
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS 1

On Provably Safe and Live Multirobot Coordination
With Online Goal Posting

Anna Mannucci , Lucia Pallottino , and Federico Pecora

Abstract—A standing challenge in multirobot systems is to re-
alize safe and efficient motion planning and coordination methods
that are capable of accounting for uncertainties and contingencies.
The challenge is rendered harder by the fact that robots may be
heterogeneous and that their plans may be posted asynchronously.
Most existing approaches require constraints on the infrastructure
or unrealistic assumptions on robot models. In this article, we
propose a centralized, loosely-coupled supervisory controller that
overcomes these limitations. The approach responds to newly posed
constraints and uncertainties during trajectory execution, ensuring
at all times that planned robot trajectories remain kinodynamically
feasible, that the fleet is in a safe state, and that there are no
deadlocks or livelocks. This is achieved without the need for hand-
coded rules, fixed robot priorities, or environment modification. We
formally state all relevant properties of robot behavior in the most
general terms possible, without assuming particular robot models
or environments, and provide both formal and empirical proof that
the proposed fleet control algorithms guarantee safety and liveness.

Index Terms—Formal methods in robotics and automation,
intelligent and flexible manufacturing, multirobot systems,
planning, scheduling and coordination.

I. INTRODUCTION

AN IMPORTANT challenge in industrial transport automa-
tion is to effectively coordinate heterogeneous fleets of

robots in dynamic environments while ensuring safety, live-
ness, and good overall fleet performance. While methods exist
for managing fleets of hundreds of robots in static, dedicated
environments (e.g., [1]), such methods cease to work if key
assumptions are dropped. Specifically, (R1) robots are subject

Manuscript received September 18, 2020; revised March 9, 2021; accepted
April 17, 2021. This work was supported in part by the EU’s Horizon 2020
research and innovation program under Grant 732737 (ILIAD), in part by the
Swedish Knowledge Foundation (KKS) under the Semantic Robots research
profile, and Vinnova under Project AutoHauler. This paper was recommended
for publication by Associate Editor J. O’Kane and Editor P. R. Giordano
upon evaluation of the reviewers’ comments. (Corresponding author: Anna
Mannucci.)

Anna Mannucci is with the Research Center “E. Piaggio,” University of
Pisa, Italy, and Dipartimento di Ingegneria dell’Informazione, University of
Pisa, Pisa 56126, Italy, and also with the Center for Applied Autonomous
Sensor Systems (AASS), Örebro University, 70281 Örebro, Sweden (e-mail:
anna.mannucci90@gmail.com).

Lucia Pallottino is with the Research Center “E. Piaggio,” University of Pisa,
Italy, and Dipartimento di Ingegneria dell’Informazione, University of Pisa,
56126 Pisa, Italy (e-mail: lucia.pallottino@unipi.it).

Federico Pecora is with the Center for Applied Autonomous Sensor
Systems (AASS), Örebro University, 702 81 Örebro, Sweden (e-mail:
federico.pecora@oru.se).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TRO.2021.3075371.

Digital Object Identifier 10.1109/TRO.2021.3075371

to complex kinodynamic constraints; (R2) tasks (and therefore
goals) become known only at run time; (R3) discretizing the
environment and/or robot paths is too costly or curtails flexi-
bility too much; (R4) robot priorities may change over time;
(R5) robot motions, and (R6) communications may be subject
to disturbances. Reactive techniques can be used to deal with
some of these uncertainties; however, they lack predictability
and may lead to deadlocks. Deliberative methods, where col-
lisions and deadlocks are accounted for in motion planning,
suffer from severe computational overhead. Experienced by
decades of collaborations with industrial partners [2], a central-
ized supervisory coordinator for possibly heterogeneous robotic
platforms was proposed in [3] to account for requirements (R1–
R5), and extended in [4] to ensure safety under communication
disturbances (R6). The approach is designed for applications in
which robots are loosely coupled [5] (i.e., they share the same
workspace and are subject to noncooperative tasks), and assume
decoupled motion planning and control (which holds, e.g., when
robots are driven by car-like or differential-drive kinodynamics).
Precedence constraints are computed and revised online (while
accounting for kinodynamic feasibility) to safely regulate access
to and progress through contiguous overlapping configurations
of pairs of paths.

Despite fulfilling all requirements R1–R6, the approach de-
scribed in [3], [4] does not guarantee liveness, that is, there are
conditions under which one or more robots in the fleet do not
reach their intended targets. The main contributions of this article
aim to overcome this limitation, specifically, as follows.

1) We formally define the conditions necessary to ensure
liveness by design, that is, avoiding blocking, deadlocks,
and livelocks. This is achieved by generalizing the notion
of well-formed infrastructure introduced in [6] to hetero-
geneous fleets, introducing new formal properties of the
heuristics used to decide precedences among robots, and
imposing conditions on replanning.

2) We devise several methods for imposing these conditions,
each of which is suitable under a different set of boundary
conditions. Specifically, we propose (a) two variants of
an online feasibility check to discard goals and paths
that lead to blocking; (b) three extensions of the original
algorithm to prevent and/or recover from deadlocks. Each
method is validated both formally and empirically, and the
trade-off between computational complexity and bound-
ary conditions under which the method is applicable are
discussed.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1627-0921
https://orcid.org/0000-0002-9480-8857
https://orcid.org/0000-0002-9652-7864
mailto:anna.mannucci90@gmail.com
mailto:lucia.pallottino@unipi.it
mailto:federico.pecora@oru.se
https://doi.org/10.1109/TRO.2021.3075371

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON ROBOTICS

These are combined into a framework for integrated motion
planning, coordination, and control with the following features.
� The framework ensures provable safe and live coordination

of heterogeneous robotic platforms subject to kinodynamic
constraints with communication disturbances.

� The framework is general with respect to robots’ motion
planners and controllers.

� Goals can be posted asynchronously to robots when they
become known.

� Precedences can be decided online and revised according
to any user-defined ordering heuristic.

� Safety and liveness are guaranteed under bounded spatial
deviations from nominal paths and any velocity profile that
satisfies the precedences.

We empirically evaluate performance of all proposed solu-
tions with several different heuristics in terms of time and rate
of mission completion. Experiments with simulated robots both
in benchmark scenarios and in a real mine (elicited by an ongoing
collaboration with industries, see Section VIII-D2) confirm the
effectiveness of the approach for realistically sized fleets (≤ 40
robots tested) with reasonable computational complexity.

The rest of the article is organized as follows. Relevant
state-of-the-art is presented in Section II. The problem tackled
in this article is formally stated in Section III. Section IV recalls
necessary notation and concepts from in [3], [4] and grounds the
problem into this framework. Sections V–VII formally analyze
the factors that may prevent the supervisory controller of [3], [4]
from ensuring liveness, proposing strategies for overcoming this
limitation while ensuring safety. Simulations, analysis and dis-
cussion of results are given in Sections VIII and IX, respectively,
and Section X concludes this article.

II. STATE-OF-THE-ART

The literature addressing multirobot coordination is vast,1

spanning multiarm coordination [15], air-traffic control [16]–
[18], traffic management [19], mobile robot coordination in
warehouses [1], [20], [21], and many other application scenarios.
The problem has been investigated from a reactive perspective,
which is mostly concerned with the issue of avoiding collisions
among robots while they execute previously planned motions; or
from a deliberative perspective, in which motion planning itself
accounts for the presence of multiple robots. Some methods
are general, whereas others have been designed for particular
applications and are difficult to apply in other contexts. For
example, obstacles other than the robots themselves are typically
ignored in air-traffic control [16]–[18], where the problem is
usually approached from a control-theoretic point of view.

Reactive techniques [22], [23] are appealing due to their
low computational overhead; however, many make strong as-
sumptions, such as homogeneous fleets of holonomic robots,
the absence of dynamic obstacles, or simplified kinodynamic
constraints. Moreover, due to their locality, these methods cannot

1The scope of this section is not to give a comprehensive overview of
multirobot coordination methods, but to guide the reader in understanding the
design choices behind our coordination method. The most recent survey (with
references up to 2013) can be found in [14].

ensure that robots will eventually reach their goals (liveness) and
their extension to more general settings [7] does not guarantee
that collisions never happen.

Deliberative approaches leverage longer planning horizon to
plan trajectories that are safe and deadlock-free by construc-
tion [24]. These methods are usually not specific to the robot
model and extend to higher degrees of freedom. They can be
either coupled or decoupled. The former search for a solution
in the joint configuration space of all robots in the fleet. They
ensure completeness (and sometimes optimality), but at the price
of exponential computation time,2 in the number of robots. This
issue is partially solved by techniques such as M* [26], which
first plans for each robot separately, and only couples sets of
robots after they have been found to interact (thus minimizing
the dimensionality of the search space). However, complexity is
still exponential with respect to the number of robots involved
in each sub-conflict.

Decoupled approaches are usually incomplete, but an order
of magnitude faster than coupled ones, as each robot computes
its own path, and conflicts are solved a posteriori. In prioritized
planning [27], high priority robots are considered as moving
obstacles by lower priority ones and collision-free trajectories
are computed using techniques for motion planning in dynamic
environments, e.g., [28]. As observed in [29], [30], the choice
of (static) priorities has a great impact on whether a solution is
found and on its quality. Prioritized planning is revisited in [6],
where the concept of well-formed infrastructure is proposed to
guarantee that a feasible trajectory is always computable (thus,
the completeness of multirobot motion planning depends on that
of the decoupled motion planners). The technique is extended
in [9] to allow goals to be posted online and trajectories to
be computed in a decentralized fashion with a token-based ap-
proach. However, both methods assume holonomic disc-shaped
fleets, and require robots to be synchronized on a common time.

Another decoupled approach tunes velocity along precom-
puted paths [31]. The approach is extended in [32] to obtain op-
timal collision-free trajectories for generic robot models subject
to kinodynamic constraints. In particular, collision avoidance
constraints for pairs of robots in a common collision zone are
expressed in a mixed-integer nonlinear program formulation of
the problem. However, complexity remains exponential in the
number of collision zones. Similarly, [11] leverages the notion
of least commitment to obtain easily revisable, deadlock- and
collision-free trajectories for fleets of possibly heterogeneous
robots subject to kinodynamic constraints. While this approach
also requires exponential time, it exploits the concept of spatial
envelope, which generalizes the concept of path to account for
spatial uncertainties in tracking. This is a key tool of our line of
research [3], [4], [11], [33], [34], and is also used in this article.

To overcome the computational complexity of [11], [32], the
approach in [35] proposes a decentralized, prioritized, reced-
ing horizon version of the velocity tuning method to manage

2Deciding if the multirobot path finding problem is feasible is NP-hard for
disc-shaped robots in environments admitting polygonal obstacles [8] while it
is PSPACE-hard for rectangular robots in empty environments [25].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MANNUCCI et al.: ON PROVABLY SAFE AND LIVE MULTIROBOT COORDINATION WITH ONLINE GOAL POSTING 3

TABLE I
STATE-OF-THE-ART: A SUMMARY OF SELECTED STRATEGIES

D, decentralized or distributed; C, centralized; O, set of obstacles other than robots; n, number of robots; C, Ci, set of pairwise critical sections (all, involving robot i)—see
Section IV; a: heterogeneous fleets of robots subject to kinodynamic constraints (for which it is possible to decouple motion planning from control); b: limited to temporal
uncertainties in trajectory execution. Note that only [3], [4], [7] and this approach are robust to clock desynchronization.

possibly heterogeneous nonholonomic vehicles at traffic inter-
sections. Priorities are used to define the sequence at which each
robot solves its own optimization problem (passing before all or
after all the other robots which have already decided). Although
this leads to suboptimal solutions, they can be computed in
polynomial time. Decision orders may be revised sequentially
(through agreement), and a model-based heuristic that accounts
for robot dynamics is proposed to enforce feasibility. However,
the article does not consider uncertainties in trajectory execution
(even though the receding horizon character of the approach
may enable this). Also, as other solutions conceived for traffic
management [36], the approach was tested only in simulation
and for simple intersections.

The main issue of trajectory-based coordination methods is
that they rely on synchronized clocks and accurate execution
of trajectories both in space and time to ensure safety and
liveness [12], and hence are unsuitable whenever this assumption
does not hold (e.g., when actual speeds cannot be accurately
predicted). The coordination space [15] has been shown to
be a useful tool to overcome this limitation [12], [13], [15],
[37]. Combined with precedence orders, this tool allows to
design simple control laws to safely schedule the motions of
pairs of robots while dealing with temporal uncertainties in
trajectory execution. Given a set of intersecting paths, there
is a finite set of orders of traversal of their intersections [35]
which avoids conflicts. Each such ordering identifies a specific
homotopic class [38] of conflict-free trajectories. To also enforce
liveness, this information can be encoded in a directed graph
(the priority graph [37]) which allows to avoid deadlocks by
preventing particular cycles [3], [37] corresponding to circular
waits [39]. Thanks to its generality, the coordination space has
been successfully applied to coordinate robot manipulators [15]
and vehicles at traffic intersections [37], and to handle uncer-
tainties in following precomputed conflict-free trajectories for
holonomic disc-shaped robots [12], [13] (without considering
kinodynamic constraints). To ensure both safety and liveness, the
approach of [12] forces each yielding robot to always wait for the
leading one before accessing a collision zone, even if the leading
robot was delayed (thus respecting the previously decided static
priorities, i.e., the delayed trajectories are homotopic with the
original ones). The extension given in [13] allows priorities to
be swapped. However, formal proofs with dynamic priorities are

not given in [13]. Conversely, such proofs are given in this article,
where spatial envelopes are used to deal with uncertainties in the
spatial component of trajectories, and deadlock-free priorities
are determined dynamically ensuring both safe and live progress
of the fleet through intersecting areas.

Table I summarizes the main features of the reactive and
deliberative approaches found in the literature. We partition the
latter category into coupled and decoupled due to the complex-
ity/feature trade-off. The approaches summarized in the table are
those that maximize achievement of the requirements (R1–R6)
outlined in Section I.

III. PROBLEM DEFINITION

Multirobot Fleet. We describe our multirobot system with a
set R = {1, . . . , n} of (possibly heterogeneous) robots sharing
an environment W ⊂ R3 with obstacles O ⊂ W . Each robot
i is identified by a tuple ri = 〈Qi, Ri, fi, gi, si〉,3 where Qi is
the robot’s configuration space; Ri(qi) a geometry describing
the space occupied by the robot when placed in configura-
tion qi ∈ Qi; fi(qi, q̇i) ≤ 0 is a set of kinematic constraints
on the robot’s motion; gi(qi, q̇i, q̈i, uacc

i , udec
i , t) is a model of

the robot’s dynamics, with maximum acceleration/deceleration
u
acc/dec
i ; and si is the robot’s status, containing information

about its current mission. We assume Ri to be independent from
(q̇i, q̈i). Also, letQfree

i = {qi ∈ Qi : Ri(qi) ∩ O = ∅}be the set
of obstacle-free configurations of robot i.

Robot Goals. When idle, a robot i may be assigned to a
noncooperative, asynchronously posted task which involves
moving from its starting configuration qsi ∈ Qfree

i to a goal
configuration qgi ∈ Qfree

i and stay there. This concept is general
and may be easily extended to account for more complex tasks
including noncooperative operations (e.g., pick-and-place) or
interim configurations to be reached.

Paths and Trajectories. Given a pair (qsi , q
g
i) ∈ Qfree

i ×Qfree
i ,

a pathpi : [0, 1]→ Qfree
i (parametrized using the arc lengthσ ∈

[0, 1]) is a sequence of qi ∈ Qfree
i so thatpi(0) = qsi ,pi(1) = qgi ,

satisfying the set of kinematic constraints fi(qi, q̇i) ≤ 0 [see
Fig. 1(a)]. Idle robots are associated with a path of length

3The notation (·)i is used in the following to indicate that the variable (·) is
related to the robot i.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON ROBOTICS

Fig. 1. Main concepts of the approach in [3], [4].

one corresponding to their current configuration. For each pi,
the trajectory planning problem is the problem of synthesizing
an executable temporal profile σi(t) typically considering the
robot’s kinodynamic constraints.

Problem 1 (Coordination Problem): Given W , O, {ri}ni=1,
asynchronously posted {qgi (t)}ni=1, the coordination problem
is the problem of both synthesizing and revising at run-
time a set of spatio-temporal constraints on robot trajectories⋃

i∈R{pi, σi(t)} so that both of the following two properties are
satisfied:

P1) Safety. Robots never collide:

∀(i, j �= i) ∈ R2, ∀t Ri(pi(σi(t))) ∩Rj(pj(σj(t))) = ∅.

P2) Liveness. All robots eventually reach their destination:

∀i ∈ R, ∃t <∞ such that σi(t) = 1.

IV. A HEURISTIC, PRIORITY-BASED COORDINATOR

To solve Problem 1 while accounting for online posted con-
straints (either due to contingencies or new posted goals), our
approach relies on a centralized decoupled priority-based su-
pervisory coordinator [3], [4] whose main body, running at each
discrete time k ∈ N, is listed in Algorithm 1. From now on, we
use discrete time k to indicate any time t ∈ [kTc, (k + 1)Tc),
where Tc is the period of the coordination loop. The approach
uses precedence constraints to regulate access to, and progress
through, pairwise overlapping portions of spatial envelopes,
called critical sections.

Spatial Envelopes. For each path pi, a spatial envelope Ei is
a set of constraints such that

⋃
σ∈[0,1] Ri(pi(σ)) ⊆ Ei [40]. If

the equality holds (which we assume for simplicity from now
on), a spatial envelope is the sweep of the robot’s geometry
along its path [Fig. 1(b)]. Henceforth, given S ⊆ [0, 1], let ESi =⋃

σ∈S Ri(pi(σ)). Also, we say that pi is W -avoiding, where
W ⊂ W , if Ei ∩W = ∅. Note that each path pi is O-avoiding
by definition. Similarly, in configuration space, pi isQ-avoiding
if Q ⊂

⋃
i∈R Qi ⇒ Ei ∩

⋃
qi∈Q Ri(qi) = ∅.

Critical Sections. A critical section C is a tuple
〈�Ci , uC

i , �
C
j , u

C
j 〉of continuous intervals of the arc lengthsσi and

σj such that for every σi ∈ (�Ci , u
C
i), there exists σj ∈ (�Cj , u

C
j)

such thatRi(pi(σi)) ∩Rj(pj(σj)) �= ∅, and vice versa. Specif-
ically, �Ci is the highest value of σi before robot i enters C, and
uC
i is the lowest value of σi after robot i exitsC (analogously for

j)—see Fig. 1(c) for examples. Let Cij be the set of all critical
sections pertaining to the two robots i and j. We say thatC ∈ Cij
is active while σi(t) < uC

i ∧ σj(t) < uC
j , that is, when neither

robot has exited C. Given the set of robot paths P =
⋃

i∈R pi,
let C ⊆

⋃
(i,j>i)∈R2 Cij be the set of all active critical sections.

Henceforth, let P(k) and C(k) be the values of these sets after
all paths have been computed, that is, after executing line 4 of
Algorithm 1.

Precedence Constraints. A precedence constraint 〈mi, u
C
j 〉

is a constraint on the temporal evolution of σi(t) such that
�Ci ≤ mi < uC

i and σj(t) < uC
j ⇒ σi(t) ≤ mi, that is, robot

i cannot navigate beyond pi(mi) along its path until robot j has
exited the critical section C [see Fig. 1(d)]. In other words, a
precedence constraint defines which robot should yield, where,
and until when. Let T (k) be the set of precedence constraints
regulating access to the set of critical sectionC(k). If∀C ∈ C(k),
either 〈mi, u

C
j 〉 ∈ T (k) or 〈mj , u

C
i 〉 ∈ T (k), then T (k) is a

complete ordering of robots through C(k), which ensures that
P1 holds. Given the set of pathsP(k), a complete ordering T (k)
defines, in fact, the selected homotopic class of collision-free
trajectories [41], [42]. In particular, for each C ∈ C(k), the
precedence constraint 〈mi, u

C
j 〉 ∈ T (k) is computed as

mi(k) =

{
max

{
�Ci , rij(k)

}
if σj ≤ uC

j

1 otherwise

rij(k) = sup
σ∈[σi(ti),uC

i]

{
E [σi(ti),σ]
i ∩ E [σj(tj),u

C
j]

j = ∅
}

(1)

where σi(ti) and σj(tj) are the last known positions of robot
i and robot j, received by the coordinator at time ti, tj ∈
[kTc, (k + 1)Tc), respectively. Note that mi is updated at each
control period (line 5 in Algorithm 1), allowing robots to “follow
each other” through critical sections.

Critical Points. Let Ψi = {mi | ∃j : 〈mi, u
C
j 〉 ∈ T (k)} be

the set of all the arc lengths at which robot i may be required
to yield. We define the critical point σ̄i(k) of robot i at discrete
time k as the value of σ corresponding to the last reachable
configuration along pi which adheres to the set of constraints
T (k), i.e.,

σ̄i(k) =

{
arg minmi∈Ψi(t)

mi if Ψi �= ∅
1 otherwise

. (2)

Hence, Problem 1 is equivalent to that of finding an appropriate
P(k), C(k), T (k), and Σ̄(k) =

⋃
i∈R σ̄i(k), and revising these

sets appropriately at each control period.
Heuristic Scheduling. A key feature of our method is that

the selected collision-free homotopic class of trajectories may
change online. In other words, precedence orders may be dy-
namically updated according to any user-defined heuristic-based
ordering function h(t) [3] (let i ≺h(t) j indicate that i yields for
j according to h(t) at a given C ∈ Cij), while guaranteeing that
safety is preserved. This is done in Algorithm 2, which illustrates
the functioning of line 5 of Algorithm 1. The algorithm is used to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MANNUCCI et al.: ON PROVABLY SAFE AND LIVE MULTIROBOT COORDINATION WITH ONLINE GOAL POSTING 5

filter changes of precedence orders that may results in a collision.
For this purpose, we define the lookahead Δstop

i as the interval
of time such that a command to yield sent by the coordinator
at time t will make robot i stop at most at time t+Δstop

i . A
conservative estimate of this value allows to ensure safety in the
presence of bounded uncertainties in the robot’s dynamics [3],
and in the communication network [4]. Then, at discrete time
k ≥ 1, a constraint 〈mi, u

C
j 〉 ∈ T (k− 1) can be replaced with

〈mj , u
C
i 〉 ∈ T (k) (reversed) only if σj(tj +Δstop

j) ≤ �Cj , tj ∈
[kTc, (k + 1)Tc) (i.e., the new yielding robot has not already
entered the critical section and can stop before entering it if
asked to). This feasibility check is implemented via a conserva-
tive forward propagation of the two robots’ dynamics (see the
canStop function of [4] for details).

A. Communication Requirements

We assume a duplex point-to-point communication through a
dedicated wireless network (subject to bounded delays and/or
message loss) between a central unit (coordinator) and each
robot in the fleet. We require each robot to send an update on

4Note that paths may be asynchronously computed by private planners run-
ning in parallel. This speeds up the computation, allows to better explore the
heterogeneity of the fleet and allows planning parameters (such as kinematic
constraints, gains, type of planner used, etc.) to be private to robots.

its status si sampled within its control period Ti (clock-driven
system) every Ti s (robots may have different control periods).
The status message contains the tuple (qi(ti), q̇i(ti), q̈i(ti)), as
well as the last critical point σ̄i received by the robot. Also,
we assume the coordinator receives at least one update from
each agent every Tc seconds, and that Tc ≥ maxi∈RTi. Robots

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON ROBOTICS

are not required to be synchronized on a common clock (so
communication may be asynchronous).

Algorithm 1 is by construction robust to communication
failures such that all the critical points in the last Σ̄(k) before the
failure are either successfully communicated or lost. In order to
preserve safety also in case of asymmetric disturbances (delays,
or some messages are lost and not others), we assume the use of
an unreliable transmission protocol as described in [4], which
ensures safety by relating number of retransmissions to the
properties of the communication channel.

B. Assumptions for Safety.

As in [4], we introduce the following set of assumptions:
A1) Paths do not start or end in active critical sections.
A2) Robots are idle at time k = 0, placed in a safe starting

configuration. Also, robots are not in motion when idle.
A3) Robots always stay within their envelope (that is qi(t) ∈⋃

σ∈[0,1] pi(σ)).
A4) Robots do not back up along their paths.
A5) Each lookahead Δstop

i is a conservative estimate of
the time required by robot i to yield if required
to. This entails that 1) Δstop

i ≥ Tc, as in Algo-
rithm 1, sampling occurs at the beginning (line 1),
while communication occurs at the end (line 7);
2) gi(qi, q̇i, q̈i, u

acc
i , udec

i , t) is a conservative model
of robot i’s dynamic; 3) a conservative model of
the communication network is known, e.g., finite up-
per bounds of transmission delay and the packet loss
probability (τ chmax, η).

Also, as in [12], we assume
A6) Prohibitive disturbances, i.e., uncontrollable events re-

quiring human intervention in order to recover from
them,5 not to happen.

Note that A1 and A6 are standard assumptions in the literature,
since they ensure that a solution of the coordination problem
exists.

C. Formal Properties

Our aim is to formally characterize Algorithms 1 and 2 so that
both P1 (safety) and P2 (liveness) are jointly satisfied.

Ensuring P1. As proved in [4], it can be shown that
Theorem 1 (Sufficient conditions for P1): Under A1–A6,

Algorithm 2 ensures safety holds for any heuristic h and for
any set E =

⋃
i∈R Ei.

Ensuring P2. As reported in the literature and under A6, the
following three factors may prevent robots from reaching their
destinations.

F1) Blocking: A robot should stop its mission for an un-
bounded time because another robot has parked along
its path [6].

F2) Deadlocks: There is a subset of robots such that each
waits for another one to proceed along its path [42].

5For example, an unpredictable obstruction along the path making the current
goal unreachable (there does not exist an executable path leading to it), a failure
of one or more robots, failure of the overall communication network or the
coordinator, or a malicious dynamic obstacle.

Fig. 2. Admissible (left) and not admissible (right) envelopes.

F3) Livelocks: Similar to deadlocks, but where robot config-
urations constantly change, none progressing [18].

However, Algorithms 1 and 2 fail to consider these factors,
and hence liveness is not guaranteed. To overcome this, in the
remainder of this article, we will alter lines 2–5 of Algorithm 1.

In order to ensure that P1 and P2 can be verified formally,
we map these to properties of the spatial and the temporal
component of the problem, i.e., the sets of trajectory envelopes
E(k) =

⋃
j∈R Ej(k) and of precedence constraints T (k).

Definition 1 (Admissibility of E(k)): E(k) is admissible iff
there exists T (k) s.t. both P1 and P2 hold (see Fig. 2).

Note that while E(k) does not change, any temporal evolution
of σi, i ∈ R satisfying T (k) and computed according to (1)
belongs to the same homotopic class, hence it maintains the same
properties. Therefore, starting from E(0), which is admissible,
thanks to A1–A3, we aim to define how to ensure that E(k)
remains admissible for all k.

A possible strategy is to map the approach of [9] (trajectory
planning with online goal posting) into our priority-based frame-
work, that is, whenever a new goal qgi is posted at time k, the
new trajectory is searched for in Qfree

i ×R, considering all the
possible trajectories of other robots defined by T (k) as dynamic
obstacles. If a solution is found, then both Ei and T satisfying
Definition 1 can be obtained as a byproduct. Otherwise, qgi
is delayed or rejected. The approach is complete (if complete
trajectory planners are used) [9] and, under A1–A6, it guarantees
P1 and P2 by construction. However, trajectory planning may
require exponential computation time in the worst case (and
hence may not be suitable for revising priorities dynamically).
Also, the planning phase must account for bounded delays in
trajectory execution in order to guarantee safety. Hence, we
investigate a different strategy.

Note that to preserve admissibility, it is sufficient to check the
validity of the property only when the pair (E , T) is updated.
Specifically,E(k)may change only when goals are assigned (line
2, Algorithm 1), or if we allow paths to be replanned. In both
cases, we should prevent updates which may lead to blocking
(F1). Precedences in T (k) may change due to new critical
sections (new paths), or when precedences are revised (line 5,
Algorithm 1). Assuming E(k− 1) to be admissible and E(k) =
E(k− 1), we can avoid/filter out precedences that may lead to
deadlocks (F2).

We therefore proceed in three steps, progressively defin-
ing the conditions and methods needed to avoid, prevent, or
repair blocking (Section V), deadlocks (Section VI), and live-
locks (Section VII). By avoidance, we mean ensuring bound-
ary conditions that completely avoid the possibility of block-
ing/deadlock/livelock. When such conditions cannot be guar-
anteed, we resort to prevention, that is, algorithms that actively

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MANNUCCI et al.: ON PROVABLY SAFE AND LIVE MULTIROBOT COORDINATION WITH ONLINE GOAL POSTING 7

TABLE II
A GUIDE TO STRATEGIES PROPOSED IN SECTIONS V–VII

prevent blocking/deadlock/livelock from happening. Prevention
strategies may require knowledge of, and affect, the motions of
all robots in the fleet. If these cannot be guaranteed, repair actions
may be warranted. We hence distinguish global prevention from
local prevention, where the former is able to guarantee liveness,
while the latter may require a local repair strategy to re-establish
admissibility. All of the prevention/repair strategies preserve the
key features of the online setting, that is, goals become known
only at run-time, and precedences can be changed online. For the
reader’s convenience, a short summary of the strategies proposed
in Sections V–VII is given in Table II.

V. BLOCKING

The concept of blocking is strictly related to the exclusive
spatio-temporal ownership of destinations [6], [9]. In this sec-
tion, we define a set of sufficient conditions on the set of active
goals G =

⋃
i∈R pi(1) that avoid/prevent robots from blocking

each other. Conversely, necessary conditions cannot be stated
since we consider asynchronously posted goals with instanta-
neous assignment (i.e., with no planning for future allocations).
As summarized in Table II, we enforce blocking avoidance
by using a generalization of the well-formed infrastructure
concept [6] (hence by constraining the locations of goals),
which ensures the multirobot trajectory planning problem is
solvable with any schedule of goals (Section V-A). Also, we
achieve global blocking prevention with any online posted goal
by formulating an admissibility check which precautionarily
prevents committing to possibly blocking goals (Section V-B).
Local prevention and repair will be addressed via replanning, as
discussed in Section VI-D2a.

A. Avoidance

Let Gi ⊆ Qfree
i be the set of all the possible end-points of

robot i, G =
⋃

i∈RGi, and Gj �=i(qgi) = {q
g
j ∈ Gj : Ri(q

g
i) ∩

Rj(q
g
j) = ∅}. The absence of blocking (F1) can be ensured by

design, requiring the environment W and the set G to form a
well-formed infrastructure, which we define6 as follows:

Definition 2 (Well-formed infrastructure): The pair (W,G)
is a well-formed infrastructure if ∀i ∈ R, ∀(qij , qih) ∈ Gi ×Gi

there exists a Gj �=i(qih)-avoiding path from qij to qih that lies
in Qfree

i and adheres to fi(qi, q̇i) ≤ 0.

6We here extend the definition provided in [6] to tackle kinematic constraints
and generic robot footprints.

Fig. 3. (a) Example where Theorem 2 may be too conservative: even if (W,G)
is not well-formed, there exists a feasible T s.t. both the robots may reach their
destination. (b) Example of entrapment: robot j cannot accept the new mission
(dotted arrow) to prevent being blocked by robot i.

Theorem 2 (Admissibility check in well-formed infrastruc-
ture): Assume (W,G) verifies Definition 2 and A2–A6. In
particular, assume that at time 0 each robot i starts from
qsi (0) ∈ Gi. At time t, a new path pi to qgi ∈ Gi can be accepted
while ensuring safety and ¬(F1) if pi is Gj �=i(qgi)-avoiding and
Ri(q

g
i) ∩Rj(q

g
j (t)) = ∅, ∀j �= i.

Proof: If G(0) ⊆ G, then, under A2–A3 and according to
Definition 2, E(0) is admissible. The proof is then given by
induction: ∀t, ∀i ∈ R, pi ∈ P(t) ⇐⇒ pi is Gj �=i-avoiding,
i.e., Ei(t) will never cross any possible end-point of another
robot, preventing the blocking situation. This also implies A1
and hence P1 (see Theorem 1) to be both verified ∀t. �

Note that Theorem 2 ensures that E(t) is admissible for any
temporal schedule G(t) ⊆ G (modulo assignment).

B. Global Prevention

If we admit that goal positions become known at run-time
(R2), then Theorem 2 is too conservative [see Fig. 3(a)]. To
address this limitation, similarly to [9], we formulate Theorems 3
and 4 to provide lighter yet sufficient requirements for preserving
admissibility while relying only on the current set of goals G.
The resulting feasibility check is then plugged into lines 2–4 of
Algorithm 1 as described in the following.

1) Sequential Planning: Let us first introduce a binary
semaphore Θ on the set E to ensure consistency while allowing
paths to be computed asynchronously by several decoupled
motion planners (as allowed in Algorithm 1). Specifically, we
assume that Θ is locked (if possible), when a path pi should be
updated, that is, if robot i is idle and a new goal is posted to it,
or if robot i should replan its path to its current goal to recover
from an undesired situation. WheneverΘ is successfully locked,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON ROBOTICS

a set of paths (pi and all the others paths required to check pi’s
admissibility, as we will see) may be concurrently computed.
Timeouts are used for ensuring termination, and we denote
with Δplan the maximum waiting time for each planning round.
According to the returned values, the coordinator checks if the
newpi can be accepted (according to an opportune admissibility
criteria), and the setsP , C, T are updated accordingly. Note that
Δplan may be lower or greater than Tc; ifΔplan < Tc (assuming
5), more paths may be sequentially updated at each k. Hence, the
conditions for preventing F1 which we discuss in the following
are stated using continuous time.

2) Feasibility Check for New Goals: For simplicity, we start
by assuming paths to be updated only whenever robots are idle;
we will remove this assumption in Section VI-D2.

From now on, let Cend(Eh, Ek) be the set of critical sections
determined by Eh ∩ E{1}k �= ∅, h, k ∈ R, h �= k.

Theorem 3 (Online admissibility check): Assume A2–A6,
E(t0) is admissible, robot i is idle at time t0, and a new path
pi has been successfully computed within time t0 +Δplan. The
new path pi can be accepted while ensuring P1 and ¬(F1) if:

1) Cend(Ei, Ej) ∩ Cend(Ej , Ei) = ∅ for all (i, j �= i) ∈ R2;
2) for each C ∈ Cend(Ej , Ei), it is possible to impose
〈mj , u

C
i 〉 ∈ T while C is active;

3) for each C ∈ Cend(Ei, Ej), it is possible to impose
〈mi, u

C
j 〉 ∈ T while C is active.

Proof: The sketch of proof is given in the following.
P1: By assumption, E(0) is a safe starting configuration;

hence, sequential planning and conditions 2 and 3 ensure robots
never start from an active critical section, which is a sufficient
condition for safety (see [4] for the formal proof).
¬(F1) : Condition 1 ensures the existence of a set T prevent-

ing at least one among each pair of robots from being blocked [as
exemplified in Fig. 3(a)]. The proof is trivial via contradiction.
Conditions 2 and 3 ensure that a feasible ordering can be found
for each pair (i, j) by Algorithm 2. �

3) Goal Scheduling: Theorem 3 provides a way to avoid
blocking by ensuring that new paths do not interfere with cur-
rently posted goals or the envelopes traversed to reach them.
Verifying conditions 2 and 3 is computationally inexpensive, as
it requires planning a path for one robot, and possibly imposing
a fixed ordering for some critical sections. This is significantly
less restrictive than the conditions imposed by Theorem 2, which
makes it impossible, e.g., to assign goals qgi /∈ G. However,
Theorem 3 has another pitfall, namely, it does not ensure that
goals can always be accepted. Specifically, if G(t) ∪G is not a
well-formed infrastructure at each t, then there may exist some
robots which will be forced to reject goals posted to them in order
to prevent being blocked by other robots that are parked inG \G.
An example of this entrapment situation is shown in Fig. 3(b) and
occurring in real fleet in video [43]. While Theorem 2 ensures
that this phenomenon does not happen by definition, this is not
true using Theorem 3. As a consequence, the use of Theorem 3
requires either G ⊆ G with G verifying Definition 2, or some
form of task scheduling if goal poses are allowed to become
known at run time, in order to guarantee admissibility while
ensuring that entrapment does not happen. Several possible

avenues can be pursued to overcome this limitation. For instance,
similarly to [20], enlarged footprints for parking may let the
robots navigate inside other robots’ private zone. However, the
solution of [20] is strongly constrained to a state lattice and is
not suitable considering R3–R4 or heterogeneous fleets.

In the following, we investigate another option which allows
to post arbitrary goals qgi /∈ Gi while preventing entrapment. For
this purpose, let (W,G) be a well-formed infrastructure. Also,
we assume robot i is idle at time t0, and a new path pi (with
envelope Ei) to have been successfully computed for i within
time t0 +Δplan.

Theorem 4 (Revised online admissibility check): Assume A2–
A6, E(t0) is admissible, robot i is idle at time t0, and a new
path pi has been successfully computed within time t0 +Δplan.
Also, let (W,G) be a well-formed infrastructure. The new path
pi can be accepted while ensuring P1, ¬(F1) and preventing
entrapment if

1) it satisfies Theorem 3.
2) if qgi /∈ Gi, there exists qbi /∈ Gi and path pb

i from qgi to
qbi which is G̃j �=i(t0)-avoiding, with G̃ being the current
set of goals and bases updated with {qgi , qbi };

3) there exists a path p′j from qgj (t0) to a reachable qbj (t0) ∈
Gj which is G̃k �=j(t0)-avoiding, qbi satisfying point 2.

Proof: The sketch of proof builds upon Theorem 3, which
ensures that P1 and ¬(F1) hold due to A1. Also, note the
following.

(a) Since paths are updated sequentially, condition 2 ensures
qbi to be reachable at t0 and condition 3 keeps it reachable over
time. Therefore, robots may be trapped only in their bases.

(b) Even if trapped, it is always possible to free the path for
the trapped robot. According to Definition 2, in fact, if robot j
is trapping a robot i, then qgj /∈ Gi, i.e., qgj �= qbj . Furthermore,
conditions 2 and 3 ensure that a path to base for each trapping
robot can be executed. �

Note that the complexity of Theorem 4 is a function of the
subset of Gi checked at each time (at most 1 +R plans for each
check, whenever |Gi| = 1 for all i ∈ R and all the previously
computed pb

j (t0) interfering with the new pi ∪ pb
i), and is

valuable in the design phase as a possible trade-off between
computational overhead and performance (it may be useful at
each time to choose the closest qbi from the current goal, so
that a mission to the base is scheduled to let another robot
reach a location, then “useless” covered distance is minimized).
An extension of the base station concept to private base zone
(i.e., bounded regions of the space verifying the requirement of
base station) is not mandatory but may be useful to relax the
assumption of accurate positioning in qbi .

In summary, Theorem 3 relaxes the overly conservative con-
straint required by Definition 2, but requires goal scheduling
(to avoid entrapment), as well as appropriately deciding prece-
dences (to enforce conditions 2 and 3). Conversely, Theorem 4
allows to avoid entrapment without resorting to goal scheduling,
rather via planning. Note that the choice of deploying a solution
based on goal scheduling (Theorem 3) vs. one based on path
planning (Theorem 4) depends on the computational overhead
of scheduling vs. planning in the particular application at hand.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MANNUCCI et al.: ON PROVABLY SAFE AND LIVE MULTIROBOT COORDINATION WITH ONLINE GOAL POSTING 9

Note also that enforcing Theorem 4 requires computing at least
1 + |R| plans for each posted goal. Furthermore, it is also worth
considering that one could leverage decoupled prioritized path
planning in order to avoid search in the joint configuration space
of multiple robots [26] or in the spatio-temporal space [9].

VI. DEADLOCKS

In this section, we address F2, characterizing deadlocks and
nonlive states (i.e., states which may lead to deadlocks [44])
and relating them to the set T (Section VI-A). As summarized
in Table II, we first analyze the conditions under which the
heuristic function h avoids deadlocks (Section VI-B). Aiming at
increasing flexibility, we formalize a global prevention strategy
based on reversing precedence orders to prevent nonlive sets in
T (k) (Section VI-C). We formally prove the strategy is complete
(Theorem 8) but has exponential complexity in the worst case
(see Footnote 8 and its empirical validation in Section VIII-C).
Finally, we propose two local prevention/repair methods based
on partial reordering (Section VI-D1) and replanning (Sec-
tion VI-D2). Their practical effectiveness will be investigated in
Section VIII-D, both when the two local strategies are combined,
and when they are used on their own.

A. Definitions

Let Tρ(t) =
⋃

i∈R{ρ− argminmi≥σi(ti){〈mi, u
C
j 〉 ∈

T (t)}} be the subset of T (t) containing the ρ closest
yielding constraints for each robot (recall that σi(ti) is the
last known position for robot i at time k). The parameter ρ
defines a “lookahead on precedence constraints” and will be
used for deadlock prevention. Specifically, T∞(k) = T (k),
while T1(k) ⊆ T (k) contains all the precedence constraints
corresponding to the current critical points in Σ̄(k). As in [37],
given a set Tρ, we define a dependency graph Dρ as follows.

Definition 3 (ρ-Graph): The graph Dρ induced by Tρ is a
simple digraph (Vρ, Eρ) where

Vρ = {i | pi ∈ P}

Eρ = {eij , (i, j) ∈ Vρ × Vρ | ∃C ∈ Cij : 〈mi, u
C
j 〉 ∈ Tρ}.

Each edge eij ∈ Eρ is also associated to a weight wij ∈ N
which encodes the number of precedence constraints C ∈ Cij
such that 〈mi, u

C
j 〉 ∈ Tρ. In doing so, we can exploit graph tools

to detect/prevent deadlocks by searching for cycles in Dρ which
verify a particular spatial condition.

Let {i1, i2, . . . , im−1} ⊆ R be a subset of robot indices, ii �=
ij for each (ii, ij) in the subset. Each cycle w ⊆ Dρ, with vertex
indices Vρ(w) = {i1, . . . , im−1, i1}, corresponds to at least one
set of precedence constraints of Tρ

〈mi1 , u
C
i2
〉, C ∈ Ci1i2

〈mi2 , u
C ′

i3
〉, C ′ ∈ Ci2i3

...

〈mim−1 , u
C ′′

i1
〉, C ′′ ∈ Ci1im−1 . (3)

We will use the notation Φ(w) to refer to a generic set of Tρ
induced by the cycle w ∈ Dρ andR(w) ⊆ R to refer to the set
of robots involved in w, i.e.,R(w) = Vρ(w).

Definition 4 (Nonlive sets): A set of precedence constraints
Φ(w) ⊆ Tρ, corresponding to a cyclew ∈ Dρ such thatR(w) =
{i1, . . . , im−1} is nonlive iff uC ′

ij
> mij for all the dependencies

in Φ(w), ij ∈ R(w).
Conversely, we say that Φ(w) is live if there exists at least a

pair of precedence constraints 〈mij , u
C ′
ih
〉, 〈mih , u

C ′′
ik
〉 such that

uC ′
ih

< mih (i.e., the robot ih can reach uC ′
ih

, allowing robot ij
to proceed along its path). Also, we will say that Tρ(t) is live
(nonlive) at time t iff it does not contain (it contains) nonlive
sets. Note that nonlive sets directly map to nonlive states [44] in
the set T .

Furthermore, according to Definition 3, D1 = (V1, E1) ⊆
D∞ is a dependency graph verifying the properties7

V1 ∈ D1 ⇐⇒ V∞ ∈ D∞

E1 ⊆ E∞, |E1| ≤ n, |E∞| ≤ n(n− 1).

If D1 contains a cycle w, then w ∈ D∞ (not necessarily vice
versa). Due to the definition of critical point, for all i ∈ V1,
outdegree(i) = 1, so for each cycle w ∈ D1, the related set
of precedence constraints Φ(w) ⊆ T1 is unique. Also, for each
nonlive set Φ(w) ∈ T1, let Σ̄(w) ⊆ Σ̄ be the corresponding set
of critical points.

Definition 5 (Deadlocks): A deadlock happens whenever D1

contains a cyclew,Φ(w) ⊆ T1 is a nonlive set, andσij (t) = mij

for all the ij ∈ R(w), with each mij defined according to (3)
and Definition 4.

In particular, it can be noticed that [3], [37]
Theorem 5 (Sufficient condition for the absence of deadlocks):

Under A1, the absence of nonlive sets in the set T∞(k) at each
time k implies that deadlocks never happen, i.e., ¬(F2).

However, the previous theorem no longer holds when short-
ening the horizon ρ. Let us prove this claim assuming ρ =
1. Even if T1(k) does not contain nonlive sets at current
k, there may exist some nonlive sets Φ(w) ∈ T∞ \ T1 such
that ∀〈mij , u

C
ik
〉 ∈ Φ(w), C ∈ Cijik , �Cik < σik(t+Δstop

ik
) <

uC
ik

and σij (t+Δstop
ij

) > mi (i.e., none of the constraints in
Φ(w) can be reversed and the yielding robot cannot be required
to stop at a critical point m′ij < mij). Note that whenever a
nonlive set cannot be safely reversed according to line 5 of Alg. 1,
if E does not change, then a deadlock will necessarily happen.

B. Avoidance

As a consequence of Theorem 5, imposing D∞ acyclic ev-
ery k is a sufficient condition for deadlock avoidance, that
is, there should exist a topological order of the vertices V∞,
or, according to Definition 3, there should exist a total order
of robots through the set of critical sections C(t). Our goal
is to map this condition back into properties of the heuristic
function h and of the task scheduler to ensure ¬(F2) by design

7The upper bound n(n− 1) corresponds to the case of having a complete
digraph, i.e., each pair of vertices (i, j) ∈ Vρ × Vρ, i �= j, is joined by a pair
of edges eij ∈ Eρ and eji ∈ Eρ.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON ROBOTICS

while addressing requirements R1–R6. In particular, a heuristic
function h is totally ordering if: 1) for every (i, j) ∈ R2, i �= j,
for all (C,C ′) ∈ C2ij then either i ≺h j or j ≺h i at both C and
C ′; 2) i ≺h j ∧ j ≺h k ⇒ i ≺h k for each k ∈ R \ {i, j}. Also,
we define h as static if it is not time-dependent.

Theorem 6: If goals are posted asynchronously to robots,
Algorithm 2 cannot ensure D∞ to be acyclic, even if h is static
and totally ordering.

Proof: Assume at time t0 ∈ [k0Tc, (k0 + 1)Tc), an idle robot
i is assigned to a new path, and h to be static and totally ordering.
Also assume there exists a robot j such that j ≺h i and a critical
section C ∈ Cij(k0) such that σj(t0 +Δstop

j) > �Cj . According
to Algorithm 2, 〈mi, u

C
j 〉 ∈ T (k0). However, j may not be able

to exit C if ∃C ′ ∈ Cjk(k0), such that uC
j > �C

′
j , j ≺h k ≺h i,

and σk(t0 +Δstop
k) ≤ �C

′
k . �

Consequently, deadlocks may happen if goals are posted
asynchronously. However, nonlive sets never happen if, when
T (t) is updated, there is no conflict between≺h(t) (withh totally
ordering) and the ordering decided by Algorithm 2. In particular,

Theorem 7 (Sufficient heuristic and scheduling properties for
deadlock avoidance): Under A1, assuming each Ei(t) to be
updated only when robot i is idle, then h totally ordering ensures
that deadlocks never happen if:

1) all the paths are posted synchronously to robots and
P(t) = P(t0) for t ∈ [t0, t1] implies i ≺h(t) j static in
t ∈ [t0, t1] for each pair (i, j) ∈ R2, j > i;

2) whenever a new Ei(t) is accepted (asynchronous goal
posting), i ≺h(t) j for all j ∈ R \ {i}. We refer to this
heuristic function as First Come First Served (FCFS).

Proof: Conditions 1 and 2 can be proved considering that
every time the set E is updated with a new Ei, robot i is not in
motion. Hence, A1 ensures that i ≺h(t) j is both feasible and
safe according to Algorithm 2. As a consequence, D∞(t) will
be acyclic at each t. �

C. Global Prevention

If, on the one hand, Theorem 7 avoids deadlocks by design, on
the other, forcing D∞ to be acyclic may be excessively binding
according to Definition 4. Also, forcing h to be static may lead
to low flexibility, low capability of handling contingencies, and
useless blocking time (e.g., the distance from critical sections
does not affect precedence orders). To overcome this limitation,
in this section, we exploit Theorem 5 in a less conservative way:
to allow heuristics to be dynamic while accounting both for P1
and P2, we alter line 5 of Algorithm 1 to detect and recover from
nonlive sets in the current T before they end up in a deadlock
by reversing precedence orders (if dynamically feasible) to
break the cycle. Since ρ =∞, this ensures that deadlocks never
happen—however, complexity may be exponential.

The strategy can be implemented in two ways: (a) revise all
the constraints in T and then check for nonlive sets, or (b) check
for nonlive sets while revising each precedence constraint. Func-
tionally, the aforementioned strategies are equivalent; however,
in the worst case, (a) may require an exhaustive search over all
reversible orderings, which clearly has exponential complexity.

Hence, we propose an approach in line with (b) based on revis-
ing then filtering constraints.The proposed global strategy for
deadlock prevention makes use of an incremental computation
of cycles in D∞ (see the next paragraph) to significantly reduce
the computational overhead of filtering.

1) Incremental Computation of Cycles: The detection of
nonlive sets in T requires the computation of all the cycles
in D∞, resulting in time complexity O(2n logn) in the worst
case.8 However, since the number of updated edges between
consecutive checks of D∞ is usually smaller than |T |, we
leverage incremental computation to reduce the average time
required to perform this step. For this purpose, we require the
system to maintain an up-to-date list L(eij) for each eij ∈ E∞.
At each time t, the list L(eij) contains the current cycles in
D∞(t) involving the edge eij . Note that the higher the density
of the graph, the higher the number of cycles involving each eij
and hence the size of L (which can be exponential in the worst
case). In Section VIII-C, we analyze empirically the practical
feasibility of the proposed approach in terms of scalability with
the number of robots.

2) Global Reordering Algorithm: Let us first prove the con-
ditions under which checking for nonlive sets and reordering
iteratively ensure T (t) to be live at each t.

Theorem 8: Assume A2, T (0) = ∅, and paths to be planned
sequentially only when robots are idle (no replanning) and any
of Theorem 2, Theorem 3, and Theorem 4 holds, i.e., ¬(F1). At
each t, the following prepositions are satisfied.

a) If E(k) = E(k− 1) and T (k− 1) is live, then holding
precedence orders for all C ∈ C(k) ensures T (k) to be
live.

b) For each Ei that is updated (let [t0, t1] be the related plan-
ning interval, t0 ∈ [k0Tc, (k0 + 1)Tc), t1 ∈ [k1Tc, (k1 +
1)Tc)), there exists an ordering such that if T (t0) is live
then T (t1) is live.

c) If T (k− 1) is live, then sequential checks and dynamic
heuristics can ensure T (k) to be live.

Proof: (a) If E does not change, then C(k) ⊆ C(k− 1). Also,
if no order is reversed, then T (k) ⊆ T (k− 1). Hence, T (k− 1)
and T (k) belong to the same homotopic class of trajectories
through the set C(k), so they have the same behavior with respect
to P1 and P2.

(b) If T (t0) is live, then holding the previously decided prece-
dence orders and imposing that robot i yields for all the other
robots ensures two properties. First, it preserves the liveness of
the set. If paths are updated sequentially, then E(k1)− E(k0) =
{Ei}. Also, according to point a, T (t0) live implies that if there
exists a nonlive setΦ(w) ∈ T (t1), then it belongs to new critical
sections involving robot i, i.e., i ∈ R(w). However, Theorems 3
and 4 ensure that the starting pose of robot i at time t1 is outside
every C ∈ C(k1). Consequently, at the start, no robot is yielding

8One of the best algorithms for finding all cycles in a directed graph, John-
son’s Algorithm [45], has time complexity O((|V |+ |E|)(c+ 1)), where c is
the number of cycles in the graph. Since a complete graph with n vertices

has
∑n−1

i=1

(
n

n−i+1

)
(n− i)! cycles, the resulting time complexity is equal

to O(n2[1 +
∑n−1

i=1

(
n

n−i+1

)
(n− i)!]) ≈ O(2n logn) by way of Stirling’s

approximation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MANNUCCI et al.: ON PROVABLY SAFE AND LIVE MULTIROBOT COORDINATION WITH ONLINE GOAL POSTING 11

for i, so i yields for j at every C ∈ C(k1) ensures that T (t1)
is live. Second, it is in agreement with condition 3 of Theorem
3 (and hence with condition 1 of Theorem 4). Consequently, if
T (0) is live, then T (k) is live.

Note: Theorem 5 is simply a particular instance of this Theo-
rem, where all the precedence constraints are updated according
to the FCFS heuristic.

(c) Let (T 0, T 1, . . . , T |Crev |−1) be a sequence containing all
possible sets of precedence constraints on the same set C, and
assume that each set in the sequence differs from the previous
one by at most one precedence constraint. At each time k, we
assume T 0 to be updated keeping the precedence order decided
at time k− 1 for all C ∈ C(k− 1) ∩ C(k) and according to the
FCFS heuristic for new critical sections; also, we will have
T |Crev |−1 = T (k). Then, for each reversible constraint 〈mi, u

C
j 〉,

1) get the order given by the heuristic function while enforc-
ing conditions 2 and 3 of Theorem 3 (or condition 1 of
Theorem 4);

2) if j ≺h i is returned, then compute the reversed constraint
〈mj , u

C
i 〉 and check if T ′ ← (T l−1 \ {〈mi, u

C
j 〉}) ∪

{〈mj , u
C
i 〉} contains nonlive cycles. If not, T l ← T tmp.

Otherwise, T l ← T l−1, l ∈ [1, |Crev| − 1].
Therefore, T (k) is live by construction. �
Theorem 8 allows to design Algorithm 3 so that it ensures that
T (t) is live for all t. At each coordination cycle k

1) Preloading. Theorems 8.a and 8.b are used to preload a
complete set T (k) which is known to be live (lines 3–19).
Specifically, first, obsolete critical sections are filtered
out in lines 4–7. Then, all the precedence constraints
belonging to active critical sections are updated by holding
the previous decided order according to Theorem 8.a (lines
14–16), while new critical sections are updated using the
FCFS heuristic, as stated in Theorem 8.b (lines 9–12).
Also, reversible constraints are tracked (lines 17–18).

2) Revising. The preloaded T is then refined according to
heuristic decisions while enforcing condition 2 and 3 of
Theorem 3 (or 1 of Theorem 4) as specified by the proof
of Theorem 8.c (lines 22–34).

D∞ and L are then updated according to changes in lines 21
and 27. Note that T (t) is guaranteed to be live whatever the
order in which precedence constraints are revised and whatever
the heuristic function used.

D. Local Prevention and Repair

In this section, we present two local strategies for dead-
lock prevention and recovery, namely, partial reordering and
replanning. These limit the search for nonlive sets to T1, which
allows to drastically reduce the complexity of computing cycles
(from O(2n logn) to O(n2) in the worst case) at the price of
losing completeness. Specifically, line 5 of Algorithm 1 is im-
plemented by sequencing Algorithm 2 (revise T) and Algorithm
4 (check&repair the revised T).

In Section VIII-D, we will analyze the practical effectiveness
of the two methods, both when they are used on their own and
jointly. Note that, in case of unsuccessful deadlock recovery,
A1 (possibly relaxed according to Theorems 3 or 4) ensures

that a solution exists at any t. This entails that, whenever this
undesired situation happens, it is always possible to resort to
complete (possibly coupled) strategies [26].

1) Partial Reordering: Algorithm 5 implements a Breadth
First Search for a live set of precedences T1; note that the
use of a depth bound of one step ensures that the algorithm
terminates after at most n rounds. Specifically, if nonlive sets
are detected in the current T1 (line 2 of Algorithm 4), nonlive
sets are checked one by one (line 6 of Algorithm 4). Reversible
constraints belonging to the selected nonlive set (line 2) are
temporarily reversed (lines 4–7 of Algorithm 5), and the new
order is maintained only when the number of nonlive cycles
in the updated set T1 decreases (lines 8–9 of Algorithm 5).
The resulting time complexity is polynomial in the number

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON ROBOTICS

of robots.9 However, deadlocks may happen (whenever all the
constraints of a nonlive set in T1 cannot be safely reversed).

2) Replanning: The approach aims to prevent/recover from
deadlocks by changing the paths of robots involved in a nonlive
set inT1. Note that Theorems 2–4 ensure a solution of the coordi-
nation problem exists at each time and can always be computed
imposing all the robots to stop and resorting to coupled motion
planners. However, to overcome the exponential complexity of
such approaches, Algorithm 6 investigates a decoupled approach
to repair deadlocks, at the price of incompleteness.

To increase the probability of satisfying P2, similarly to [46],
multiple solutions may be evaluated by the coordinator at each
replan using a global cost function. As we will see in Section VII,
this may also reduce the probability of livelocks to happen. All
algorithms henceforth are designed to support this functionality,
but are tested assuming that only one path per robot is computed
at a time (we will address a possible extension in future work).

The rest of the section is organized as follows. First, in
Section VI-D2a, we formally state the condition under which
Algorithm 1, with lines 2–4 specified according to Section V,
safely supports replanning. Then, in Section VI-D2b, we inves-
tigate the efficacy of replanning in recovering from deadlocks.
As in [4], both the analyses are given while assuming τ chmax ≥ 0
but η = 0, that is, messages can be delayed but not lost (i.e.,
η = 0).

a) Integrating replanning in Algorithm 1. From now on, we
refer to static replanning as the condition in which a robot i
is required to yield at its critical point before replanning can
start. Conversely, dynamic replanning is the condition by which
replanning can occur while robots are in motion.

1) Safety: Let i ∈ R be a robot which is computing a new
path in the planning interval [t0, t1], t0 ∈ [k0Tc, (k0 + 1)Tc],
t1 ∈ [k1Tc, (k1 + 1)Tc], t1 ≤ t0 +Δplan. Assume that a new
path is successfully returned, and let pold

i ∈ P(t0) and pi ∈
P(t1) be the paths of robot i before and after replanning. Also,
let q̄i(k) = pold

i (σ̄i(k)).

9D1 contains at most n vertices and n edges, so the number of cycles is
upper bounded by �n/2�. Hence, in the worst case, all the cycles in D1 can be
computed with Johnson’s algorithm with a time complexity of O(n2).

Theorem 9 (Sufficient conditions for safe re-planning): Let
E(t0) be admissible and A2–A6 hold. Then, at time t1, the new
Ei(t1) preserves P1 if:

1) qi ∈
⋃σ̄i(k0)

σ=0 pold
i (σ)⇒ qi ∈ (pold

i ∩ pi), i.e., the new
path should overlap the previous one till the configuration
corresponding to the last critical point.

2) σ̄i(k) ≤ σ̄i(k0) for k ∈ N, k0 ≤ k < k1.
3) For each new active critical section C ∈ C(t1) such that

robot i cannot stop before entering it, the previous decided
order should be maintained.

Proof: 1) The condition preserves continuity. 2) If there ex-
ists k ∈ N, k0 ≤ k < k1, such that σ̄i(k) > σ̄i(k0), then the
robot may have already reached a configuration pold

i (σi(t)) /∈⋃
qi∈[pi(0),pi(1)]

pi(qi), and the executed path may not be
collision-free. The condition prevents this undesired situation. 3)
If the condition is not verified, then a collision may happen. Let
Cold and C(t1) be the sets of active critical sections before and
after the new path has been accepted, respectively. Then, i may
be safely required to yield (according to Algorithm 2) for all the
active critical sections C ∈ C(t1) such that q̄i(k1 − 1) precedes
pi(�

C
i) along pi. If the condition is not satisfied, then there is

only one pair of critical sections (C,C ′), C ∈ C(t1), C ′ ∈ Cold,
such that pold

i (�C
′

i) = pi(�
C
i) ∧ (�C

′
j = �Cj ∨ uC ′

j = uC
j). �

Corollary 1: If T (t1) is properly updated according to The-
orem 9, then it is not necessary for σ̄j(k) to be constant for all
k ∈ N, k0 ≤ k < k1, j �= i in order for P1 to hold.

Proof: Since pj may change only after t1 (sequential plan-
ning), then Rj(pj(σ)) ∩ Ei(k1) �= ∅ ⇒ ∃C ∈ Cij(k1) such that
�Cj < σ < uC

j for all σ ∈ [0, 1]. �
2) Liveness: Theorems 3 and 4 are extended to support any

replanning by requiring also Theorem 9 to be satisfied. Note that,
ifT (t1) is properly updated according to point (ii) of Theorem 9,
then any robot j such thatRj(q

g
i) ∩ E

[0,σ̄i(t1)]
i �= ∅will continue

to be required to yield for robot i, preserving ¬(F1).
Since replanning affects the set E without modifying the set
G, it does not explicitly require Θ to be locked. Condition
(1), in fact, will preserve admissibility whether Θ is locked
or not by rejecting paths (when returned) which may lead to
blocking according to the current set G. Specifically, if Θ is
locked, then Theorem 9 and conditions (1–2) can be encoded
directly into the planning phase (since G(t0) = G(t1), so the
G(t0)-avoiding property can be added as a constraint for the
planner). Consequently, it is ensured that whenever a path is
successfully computed, it will be accepted.

b) Replanning to Handle Deadlocks. Relying on results of
Section VI-D2a, Algorithms 4 (lines 10–23), 6, and 7 realize
a decoupled replanning approach to safely prevent/repair dead-
locks. Whenever a nonliveΦ(w) is detected (Algorithm 4 at lines
12–23), if all the robots involved in the deadlock are not already
involved in replanning (Algorithm 4 at lines 14–17), a replanning
thread is started (Algorithm 4 at lines 18–23). The coordinator
checks for the existence of an alternative path from the last
communicated critical point before replanning to the current
goal for each i ∈ R(w) are started (Algorithm 6 at line 3). The
new path is computed considering the current waiting poses of
robots which may be forced to wait if the deadlock will happen
(i.e., in the weakly connected component Sw of the cycle w) and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MANNUCCI et al.: ON PROVABLY SAFE AND LIVE MULTIROBOT COORDINATION WITH ONLINE GOAL POSTING 13

the current set of robot goals (to prevent blocking) as obstacles
(Algorithm 7 at lines 4–7). When at least one alternative path
is successfully computed (Algorithm 6 at lines 15–18), the sets
(E ,P, C, T) are updated with the best path and according to the
result of the admissibility check (Algorithm 6 at lines 8–11).

Remark 1: To address conditions 1 and 2 of Theorem 9,
we introduce the set Ω =

⋃
i∈R〈Ωi,mi〉, where Ωi is a binary

semaphore and mi ∈ [0, 1] is the last critical point σ̄i sent to
robot i before locking Ωi. Lines 19–21 of Algorithm 4 are used
for this purpose. While a semaphore Ωi is locked, to ensure
condition 2 holds, a fictitious precedence constraint 〈mi, ∅〉
(namely, a stopping point) is added to the set T at each k,
with mi being the corresponding critical point stored in Ω. This

Fig. 4. Liveness of re-planning: (a) static vs. (b) dynamic.

stopping point is then removed only when the replan terminates
(Algorithm 6 at line 13). This addresses condition 2. Combined
with line 8 of Algorithm 7, it also addresses condition 1. Finally,
condition 3 of Theorem 9 is handled in line 10 of Algorithm 6.

In the following, we analyze different design choices for
Algorithms 4 and 6.

1) Parallel vs. sequential replan: If at the same k there are
two nonlive sets in Φ(v), Φ(u) ∈ T1(k), u �= v, they affect the
motion of completely different sets of robots. More formally,
Theorem 10 is proposed.

Theorem 10: Consider cycles w, u ∈ D1(k), w �= u. Since
R(w) ∩R(u) = ∅, then Sw ∩ Su = ∅.

Proof: For all i ∈ V1, outdegree(i) = 1, i.e., T1 contains
just the closest precedence constraint for each robot, hence the
condition holds. �

Hence, it is possible to parallelize replanning for each nonlive
set in T1(k0). However, each replanning will potentially couple
two sets Sw and Su, and some replanning may not be effective.

2) Static vs. dynamic replanning:
If pi is successfully replanned, then by construction for all

j ∈ R(Sw) E [σ̄i(k0),1]
i ∩Rj(σ̄j(k0)) = ∅, that is, all the robots

j ∈ R(Sw) yielding for i according to the previous T , can reach
a location that is no longer in a critical section shared with i.
As a consequence, σ̄j(k1) ≥ σ̄j(k1 − 1)at time k1, their critical
point is updated, i.e., σ̄j(k1) ≥ σ̄j(k1 − 1). If σi(k0) = σ̄i(k0)
for all i ∈ R(w) (static replanning), then at time k1, i is not
inside any critical sections shared a j ∈ R(w), so its critical
point is updated. However, due to the change of path (that may
lead to discontinuities in σ), it may be that σ̄i(k1) ≤ σ̄i(k0).

In case of dynamic replanning, at time k1, robot i may be
already inside a critical section shared with j ∈ R(Sw), so the
critical point related to q̄i(k1 − 1) may be recommunicated.
Note that dynamic replanning allows deadlocks to be antici-
pated, so it may reduce the probability of a robot being locally
trapped.

Summarizing, Algorithm 6 does not ensure that deadlocks
will never happen (as we will see, the same holds for livelocks),
hence P2 may not hold in the local setting [see Fig. 4(b) as a
proof].

VII. LIVELOCKS

We now characterize livelocks (F3), defining the conditions
under which it is possible to avoid (Section VII-A) or prevent
(Section VII-B) them (see the last column of Table II).

Definition 6 (Livelock): A livelock happens whenever there
exists at least one robot i for which the executed trajectory qi(t)
contains a sequence of states (usually circular) such that the state
changes during time, but robot i will never reach its goal.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON ROBOTICS

A. Avoidance

Theorem 11 (Sufficient condition to avoid livelocks): Live-
locks never happen if robots are not allowed to replan, nor to
backtrack along paths (A4).

Proof: Under A4, a path may be assigned to a robot only
if idle. Hence, if qgi �= qi(t), then q̇i(t) = pi(σ̇i(t)). Also, A4
implies that q̇i(t) ≥ 0. Hence, σ̇i(t) ≥ 0, so livelocks cannot
happen by definition. �

B. Global Prevention

Theorem 11 highlights one of the main pitfalls of coordina-
tion strategies based on replanning, namely, they cannot ensure
the absence of livelocks and hence liveness guarantees. Con-
versely, coordination strategies based on temporal refinements
are livelock-free by construction if robots never backtrack along
their paths.

Nevertheless, replanning may be required to deal with con-
tingencies, e.g., to overcome unexpected obstacles on the path.
For this purpose, we can relax Theorem 11 as follows.

Theorem 12 (Sufficient condition for livelock prevention):
Let pold

i ∈ P(t0), t0 ∈ [k0Tc, (k0 + 1)Tc). Assume a new path
pi satisfying Theorems 9 and 3, pold

i (1) = pi(1), is com-
puted at time t1 ∈ [k1Tc, (k1 + 1)Tc), k1 > k0. Also, let q̄i =
pold
i (σ̄i(k1 − 1)). Under 4, a sufficient condition for livelock

prevention is that (pold
i)−1(q̄i) ≤ p−1i (q̄i).

Proof: Condition (1) of Theorem 9 requires pold
i (qi) =

pi(qi) for each qi ∈
⋃σ̄i(k0)

σi=0 pold
i (σi). Hence, the condition

ensures that σi does not decrease when the path is updated. �
Note that Theorem 12 may also overconstrain the set of solv-

able problems, e.g., some static obstacles may be successfully
avoided with a longer but livelock-free path. Hence, under A6,
to minimize the probability of livelocks occurring, it may be
reasonable to exploit replanning strategies only to deal with
static obstacles, but not for the purpose of coordination.

VIII. EXPERIMENTAL VALIDATION

We evaluate the proposed strategies from four points of view.
1) Performance achievable with different heuristics are in-

vestigated in a synthetic (Test 1) and in a realistic scenario
(Test 4.2).

2) An empirical validation of Theorems 6 and 7 is shown in
a simulated warehouse-like scenario (Test 2).

3) The performance of our function for computing cycles
in D∞ (global reordering) and D1 (partial reordering) is
evaluated when increasing the graph density (Test 3).

4) The trade-off between complexity vs. completeness of
global and local deadlock prevention/repair strategies (Al-
gorithms 3 and 4, respectively) is investigated in a bench-
mark scenario with online path planning (Tests 4.1) and
in a realistic application with a manually defined roadmap
(Test 4.2).

Selected moments during all experiments are shown in
video [43].

Setup. All tests use a Java implementation of the coordination
algorithm (Algorithm 1), available as open source [47]. We

use the simulator back-end presented in [3], [4]. Robot con-
trollers, as well as the conservative models gi used to check
the kinematic feasibility of precedence constraints, assume a
trapezoidal velocity profile with maximum velocity vmax

i and
constant acceleration/deceleration uacc

i = udec
i = umax

i . Goals
are dispatched asynchronously to robots, so that when a robot
has reached its current goal, the next one is dispatched. Collision
checking is performed in all experiments and results validate
the theoretical claim in Theorem 1. To demonstrate the validity
of the approach with unreliable communication, uniformly dis-
tributed random variables are used for injecting communication
delays τ chi ∈ [τ chmin, τ

ch
max]. However, we do not simulate message

loss (η = 0), as this may introduce bias in the results [4].

A. Test 1: Performance With Different Heuristics

In this test, we investigate how different heuristics (listed in
Table III) may affect time to mission completion, and liveness.
Toward this aim, 10 robots are required to perform 10 forward
and 10 backward missions along paths with the same shape.
Paths have been computed offline [see Fig. 5(a)] and simulations
were run three times, randomizing the assignment of starts and
goals among robots, while maintaining the same order of goal
dispatching between the robots. Also, a constant channel delay
is used. The choice of constant delay, similar paths, and uniform
timing of goal posting for each robot is aimed at removing all
factors from the simulation that could affect the results (other
than the choice of heuristic). Blocking is avoided a priori since
the infrastructure is well-formed. Also, deadlocks are prevented
via local reordering (Algorithms 4 and 5) which, in this scenario,
ensures they never happen since critical sections do not overlap.
Details about the setup and results are reported in Table IV.

Results are summarized as follows: heuristics based on strict
hierarchies (IDs and FCFS) may lead to “useless” waiting for
robots with lower priorities, as highlighted by the maximum
peak values in Table IV. Conversely, the distance heuristic keeps
this peak low, providing more fair access to critical sections (as
shown by the lower standard deviation).

B. Test 2: Experimental Validation of Theorems 6 and 7

In this simulation, we give a further validation of Theorems
6 and 7. Two static totally ordering heuristics (IDs and FCFS)
were tested while allowing goals to be asynchronously posted.
Experiments were run in the simulated warehouse-like envi-
ronment shown in Fig. 5(b) and satisfying Definition 2. Paths
are computed online using the sampling-based motion planner
RRTConnect [48]—so that the geometry of critical sections is
unpredictable—and each robot is required to perform 10 forward
and 10 backward missions between two preassigned locations.
The scenario was specifically designed to increase the possibility
of deadlocks, since both the map and the path planning induce
complex, overlapping critical sections.

To confirm the generality of Theorem 6 with respect to
transmission delays, both the cases of reliable communication
(ηi = 0 and τ chi = 0 for every i) and of constant channel delay
(ηi = 0 and τ chi = 500 ms for every i) are considered with 5
runs for each case. As expected, the occurrence of deadlocks in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MANNUCCI et al.: ON PROVABLY SAFE AND LIVE MULTIROBOT COORDINATION WITH ONLINE GOAL POSTING 15

TABLE III
HEURISTICS USED IN THE TESTS

Fig. 5. (a) A snapshot of Test 1 (arrows between robots indicate precedence constraints). (b) Corridor environment used in Test 2. (c) Random environment used
in Test 4.1.

TABLE IV
TEST 1: PERFORMANCE WITH DIFFERENT HEURISTICS

(DEFINED ACCORDING TO TABLE III)

Parameters: Tc = 2 s, Ti = 0.03 s, vmax
i = ±6m/s, umax

i = ±4m/s2, η = 0,
τmax
i = τmin

i = 0.5 s, footprints: 0.5× 0.5 m2.N : spatial period for the sinusoidal
paths. Performance has been evaluated on an Intel Core i7-6700 CPU 3.40 GHz × 8
processor, 15.6 GiB, and refers to the current implementation [47] with line 2 of Alg.1
implemented according to Section VI-D1 (partial reordering).

the 10 runs was equal to 0% (all the simulations ended without
deadlocks) when FCFS was used; conversely, all simulations
ended with deadlocks when using the IDs heuristic (see [43]).

C. Test 3: Complexity of Computing Cycles.

This test is designed to provide an empirical evaluation of the
complexity required to compute cycles both in D∞ (O(2n logn)
in the worst case; see Section VI-C1), and in D1 (O(n2) in
the worst case; see Section VI-D1). The former is evaluated
by measuring the time required by executing lines 21 and 27 in
Algorithm 3 (i.e., global reordering) when incrementally adding
edges to build the graph. We compare two realizations of the
graph-building routine, one which computes cycles incremen-
tally and one which does not. Results are shown in Table V

and highlight the practical limitation of the approach for graphs
with size of the largest connected component greater than 10
(all tests which may lead to |V1| > 10 ran out of memory before
achieving a graph density equal to 1).

Conversely, the measured time to compute cycles in D1 when
considering the worst case (i.e., all the robots paired) with |V1| =
1000was lower than 0.15 s (avg. 0.137 s, max. 0.142 s, std 0.042 s
in three simulations).

D. Test 4: Performance With Different Deadlock
Prevention/Repair Strategies in Benchmark and
Realistic Scenarios

In this test, we investigate the efficacy of the proposed strate-
gies in a benchmark scenario [see Fig. 5(c)] and in a realistic
application (see Fig 6). The comparison considers average time
and rate of mission completion, and computational overhead.
The latter is measured by the two metrics Trev/C and Trev/Tc

with Trev being the time required to perform line 2 in Algorithm
1. The first measures the cost of updating precedence constraints
per critical section, while the second measures the proportion of
Tc spent updating paths and revising precedence constraints.

1) Benchmark Scenario: The setup is similar to the one
described in Section VIII-B. Details and results are listed
in Table VI. In particular, the proposed strategies for
deadlock

1) avoidance, that is, the original algorithm proposed in [4]
with the FCFS heuristic (col. 2);

2) global prevention, that is, Algorithm 3 (col. 3);
3) local prevention/repair, that is, Algorithm 4 either when

Algorithms 5 and 6 are used jointly (col. 4) or on their
own (col. 5–7)

are compared in a test involving 10 robots. The distance heuristic
is used in cases 2 and 3.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON ROBOTICS

TABLE V
COMPLEXITY OF COMPUTING CYCLES IN D∞ WHILE INCREASING THE GRAPH DENSITY

*Achievable before ran out of memory. Performance has been evaluated on an Intel Core i7-5500 U CPU @ 2.40 GHz × 4 processors, 7.7 GiB and refers to the current
implementation [47] of lines 21 and 27 of Algorithm 3.

TABLE VI
TEST 4.1. PERFORMANCE WITH DIFFERENT DEADLOCK PREVENTION/RECOVERY STRATEGIES IN A BENCHMARK ENVIRONMENT

Algorithm 3 and all the different versions of Algorithm 4 were run using the distance heuristic. All tests were repeated three times to increase statistical validity. B: With
respect to the total nonlive sets detected in T1. C: Data are biased by deadlocks which prevent some missions to be completed.

Fig. 6. Test 4: the realistic scenario.

Results are summarized as follows. 1) The FCFS heuristic
ensures the absence of nonlive sets but has the worst perfor-
mance in terms of time to completion. 2) Algorithm 3 ensures
liveness. Also, in this scenario, its mean computational overhead
is comparable with other strategies. However, Trev/Tc > 1 may
prevent 1 from holding (since the lookahead Δstop

i assumes that
Algorithm 1 executes each cycle within Tc). A proper tuning
of the coordination period Tc (while considering the maximum
number of interacting envelopes—see Test 3) may overcome
this issue. 3) Algorithm 4 using jointly partial reordering and
replanning provides the best trade-off between mission time
and computational overhead, and shows the practical ability
to maintain liveness. Conversely, both partial reordering and
replanning may not prevent deadlocks when used on their own.

2) Realistic Scenario: The proposed algorithms are now
compared in a 40-robot scenario elicited via our ongoing col-
laboration with industrial partners.10 The environment is an

10Newcrest Mining (https://www.newcrest.com) and Epiroc (https://www.
epiroc.com/).

https://www.newcrest.com
https://www.epiroc.com/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MANNUCCI et al.: ON PROVABLY SAFE AND LIVE MULTIROBOT COORDINATION WITH ONLINE GOAL POSTING 17

TABLE VII
TEST 4.2, PERFORMANCE WITH DIFFERENT DEADLOCK PREVENTION/RECOVERY STRATEGIES IN A REALISTIC ENVIRONMENT

Notes: Algorithm 4 was run while enabling only partial reorder strategy. No collision was observed.
* Simulation ended without completing all the missions. a: with respect to avg. time without coordination (avg. 55.8 s, std. dev. 103.2 s).
Parameters: Tc = 6s, Ti = 0.03s, vmax

i = ±30m/s, umax
i = ±6m/s2, η = 0, τch

i ∈ [0.01,0.5]s, footprints: 11.4× 3.1 m2.
A maximum of three new missions, with exception of the first Tc, was assigned at each time. Performance has been evaluated on an Intel Core i7-6700 CPU 3.40 GHz
× 8 processor, 15.6 GiB, and refers to the current implementation [47].

underground mine, shown in Fig 6. The application relies on a
roadmap with paths computed via Bézier curves between man-
ually defined waypoints. 40 Load-Haul-Dump vehicles (LHDs)
are required to perform 10 missions, each consisting of scooping
up material at fixed draw points, and transporting the material
through a system of tunnels to a specific dump point. In our
setup, we consider four LHDs for each tunnel, which results in
a maximum of 20 intersecting envelopes. The limited maneu-
vering capabilities of LHDs in the narrow tunnels prevents an
effective use of the replanning strategy to deal with deadlocks.
Therefore, Algorithm 4 was run while enabling only partial
reordering. Results of the simulations are shown in Table VII
and are in accordance with the ones of Tests 1, 2, 3, and 4.1.
Specifically, 1) the theoretical claim in Theorem 5 is confirmed:
the FCFS heuristic ensures the absence of nonlive sets without
requiring algorithms for deadlock prevention/recovery. Also, the
totally ordering heuristic IDs is not able to prevent nonlive sets
(see results related to IDs + Algorithm 4 in the table). 2) The
distance heuristic results in less nonlive sets being detected (and
hence in a higher number of heuristically decided orders), and
in lower times for mission completion. 3) Partial reordering,
while less computationally demanding, forfeits completeness
(13% mission completion with the IDs heuristic). 4) The global
reordering strategy ensures liveness. However, as in Test 4.1,
Trev/Tc > 1 may prevent 1 from holding; either fewer robots,
or a greater Tc may prevent this issue.

IX. ANALYSIS AND DISCUSSION

In this section, we further discuss the hypotheses tested and
how they are validated by the results presented in Section VIII.
We also contextualize the open issues and limitations of the
proposed approaches and new avenues for future work.

Generality with respect to robot platforms, planners, and
controllers. This property is inherited from [3]. Generality with
respect to motion planners is validated by the use of different
planners (manually designed paths in Test 1, an off-the-shelf
implementation of RRT-Connect in Tests 2 and 4.1, and Bézier
splines in Test 4.2). For simplicity, but without loss of generality,

all tests considered homogeneous fleets of robots with car-like
kinodynamics. This simplifies the real (articulated) kinodynam-
ics of LHDs used in Test 4.2. Future work involving one of
our industrial partners (Epiroc) will call for the inclusion of
industrial-grade motion planners for these vehicles.10

Generality with respect to heuristics. We have formally
proven that our approach ensures safety (Theorem 1) and live-
ness (while using Algorithm 3) with any heuristic. However,
Tables IV (Test 1) and VII (Test 4.2) have empirically shown
that different heuristics impact performance. This opens new
research avenues toward integrating data-driven optimization
methods (e.g., [49]) for learning effective heuristics online, with
the aim of optimizing traffic flow or other application-specific
objective functions (e.g., in the scenario of Test 4.2, minimizing
the time to deliver the desired tonnage to the dump points10).

Provable safety with A1–A6. All tests employed a well-formed
infrastructure, hence verifying A1. Also, A2–5.2 and A6 held in
all tests, and injected random delays satisfied A5.3. As claimed
in Theorem 1, no collision was observed. Conversely, Theorem
4, which enforces A1 in an infrastructure that is not well-formed,
has not been validated empirically. Note, however, that the
admissibility check called for in Theorem 4 should be considered
in the context of a goal scheduling strategy, which is beyond the
scope of this article. In future work, we will investigate integrated
task assignment and motion planning strategies that reduce the
rate of goal rejection on account of Theorem 4. The module
will be inspired by the optimal approach in [50] to account for
multirobot interference.

Complexity vs. Completeness of Deadlock Prevention Strate-
gies. Tests 3 and 4.2 validated that, even if complete, the global
reordering strategy is practically exploitable only when the size
of the largest connected component of the precedence graphD∞
is lower than 10. Note that the complexity of computing cycles is
only partially related to the spatial distribution of the set C, since
C ∈ Cij ⇒ eij ∈ D∞. On the one hand, the analysis provides a
practical strategy to design paths/assign missions to lower such
complexity. On the other hand, the use of limited horizon paths
(i.e., reasoning only about the minimal amount of future steps
to prevent nonlive sets iteratively) or kinodynamically informed

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON ROBOTICS

lookaheads on precedence constraints ρ may be exploited in
future work to lower the complexity of the global reordering
algorithm or to improve performance of the local reordering
one. In parallel, partially coupled methods such as [26] may
be investigated to enhance the effectiveness of the proposed
replanning strategies for deadlock prevention/repair.

X. CONCLUSION

We formalized a centralized algorithm for coordinating
generic (possibly heterogeneous) multirobot systems subject to
online asynchronous goal assignment and (possibly dynamic)
precedences. The approach decoupled motion planning from
coordination, which was achieved by regulating access to shared
parts of the workspace using precedence constraints, and re-
vising these online. Precedences account for user-definable
heuristic function(s) as well as kinodynamic constraints on robot
motions, thus ensuring safety, no matter how speeds are chosen
by the robot controllers. While safety was already investigated
in [4], in this article, we focused on liveness. We identified
four factors which may prevent robots from reaching their
destinations: blocking, deadlocks, livelocks, and unpredictable
disturbances. Among these, only the latter cannot be prevented
with an appropriate coordination mechanism.

To overcome the problem of blocking, which may be caused
by improper goal and precedence assignments, 1) we extended
the concept of well-formed infrastructure given in [6] to generic
robots (not necessarily disc-shaped); 2) we have formally proven
that blocking never happens if the infrastructure is well-formed;
3) since this assumption imposes a tight constraint on the set of
goals that can be posted, we proposed and formally validated
two theorems to prevent blocking also when the assumption
is relaxed. Deadlocks may be caused by inadequate priority
assignments, which impose circular waits among robots. Hence,
extending the characterization of deadlocks given in [3], we
formally proved that 4) if goals are posted asynchronously, then
static hierarchical priorities are not able to ensure liveness; 5)
the heuristic which sorts robot priorities according to mission
assignment time (First Come, First Served) ensures that dead-
locks never happen, both with synchronous and asynchronous
goal posting. We then generalized this result to any user-defined
heuristic function, by proposing 6) a global and two local al-
gorithms for deadlock prevention and recovery. We formally
proved that the global algorithm ensures deadlock-free motion
at the cost of exponential computation in the worst case and
therefore was exploitable only when safety constraints may
couple at most 10-robot motions. Receding horizon techniques
may be explored in the future to further improve the efficiency
of the global approach in large/more coupled fleets. The two
local algorithms for deadlock prevention and recovery were
based on reordering precedences and replanning paths, respec-
tively. These were aimed at further reducing computational
complexity, at the price of losing completeness. The algorithms
were tested and compared with the global one, both in isola-
tion and in combination. Tests showed the practical ability of
these algorithms to prevent and recover from deadlocks in the
tested scenarios. Finally, we characterized livelocks, formally

proving that if robots are not allowed to drive back along
their paths and replanning is not used (e.g., as with Algorithm
3), then livelocks will never happen. Further investigations
will be devoted to including data-driven methods for learning
heuristics to optimize performance and traffic management,
improving the efficacy of replanning strategies, exploiting global
cost functions to compute/select new paths, or partially coupled
methods [26].

REFERENCES

[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of
cooperative, autonomous vehicles in warehouses,” AI Mag., vol. 29, no. 1,
pp. 9–9, 2008.

[2] Semantic Robots, 2019. [Online]. Available: http://semanticrobots.oru.se
[3] F. Pecora, H. Andreasson, M. Mansouri, and V. Petkov, “A loosely-coupled

approach for multi-robot coordination, motion planning and control,” in
Proc. 28th Int. Conf. Autom. Plan. Sched., 2018, pp. 485–493.

[4] A. Mannucci, L. Pallottino, and F. Pecora, “Provably safe multi-robot
coordination with unreliable communication,” IEEE Robot. Automat. Lett.,
vol. 4, no. 4, pp. 3232–3239, Oct. 2019.

[5] T. Lozano-Perez, “Spatial planning: A configuration space approach,” in
Auton. robot vehicles. Berlin, Germany: Springer, 1990, pp. 259–271.

[6] M. Čáp, P. Novák, A. Kleiner, and M. Selecký, “Prioritized planning
algorithms for trajectory coordination of multiple mobile robots,” IEEE
Trans. Autom. Sci. Eng, vol. 12, no. 3, pp. 835–849, Jul. 2015.

[7] D. Bareiss and J. Van denBerg, “Generalized reciprocal collision avoid-
ance,” Int. J. Robot. Res., vol. 34, no. 12, pp. 1501–1514, 2015.

[8] P. Spirakis and C. K Yap, “Strong NP-hardness of moving many discs,”
Inf. Process. Lett., vol. 19, no. 1, pp. 55–59, 1984.

[9] M. Čáp, J. Vokřínek, and A. Kleiner, “Complete decentralized method for
on-line multi-robot trajectory planning in well-formed infrastructures,” in
Proc. 25th Int. Conf. Autom. Plan. Scheduling, 2015, pp. 324–332.

[10] S. Akella and S. Hutchinson, “Coordinating the motions of multiple robots
with specified trajectories,” in Proc. IEEE Int. Conf. Robot. Aut., 2002,
vol. 1, pp. 624–631.

[11] F. Pecora, M. Cirillo, and D. Dimitrov, “On mission-dependent coordina-
tion of multiple vehicles under spatial and temporal constraints,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012, pp. 5262–5269.

[12] M. Čáp, J. Gregoire, and E. Frazzoli, “Provably safe and deadlock-free
execution of multi-robot plans under delaying disturbances,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2016, pp. 5113–5118.

[13] A. Coskun and J. M O’Kane, “Online plan repair in multi-robot co-
ordination with disturbances,” in Proc. Int. Conf. Robot. Autom., 2019,
pp. 3333–3339.

[14] Z. Yan, N. Jouandeau, and Arab Ali Cherif, “A survey and analysis of
multi-robot coordination,” Int. J. Adv. Robotic Syst., vol. 10, no. 12, 2013,
Art. no. 399.

[15] P. A O’Donnell and T. Lozano-Pérez, “Deadlock-free and collision-free
coordination of two robot manipulators,” in Proc. IEEE Int. Conf. Robot.
Automat., 1989, vol. 89, pp. 484–489.

[16] C. Tomlin, I. Mitchell, and R. Ghosh, “Safety verification of conflict
resolution manoeuvres,” IEEE Trans. Intell. Transp. Syst., vol. 2, no. 2,
pp. 110–120, Jun. 2001.

[17] L. Pallottino, E. M Feron, and A. Bicchi, “Conflict resolution problems for
air traffic management systems solved with mixed integer programming,”
IEEE Trans. Intell. Transp. Syst., vol. 3, no. 1, pp. 3–11, Mar. 2002.

[18] L. Pallottino, V. G Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
cooperative policy for conflict resolution in multivehicle systems,” IEEE
Trans. Robot., vol. 23, no. 6, pp. 1170–1183, Dec. 2007.

[19] L. Chen and C. Englund, “Cooperative intersection management: A
survey,” IEEE Trans. Intell. Transp. Syst., vol. 17, no.2, pp. 570–586,
Feb. 2016.

[20] I. Draganjac, D. Miklić, Z. Kovačić, G. Vasiljević, and S. Bogdan, “De-
centralized control of multi-AGV systems in autonomous warehousing
applications,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 4, pp. 1433–1447,
Oct. 2016.

[21] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, “Ensemble coordination
approach in multi-AGV systems applied to industrial warehouses,” IEEE
Trans. Autom. Sci. Eng., vol. 12,3, pp. 922–934, Jul. 2015.

http://semanticrobots.oru.se

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MANNUCCI et al.: ON PROVABLY SAFE AND LIVE MULTIROBOT COORDINATION WITH ONLINE GOAL POSTING 19

[22] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33,
Mar. 1997.

[23] J. Van Den, S. J. Berg, M. Guy Lin, and D. Manocha, Reciprocal n-body
collision avoidance. in Robotics Research. Berlin, Germany: Springer,
2011, pp. 3–19.

[24] S. M LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge univer-
sity press, 2006.

[25] J. E Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of
motion planning for multiple independent objects; PSPACE-hardness of
the warehouseman’s problem,” Int. J. Robot. Res., vol. 3, no. 4, pp. 76–88,
1984.

[26] G. Wagner and H. Choset. “M*: A complete multirobot path planning
algorithm with performance bounds,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2011, pp. 3260–3267.

[27] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,” Algo-
rithmica, vol. 2, no. 1–4, 1987, Art. no. 477.

[28] J. Van DenBerg and M.Overmars, “Kinodynamic motion planning on
roadmaps in dynamic environments,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2007, pp. 4253–4258.

[29] J. P Van DenBerg and M. H Overmars, “Prioritized motion planning for
multiple robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2005,
pp. 430–435.

[30] M. Bennewitz, W. Burgard, and S. Thrun, “Finding and optimizing solv-
able priority schemes for decoupled path planning techniques for teams of
mobile robots,” Robot. Autom. Syst., vol. 41, no. 2–3, pp. 89–99, 2002.

[31] K. Kant and S. W Zucker, “Toward efficient trajectory planning: The path-
velocity decomposition,” Int. J. Robot. Res., vol. 5, no. 3, pp. 72–89, 1986.

[32] J. Peng and S. Akella, “Coordinating multiple robots with kinodynamic
constraints along specified paths,” Int. J. Robot. Res., vol. 24, no. 4,
pp. 295–310, 2005.

[33] H. Andreasson et al., “Autonomous transport vehicles: Where we are and
what is missing,” IEEE Robot. Autom. Mag., vol. 22, no. 1, pp. 64–75,
Mar. 2015.

[34] M. Mansouri, B. Lacerda, N. Hawes, and F. Pecora, “Multi-robot planning
under uncertain travel times and safety constraints,” in Proc. 28th Int. Joint
Conf. Artif. Intell., vol. 7, 2019, pp. 478–484.

[35] G. R. de Campos, P. Falcone, R. Hult, H. Wymeersch, and J. Sjöberg,
“Traffic coordination at road intersections: Autonomous decision-making
algorithms using model-based heuristics,” IEEE Intell. Trans. Syst. Mag.,
vol. 9, no. 1, pp. 8–21, Mar.–Jun. 2017.

[36] J. Gregoire, S. Bonnabel, and A. De La Fortelle, “Priority-based inter-
section management with kinodynamic constraints,” in Proc. IEEE Eur.
Control Conf., 2014, pp. 2902–2907.

[37] J. Gregoire, Priority-based coordination of mobile robots. Ph.D. thesis,
2014, arXiv:1410.0879.

[38] R. Ghrist, J. M O’Kane, and S. M LaValle, “Computing pareto optimal co-
ordinations on roadmaps,” Int. J. Robot. Res., vol. 24, no. 11, pp. 997–1010,
2005.

[39] E. G Coffman, M. Elphick, and A. Shoshani, “System deadlocks,” ACM
Comput. Surv., vol. 3, no. 2, pp. 67–78, 1971.

[40] H. Andreasson, J. Saarinen, M. Cirillo, T. Stoyanov, and A. J Lilienthal,
“Fast, continuous state path smoothing to improve navigation accuracy,”
in Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 662–669.

[41] R. Ghrist and S. M Lavalle, “Nonpositive curvature and pareto opti-
mal coordination of robots,” SIAM J. Control Optim., vol. 45, no. 5,
pp. 1697–1713, 2006.

[42] J. Gregoire, S. Bonnabel, and A. de La Fortelle, “Optimal cooperative
motion planning for vehicles at intersections,” IEEE IV 2012 Work-
shop Navigation, Accurate Positioning Mapping Intell. Vehicles, 2013,
arXiv:1310.7729.

[43] A. Mannucci, L. Pallottino, and F. Pecora, Provably safe and live multi-
robot coordination, Youtube, 2020. [Online]. Available: https://youtu.be/
dFwf8gkItYU

[44] M. P. Fanti and M. Zhou, “Deadlock control methods in automated man-
ufacturing systems,” IEEE Trans. Syst., Man, Cybern. A., Syst. Humans,
vol. 34, no. 1, pp. 5–22, Jan. 2004.

[45] D. B Johnson, “Finding all the elementary circuits of a directed graph,”
SIAM J. Comput., vol. 4, no. 1, pp. 77–84, 1975.

[46] T. P. Baker, “Stack-based scheduling of realtime processes,” Real-Time
Syst., vol. 3, no. 1, pp. 67–99, 1991.

[47] F. Pecora, A. Mannucci, and C. S. Swaminathan, “A framework for
multi-robot motion planning, coordination and control,” 2020. [Online].
Available: https://github.com/FedericoPecora/coordination_oru, version
0.6.1.

[48] J. J. Kuffner and S. M. LaValle, “RRT-Connect: An efficient approach to
single-query path planning,” in Proc. ICRA. Millennium Conf., IEEE Int.
Conf. Robot. Autom. Symposia Proc., 2000, vol. 2, pp. 995–1001.

[49] R. Calandra et al., “Bayesian optimization for learning gaits under un-
certainty,” Annals Mathematics Artificial Intell., Springer, vol. 76, no. 1,
pp. 5–23, 2016.

[50] Nam and D. A. Shell, “Assignment algorithms for modeling resource
contention in multirobot task allocation,” IEEE Trans. Autom. Sci. Eng.,
vol. 12, no. 3, pp. 889–900, Jul. 2015.

Anna Mannucci received the bachelor’s degree in
electronic, master’s degree in robotics and automa-
tion, and the Ph.D. degree in robotics and automation
from the University of Pisa, Pisa, Italy, in 2013, 2016,
and 2020.

She is Postdoctoral Researcher with the Multi-
Robot Planning and Control Laboratory, Örebro Uni-
versity, Örebro, Sweden. She is one of the Principal
developers and maintainers of the coordination_oru
library.

Lucia Pallottino received the “Laurea” degree in
mathematics and the Ph.D. degree in robotics and
industrial automation from University of Pisa, in 1998
and 2002.

She is Associate Professor with the Centro di
Ricerca “E. Piaggio” and the Dipartimento di Ingeg-
neria dell’Informazione at the University of Pisa, Pisa,
Italy. She is Deputy Director of Centro di Ricerca “E.
Piaggio,” Pisa, Italy. Her research interests include
robotics, motion planning, and optimal control of
multirobot systems and coordination of multirobot

vehicles.
Dr. Pallottino is Associate Editor of the IEEE Robotics and Automation Letters

(since 2017) and has been Associate Editor of the IEEE TRANSACTION ON

ROBOTICS (2014–2017).

Federico Pecora received the graduation in computer
science engineering from the University of Rome
“La Sapienza,” Rome, Italy. He received an M.Sc.
in computer science engineering from the University
of Rome “La Sapienza,” Rome, Italy, in 2003, where
he also received his Ph.D. in computer science engi-
neering, in 2007.

He is Associate Professor in Computer Science
with Örebro University, Örebro, Sweden, where he
leads the Multi-Robot Planning and Control Labo-
ratory. His research interests include the intersection

of artificial intelligence and robotics, focusing specifically on constraint-based
reasoning, automated planning, and search techniques for hybrid reasoning.
Most of his recent work deals with the use of these methods for plan-based
robot control, multirobot coordination, and the integration of these with robot
motion planning and control.

https://youtu.be/dFwf8gkItYU
https://github.com/FedericoPecora/coordination_oru

