points. Secondly, we
estimate NDT distributions F with the downsampled points
as centroids. That is, for each point in the downsampled
submap qi ∈ mk∗c±t%, an NDT cell (µi,Ci) is computed
from all points within a radius r of qi in the original submap
ms. The final step removes cells with the highest mutual in-
formation until k cells remain. This ensures that the structural

information is maintained. Mutual information is computed
from the symmetric Kullback–Leibler divergence 1/2 ∗
(DKL(P ||Q)+DKL(Q||P )). The neighbour with the lowest
KL-divergence has the highest mutual information.

Fig. 2: First row: dense 3D point cloud, second row: 3D
NDT cells, third row: 3D NDT cells within the dense 3D
point cloud.

C. NDT-Transformer Network

After converting the 3D submap m to 3D NDT represen-
tation F , this representation is fed into a NDT-Transformer
network f to obtain a descriptor ξ of the 3D submap. That
is, ξ = f(F) where F =G(m). As shown in Fig. 3, the NDT-
Transformer network consists mainly of three components: 1)
NDT representation module that consists of a point transform
and uncertainty backpropagation, 2) A residual transformer
encoder, and 3) Net Vector of Locally Aggregated Descrip-
tors (NetVLAD).

In order to achieve rotational invariance of the descriptor,
the point transform and uncertainty backpropagation are ap-
plied to each original NDT representation F = (µ,C). Firstly,
a transition matrix T3×3 is learned through a Transform
Net (T-Net) [17] from the NDT mean vectors µ. Then a
new NDT representation FT = (µT ,CT ) can be obtained by
assembling the transformed points and propagated uncertain-
ties,

N (µT ,CT ) = N (T3×3 µ, T3×3 CTT
3×3), (3)

where T3×3 = T (µ) and T refer to the T-Net. Feature ag-
gregation on irregular data such as NDT cells is still a
challenging problem. PointNetVLAD [16] utilises Point-
Net [17] to transform the points’ position information to
a high-dimensional feature representation. However, this
representation of each point suffers from the ambiguities
due to a lack of contextual cues. Although local feature
aggregation can be achieved via mean and covariance cal-
culation within each NDT cell, there is no aggregation



Fig. 3: NDT-Transformer Network Architecture

between the individual NDT representations. Our intuition
is to employ an attention mechanism to learn the underlying
context between landmarks (NDT cells). In contrast to most
existing approaches [15], [18], which utilise kNN grouping
for contextual information modelling, we employ a residual
transformer encoder to aggregate the contextual cues for
one NDT cell from the other NDT cells to increase the
distinctiveness of the representation.

As shown in the middle panel of Fig. 3, the network
includes three transformer encoder stacks in series, and two
shared linear stacks at the head and bottom with a shortcut
skip connection. Each Transformer encoder is composed of
a series of modules, i.e. multi-head self-attention (MHSA),
feed-forward network (FFN) and layer normalization (LN),
which can be stacked on top of each other multiple times.
The transformer encoder can learn co-contextual informa-
tion/message Attn captured by a self-attention mechanism,

Attn([Qi,Ki, Vi]) = concat([softmax(
Qi ·KT

i√
dk

)Vi]), (4)

where dk denotes the dimension of queries and Qi,Ki, Vi
stand for ith head of queries, keys, values of the NDT
cell representation, respectively. In our implementation, four-
head attention (i.e. i = 1, 2, 3, 4) is used to enhance the
discriminativeness of feature attributes. The self-attention
mechanism can automatically build connections between the
current NDT cell and the other salient interesting NDT cells.
The attentional representation Φ can be obtained as,

Φ′ = LN(FT +Attn), (5)

Φ = LN(FFN(Φ′) + Φ′). (6)

By this means, the local representation FT of each NDT cell
is upgraded to an attentional representation Φ.

Following PointNetVLAD [16], we choose NetVLAD [14]
instead of a max-pooling layer to improve permutation in-
variance for the descriptor of the 3D point cloud. NetVLAD
is designed to aggregate a set of local descriptors and

generate one global descriptor vector. It records statistical
information with respect to local signatures and sums the
differences between these signatures and their respective
cluster. In contrast to conventional VLAD, the parameters of
NetVLAD, especially the assignment score, are learnt during
training in an end-to-end manner. After going through the
NetVLAD followed by a Multi-Layer Perceptron (MLP), a
set of NDT cell representations/descriptors Φ can be fused
to obtain a fixed-size global descriptor vector ξ to describe
the 3D point cloud,

ξ = MLP (NetV LAD(FT ⊕ Φ)), (7)

where ⊕ refers to the concatenation.

D. Metric Learning

Following the PointNetVLAD [16], the Lazy Quadruplet
loss is used to achieve metric learning between the query
global descriptor ξq and the positive ξpos, the negative ξneg ,
and the hard negative ξneg∗ examples, which are randomly
picked during training from different locations to ξq . The
Lazy Quadruplet loss is:

LQ(ξq, ξpos, ξneg, ξneg∗) = [α+ d(ξq, ξpos)

−d(ξq, ξneg)]+ + [β + d(ξq, ξpos)− d(ξq, ξneg∗)]+ ,
(8)

where α, β are constant margin values, and d(·, ·) is the
Euclidean distance. The core idea of Quadruplet loss is
to minimise the distance between the query and positive
global descriptors, and maximise the distance between the
query and negative global descriptors, while simultaneously
keeping a proper distance between all negative descriptors
(i.e. ξneg and ξneg∗).

IV. EXPERIMENT

A. Dataset Benchmark

The Oxford Robotcar dataset [28], which provides long-
term multi-session data, was used to evaluate the proposed
method. In this dataset, a Sick LMS-151 2D lidar scanner
mounted on the rear of the vehicle is used for mapping.



Each scan contains a set of triplet records (x, y,R), where
the former two refer to coordinates in 2D Cartesian space and
the latter refers to lidar infrared reflectance information. The
dataset provides an accurate 6 DOF trajectory of the travelled
urban environment through fusing GPS-RTK with visual-
inertial sensors, and a dense point cloud map can be built
by transforming 2D lidar scans with respect to the global
poses. Then places are generated with a fixed interval (10 m
for training and 20 m for evaluation) and the global 3D map
is divided into a set of submaps using a fixed length trajectory
segment (20 m).

In this experiment, we use 44 runs for training and 22 runs
for testing from the Oxford RobotCar dataset. We obtain
a total of 21898 submaps for training and 3071 submaps
for testing. For the NDT cell generation, we use 2000
cells with a resolution of 0.8 m as the input to We follow
the definition of query, positive and negative data-pairs in
PointNetVLAD [16], that is, the places within 10 m to the
query are classified as positives while places beyond 50 m to
the query are classified as negatives via KD-Tree search.

B. Neural Network Training

Similar to PointNet [17], an input Transform Network (T-
Net) is required to achieve rotational invariance by transform-
ing the input map to a canonical view. The hyperparameters
of T-Net are the same as PointNet [17]. The two shared
linear stacks before and after transformer encoders consists
of linear layers with hidden variables with 256 and 1024
separately followed by Batch Normalisation layer and ReLU
activation layer. The three Transformer encoders have the
same hyperparameter settings: the dimensions of the input
and output are set to 256, the dimension of the feed-forward
layer is set to 1024, the dropout rate is 0.1, and the number
of heads is set to 4. For the hyperparameter settings within
NetVLAD, the dimensions of the input and output are set to
1024 and 256, respectively, and the size of the cluster is set
to 64.

For the metric learning, the network is trained with 20
epochs with a batch size of 2. There are 1 query submap, 2
positive submaps, 18 negative submaps, and 1 hard negative
submap in one single batch. Margin values of α = 0.5
and β = 0.2 are used. The multi-step learning policy is
used and the learning rate decay is a fixed value of 0.1
applied on epoch 9 and 15. The initial learning rate is 1e-5
and the momentum is a fixed value of 0.9. The network is
implemented in Pytorch and trained on a tower with Intel
i9 CPU and two NVIDIA RTX Titan GPUs accelerated by
CUDA and cuDNN.

C. Performance Evaluation

Following PointNetVLAD [16] on the Oxford Robotcar
dataset benchmark [28], the recall indices, i.e., the Average
Recall@N (N=1,2,3...25) and Average Recall@1% are em-
ployed as metrics for the performance evaluation of 3D loop
closure detection.

NDT-Transformer achieves 93.80% top 1 (@1) average
recall and 97.65% top 1% (@1%) average recall, respec-

tively. As shown in Table I, ND-Transformer achieves a
significant improvement compared to PointNetVLAD [16]
with an improvement of 31.04% on top 1(@1) average recall
and an improvement of 16.64% on top 1% (@1%) average
recall. The performance of NDT-Transformer is superior
to the SOTA, LPD-Net [15], with 7.52% improvement for
top 1(@1) average recall and 2.73% improvement for top
1% (@1%) average recall. Although LPD-Net utilises 10
different kinds of local features, the NDT-Transformer only
uses the NDT representations. The average recall curves from
top 1 (@1) to top 25 (@25) of PointNetVLAD, LPD-Net and
NDT-Transformer are provided in Fig 5.

The ablation studies for NDT-Transformer are provided
in Table II. The average recall of top 1 (@1) and top 1%
(@1%) decrease 17.87% and 9.76%, respectively, if only
the point position without covariance matrices is used for
learning. The average recall of top 1 (@1) and top 1%
(@1%) show a decrease of 6.92% and 3.2%, respectively, if
only the covariance matrices (i.e. without point position) are
used for the network training. If the T-Net is excluded from
the network, the average recall of top 1 (@1) and top 1%
(@1%) decrease by 1.98% and 1.05% due to the absence
of the point transform and uncertainty propagation for the
NDT representation. Average recalls from top 1 (@1) to top
25 (@25) of the studied ablation baselines are provided in
Fig. 5.

Network Ave recall @1 Ave recall @1%
PointNetVLAD[16] 62.76 81.01
LPD-Net [15] 86.28 94.92
NDT-Transfomer 93.80 97.65

TABLE I: The comparison result of PointNetVLAD, LPD-
Net and NDT-Transformer, where average recall (%) at top
1 (@1) and the top 1% (@1%) are reported.

Network Ave recall @1 Ave recall @1%
NDT-Transfomer-P 75.93 87.89
NDT-Transfomer-C 86.88 94.45
NDT-Transfomer-noT 91.82 96.60
NDT-Transfomer 93.80 97.65

TABLE II: The ablation study of NDT-Transformer is given.
-P refers to our method using 3D points only. -C refers to our
method using covariance matrices only. noT is the network
architecture without using T-Net.

Finally, we show some examples of retrieval results on
the Oxford Robotcar dataset using NDT-Transformer, where
the ranking of correctly retrieved candidates is plotted in
different colours. As shown in Fig. 4, the first row images
are database submaps randomly picked from 22 tests in the
experiment, in which the red trajectories are queries from
previously unseen areas. The second row shows the heat
maps indicating the retrieval results. Colours from red to
yellow represent correctly recognised places in the top 1 to
4 candidates. The KD-Tree is employed to search the top
N matched candidates from the database. The figure shows



Fig. 4: In this figure, some examples of the database-query results of the proposed NDT-Transformer are shown. Each column
refers to an experiment randomly picked in our evaluation (i.e. date 2014-11-14, 2014-12-09, 2015-02-03, 2015-04-24, on
Oxford Robocar dataset). The first row shows the database locations where red dots are testing areas (i.e. streets never seen
before). The second row shows the retrieval results (the ranking of successfully retrieved candidates)

.

Fig. 5: The average recall curves from top 1 (@1) to
top 25 (@25) of PointNetVLAD, LPD-Net and NDT-
Transformer.

that most of the queries are paired with the correct database
locations as the first ranking candidate. It worth noting that
the query areas (shown as four rectangles) are previously
unseen streets, which means that no data from these areas
were used in the training set. Therefore, this experimental
result shows that our deep-learned features can be used for
localisation in unseen areas (novel locations). Moreover, the
inference time of our approach averages 0.034 seconds per
point cloud (0.03 seconds for NDT conversion and 0.004
seconds for the transformer network) and the computational
complexity of retrieval is O(logn).

V. CONCLUSION

This paper proposes a novel approach, NDT-Transformer,
to represent a dense point cloud submap as a discriminative
location descriptor, to addresses the large-scale topological
localisation problem by the means of place recognition and
retrieval. Our approach leverages the generic NDT represen-

Fig. 6: The average recall curves from top 1 (@1) to top
25 (@25) of the NDT-Transformer ablation studies.

tation and transformer encoder to interpret the point cloud,
where geometric and contextual information are implicitly
summarised. Compared to the state-of-the-art method [15],
our approach does not require handcrafted features, and
instead aggregates and strengthens local features hierarchi-
cally, hence achieving better results with superior run-time
performance.

The experimental results on the Oxford Robocar dataset
demonstrate the effectiveness of our approach, i.e. a signif-
icant improvement of 7.52% on average recall of top 1 and
2.73% on top 1% in comparison with the SOTA method. Our
system is able to successfully find a compromise between the
needs of SOTA performance and run-time performance as an
essential module of a real-time SLAM system. The proposed
approach also provides an important supplement for NDT-
based SLAM approaches such as NDT mapping, NDT-MCL,
etc.



REFERENCES

[1] W. Wang, B. Wang, P. Zhao, C. Chen, R. Clark, B. Yang, A. Markham,
and N. Trigoni, “Pointloc: Deep pose regressor for lidar point cloud
localization,” arXiv preprint arXiv:2003.02392, 2020.

[2] L. Sun, D. Adolfsson, M. Magnusson, H. Andreasson, I. Posner, and
T. Duckett, “Localising faster: Efficient and precise lidar-based robot
localisation in large-scale environments,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 4386–
4392.

[3] N. Akai, T. Hirayama, and H. Murase, “Hybrid localization using
model-and learning-based methods: Fusion of monte carlo and e2e
localizations via importance sampling,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 2020.
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