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Speed Gain in Elastic Joint Robots: An Energy
Conversion-Based Approach
Nico Mansfeld , Manuel Keppler , and Sami Haddadin

Abstract—Like humans or animals, robots with compliant joints
are capable of performing explosive or cyclic motions by making
systematic use of energy storage and release, and it has been shown
that they can outperform their rigid counterparts in terms of peak
velocity. For rigid joint robots, there exist well-established, compu-
tationally inexpensive tools to compute the maximum achievable
Cartesian endpoint velocity, which is an important performance
and safety characteristic for robot designs. For elastic joint robots,
optimal control is usually employed to determine the maximum
possible link velocity together with the associated trajectory, which
is time consuming and computationally costly for most systems. In
this letter, we propose methods to obtain estimates of the maximum
achievable Cartesian endpoint velocities of gravity-free elastic joint
robots that have computational requirements close to the rigid joint
robot case. We formulate an optimal control problem to verify the
methods and provide results for a planar 3R robot. Furthermore,
we compare the results of our approach with those from real-world
throwing experiments which were previously conducted on the
elastic DLR David system. Finally, we apply the methods to derive
and quantitatively compare the safety properties of DLR David and
a hypothetically rigid version of this robot in terms of the Safety
Map framework proposed in our previous work.

Index Terms—Compliant joints and mechanisms, methods and
tools for robot system design, human-centered robotics, physical
human-robot interaction, robot safety.

I. INTRODUCTION

IN RECENT years, many robotic systems with intrinsic
joint compliance have been developed, e.g., legged robots,

hands, prostheses, manipulators, and humanoids. An overview
of the design principles for realizing series elastic and vari-
able impedance actuation is given in [1]. The motivation for
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Fig. 1. Achievable Cartesian endpoint velocities of a planar 3R rigid (left)
and elastic joint robot (right) for the illustrated configuration. For the rigid joint
robot, the achievable velocities are represented by polytopes, where TMPws

denotes the weak sense (angular velocity may be non-zero) and TMPss the
strong sense (purely translational velocities) polytope. The goal of this letter
is to derive the maximum possible endpoint velocities for elastic joint robots,
which are known to be capable of achieving higher velocities than their rigid
counterparts.

deliberately introducing joint elasticity in manipulators is the
improvement of mechanical robustness, safety in human-robot
interaction, and the inherent capability to store and release
energy which can be utilized to outperform rigid robots by means
of energy efficiency and peak velocity.

The (configuration-dependent) maximum achievable end-
point velocity is an important characteristic for assessing and
optimizing both the performance and safety properties of a robot
design. In motion and task planning methods and in the early
design phase of robot mechanics where quick iterations are
desirable, it is key that the achievable TCP velocities can be
estimated with reasonable accuracy and minimal computational
effort. For rigid joint robots, the maximum Cartesian tip velocity
is given by the so-called translational manipulability polytope
(TMP) [2], which depends on the robot kinematics and motor
velocity bounds and has little computational requirements; see
Fig. 1. For elastic joint robots, analytical solutions to maximum
link velocity and (time-optimal) excitation exist for 1-DOF
visco-elastic joints [3]–[8]. In [9]–[11], explosive throwing tra-
jectories were generated for systems with two or more DOF
using optimal control. Such numerical techniques are typically
computationally costly, time consuming, and require accurate
modeling of the complex system dynamics. Therefore they are
hardly suitable for motion/task planning schemes and the early
robot design phase.

In this letter, we propose methods to estimate the
configuration-dependent maximum possible endpoint velocities
of gravity-free elastic joint robots that take relevant real-world
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constraints on motor velocity and spring potential energy into
account with computation requirements close to the rigid joint
robot case. We make several hypotheses on how and to what
extent the motor velocity and the elastic energy can be exploited
and converted to link kinetic energy. The hypotheses are exem-
plified using a 3R planar robot. For verification, we compare
the theory with the optimal control solution. Here, we observe
a reasonable agreement in terms of maximum achievable TCP
velocity and show that the computation time of the proposed
methods is orders of magnitude lower than the time required
to compute the optimal control trajectories. To further confirm
the validity of the presented methods, we compare the results of
our methods with those from real-world throwing experiments
that were previously conducted on DLR David [9]. Finally, our
approach is applied to robot safety assessment, where the safety
characteristics of both the elastic and a hypothetically rigid
version of DLR David are compared in terms of the Safety Map
framework [12].

II. CONSIDERED DYNAMICS

The considered elastic joint robot dynamics are [13]

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ J(θ, q) , (1a)

Bθ̈ + τ J(θ, q) = τm , (1b)

with θ ∈ Rn and q ∈ Rn representing the motor and link
positions. The motor and link inertia matrices are denoted
by B ∈ Rn×n and M(q) ∈ Rn×n, the Coriolis matrix by
C(q, q̇) ∈ Rn×n, and the gravity vector by g(q) ∈ Rn. The
motor torque is denoted by τm ∈ Rn and possibly non-linear
elastic joint torque by τ J(θ, q) ∈ Rn, which depends on the
elastic deflection ϕ = θ − q. In the rigid joint case, the links
are directly driven by the motor torques, i.e., (1a) constitutes
the dynamics where τ J (θ, q) is replaced by τm. As we are
interested in the maximum performance in terms of speed, we do
not consider link-side damping, which generally decreases the
velocity.1 The Jacobian matrix J(q) ∈ Rm×n associated to the
end-effector can be decomposed asJ(q) = [Jν(q)

T,Jω(q)
T]T,

where Jν(q) and Jω(q) relate joint velocities to translational
and angular Cartesian velocities, respectively.

By assuming that the motor-side dynamics are typically much
faster than the link-side dynamics and that the motors always
provide enough torque to accelerate the motor shaft and com-
pensate for the elastic joint torque, we may model the motors
as velocity sources [9]. In the reduced model, the link-side
dynamics (1a) remain the same, while the motor dynamics (1b)
simply become θ =

∫
θ̇ dt+ θ0.

We consider the motor velocity constraint |θ̇| ≤ θ̇max and
the elastic deflection constraint |ϕ| ≤ ϕmax, which are the
most important real-world constraints besides motor torque.
We assume that the constraints are symmetric, which is the
case for most systems. The maximum elastic deflection depends
on the spring energy storage capacity and usually the selected
stiffness setup, if stiffness can be adjusted. In the DLR FSJ joint
[14], e. g., a stiff setup allows for a lower maximum deflection
than a soft stiffness setup. In some VSA actuators, ϕmax is

1The methods in this work could be extended to visco-elastic joints with the
results reported in [6], [7], for example.

constant, irrespective of the selected stiffness. Typically, not the
entire potential elastic energy can be utilized for energy storage
and release. The available energy can be limited by a) spring
pretension (e.g., in antagonistic setups), b) the stiffness setup,
and c) the maximum possible elastic deflection (see above). In
the following, we denote the overall amount of spring energy that
can be actively exploited, e. g., to perform explosive motions,
by US,dyn =

∑n
i=1 US,dyn,i, where US,dyn,i denotes the elastic

energy in joint i. For VSA joints, we assume US,dyn,i to be the
largest possible energy.

III. MAXIMUM CARTESIAN ENDPOINT VELOCITY

In the following, we summarize the related work on the
maximum achievable velocities of rigid and elastic joint robots.
Then, the problem definition and our approach are described in
detail. Afterwards, we propose hypotheses for determining the
maximum Cartesian endpoint velocity of elastic joint robots and
exemplify the theory using a planar 3R robot.

A. Related Work

1) Rigid Joint Robots: The manipulability ellipsoid and
polytope are well-established tools for analyzing the Cartesian
velocity capabilities of rigid joint robots for a given configura-
tion [2]. From a computational point of view, ellipsoids are more
tractable than polytopes. However, we only consider polytopes
in this letter, as they represent all achievable velocities while the
ellipsoids only constitute a subset of these. Consider the motor
velocity constraint |q̇| ≤ q̇max, where q̇max is the maximum
motor velocity. For the sake of simplicity, we again assume
that the motor velocity bounds are symmetric. The 2n motor
velocity bounds form a hyperrectangle in joint space which
has 2n vertices. The translational manipulability polytope in the
so-called weak sense, denoted by TMPws, is obtained by trans-
forming the joint-space hyperrectangle to Cartesian space via
ν = Jν(q)q̇, where ν ∈ R3 denotes the translational velocity.
Weak sense means that the angular velocity ω = Jω(q)q̇ may
be non-zero. In case of redundancy (m < n) the hyperrectangle
is mapped to a space of lower dimension. As a result, the
boundary of the Cartesian polytope is defined by less than 2n

vertices because there are internal vertices. For a 3R planar
robot2 that performs a translational task (n = 3,m = 2), we
obtain 23 = 8 vertices in joint space and typically six vertices
in Cartesian space which form the polytope; see Fig. 1. To
obtain the TMP in the so-called strong sense (i.e., purely trans-
lational motions), denoted by TMPss, in case of redundancy,
we require the motor speeds that are part of the null space of
Jω(q) and fulfill the velocity constraints at the same time, i. e.,
{q̇ | q̇ ∈ N (Jω(q))& |q̇| ≤ q̇max}. An algorithm to determine
such motor velocities is provided in [15], which was originally
proposed for force polytope analysis. The maximum possible
velocity (either weak or strong sense) in a certain Cartesian
unit direction u ∈ R3 can be determined with the line clipping
algorithm proposed in [16], for example. Please note that the
strong sense TMP is a subset of the weak sense TMP.

2The length of each robot link is 0.5 m, a 2 kg point mass is located at the distal
end of each link. The maximum symmetric velocity of each motor is 2 rad/s and
the joint configuration is q = [110,−70,−70]T ◦.
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2) Elastic Joint Robots: a) 1-DOF: In robotics literature,
many authors investigated the optimality principles for visco-
elastic and variable impedance joints [3]–[7], [17]. If no damping
is present and the elastic energy is limited, then the maximum
achievable link velocity of a planar, linear 1-DOF elastic joint
with massm can be expressed as the sum of the maximum motor
velocity and a term Δq̇ coming from spring energy and release3

q̇max = θ̇max +Δq̇ = θ̇max +

√
2US,dyn

m
. (2)

It is reached when all the potential spring energy has been
converted to link kinetic energy ( 12mΔq̇2 = US,dyn) while the
link is traveling in the motor inertial frame of reference. The
time-optimal trajectory to reach this velocity is provided in [4],
results for visco-elastic joints can be found in [6], [7]. Instead of
formulating the maximum link velocity as the sum of a motor
and a spring term, it is also possible to express the benefit of the
elastic mechanism on link velocity in terms of a so-called speed
gain ε = q̇max/θ̇max ≥ 1 [4]. When the system has reached the
maximum link velocity, then the total system energy is

Vf =
1

2
mq̇2max , (3a)

=
1

2
mθ̇2max + US,dyn︸ ︷︷ ︸

Vch

+θ̇max

√
2mUS,dyn . (3b)

It is given by the sum of Vch, the energy that the system has
when the link travels with maximum motor speed and the spring
is fully charged, and a term required to keep the maximum motor
velocity while compensating for the elastic joint torque.

b) 2 to n-DOF: In [9]–[11], it was investigated how the elastic
energy of systems with two or more DOF can be exploited
to realize explosive motions, in particular the throwing of a
ball as far as possible. The influence of coupling stiffness,
nonlinear dynamics, and nonlinear elasticity with stiffness ad-
justment on unimodal and sequential-type motions was ana-
lyzed. Optimal trajectories were found both for academic and
real-world systems like DLR David and a MACCEPA robot.
Based on the simulation and experimental results, basic power
flow and energy transfer mechanisms like consecutive loading
and unloading of the springs for sequential type motions were
investigated. Furthermore, comparisons were made to human
studies on explosive motions.

B. Problem Definition & Approach

Up to now, explosive motions together with the maximum
peak velocity were mainly derived via optimal control. Usually,
such (numerical) techniques are computationally very costly,
time consuming, and require accurate modeling of the complex
system dynamics. Especially in the early design phase of the
robot mechanics where quick iterations are desirable, but also
in task and motion planning it is essential that the maximum
achievable TCP velocities for a certain robot configuration can
be estimated in minimum time. For such applications, optimal
control methods are hardly suitable due to their large computa-
tional effort.

3Please note that not every achievable link velocity can be expressed in this
convenient form.

In this work, we seek a representation of the maximum pos-
sible Cartesian endpoint velocities for elastic joint robots that
a) is simple and computationally inexpensive to derive and b)
estimates the achievable velocities with sufficient accuracy. Al-
though important for real-world implementation and for under-
standing the energy transfer mechanisms, the derivation of the
associated (time-optimal) trajectories is not considered in this
letter. Inspired by the velocity polytope for rigid joint robots, we
want to determine the representation of the maximum Cartesian
velocities for a certain joint configuration. We assume that the
elastic energy can be locally transferred to kinetic energy around
the desired link configuration qd via internal spring deflection
and release. In this letter, we consider gravity-free elastic joint
robots. We focus on the energy storage and release mechanism of
the spring, the influence of gravitational potential energy on the
maximum achievable velocity should be investigated in future
work. We are interested in determining those velocities that can
be reached from equilibrium by injecting energy via control and
without external contact being applied.

We propose the two main hypotheses H1 and H2 to derive the
achievable TCP velocities. Hypothesis H1 is inspired by (3) and
relies on the assumption that a certain amount of energy can be
injected into the system which can be converted to link kinetic
energy. H1 has two sub-hypotheses H1a and H1b. Hypothesis
H2 is inspired by (2) and extends the TMP approach from the
rigid to the elastic joint case. The three sub-hypotheses of H2 are
denoted by H2a, H2b, and H2c. Starting with H1, we describe all
the hypotheses in the following. The theory is applied to the 3R
planar robot that was introduced previously. Every joint of this
robot is now equipped with a linear spring that can store up to 2 J
potential energy. An overview of the results for all hypotheses
is provided in Fig. 3.

C. Hypothesis H1

In our first hypothesis H1, we assume that we can inject a
certain amount of energyV into the system that can be converted
(solely) to link kinetic energy. By extending (3) from 1-DOF to
n-DOF we obtain the candidate energies

H1a Vch =
1

2
θ̇

T
maxM(q)θ̇max + US,dyn , (4a)

H1b Vf = Vch + θ̇
T
max

√
2M(q)

√
uS,dyn , (4b)

where uS,dyn = [US,dyn,i, . . . , US,dyn,n]
T. For Vch, the links

have the same velocities as the motors and all springs are fully
deflected. The energyVf is the sum ofVch and an additional term
analogous to (3). In sub-hypothesis H1a we assign V = Vch and
in H1b V = Vf . By equating the total energy with the link kinetic
energy 1

2 q̇
TM(q)q̇ = V and rearranging the terms we get

q̇TM(q)

2V
q̇ = 1 , (5)

which describes an ellipsoid in joint space. Equation (5) rep-
resents all joint velocities which are feasible given the energy
V . Using the translational Jacobian matrix Jν(q) we can now
transform the velocities (5) to Cartesian space. We obtain the
same result when inserting q̇ = Jν(q)

+ν, where Jν(q)
+ is the

generalized inverse of Jν(q), into the previous equation, which
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Fig. 2. Hypothesis H1: Strong and weak sense velocities in joint space (a) and
Cartesian space (b), (c).

yields

νT (Jν(q)M(q)−1Jν(q)
T)−1

2V
ν ≤ 1 . (6)

This ellipsoid is the weak sense representation of the achievable
translational velocities. The result for the 3R robot is illus-
trated in Fig. 2 and Fig. 3(a), (b). In order to determine the
strong sense velocities, one needs to find the intersection of the
nullspaceN (Jω(q)) and the ellipsoid (5), i.e., the velocities that
satisfy {q̇ | q̇ ∈ N (Jω(q))&

1
2 q̇

TM(q)q̇ = V }. The shape of
the intersection depends on the dimension of N (Jω(q)). For
example, if n−mJω

= 1, where mJω
is the number of rows

of Jω(q), then the null space is represented by a line in Rn,
for mJω

= 1, n ≥ 2 it is a hyperplane with dimension n− 1.
For our 3R robot, the nullspace of Jω(q) is represented by a
two-dimensional plane in R3; see Fig. 2(a). Practically, one can
obtain the boundary of the intersection as follows:

1) Determine the joint velocities q̇ that are located on the unit
sphere q̇Tq̇ = 1.

2) Project these velocities onto the null space of Jω(q) with
q̇Nω

= (I − Jω(q)
+Jω(q))q̇. The velocities are still lo-

cated within the unit sphere.
3) Scale the null space velocities onto the boundary of the

ellipsoid (5) via

q̇e,Nω
=

√
2V

q̇T
Nω

M(q)q̇Nω

q̇Nω
. (7)

The Cartesian velocities in the strong sense are finally given
by ν = Jν(q)q̇e,Nω

. The result for the 3R robot is illustrated in
Fig. 2(c). The comparison of the weak and strong sense velocities
for both the rigid (motors only) and the elastic joint 3R robot
is shown in Fig. 3(a) (H1a) and (b) (H1b). It can be observed
that the maximum achievable endpoint velocity of the elastic
robot is much larger than the velocity of the rigid counterpart.
Because the energy Vf is larger than Vch (cf. (4)), hypothesis
H1b provides larger velocities than hypothesis H1a.

D. Hypothesis H2

In hypothesis H1, the Cartesian velocity ellipsoid was ob-
tained via a scalar kinetic energy that comprised the contribution
of both the motors and the springs. As far as the motors are
concerned (in other words, the rigid version of the robot) one
can directly determine the feasible Cartesian velocity polytope

according to Sec. III-A without the need of conversion to an
(intermediate) energy. In our second hypothesis H2, we want to
start from this motor velocity polytope and add the velocities
that come from the release of stored spring energy. As in the
1-DOF case described previously (see (2)), we assume that the
maximum possible link velocity can be written in the form

q̇max = θ̇max +Δq̇ , (8)

where Δq̇ represents the velocity gain attributed to the release
of elastic energy. We assume that the entire elastic energy can
be converted to link kinetic energy. To determine Δq̇, we for-
mulate three sub-hypotheses H2a–H2c on the energy conversion
mechanism.

H2a Each joint has a maximum link velocity which consists
of the maximum motor velocity plus a term provided by
the spring in the respective joint only. It is assumed that
there is no inertial coupling between the links, i. e., n
independent mass-spring systems are considered.

H2b Like H2a with the difference that the inertia about each
joint is given by the configuration-dependent inertia of
all successive links, which are assumed to be rigidly
coupled.

H2c The available spring potential energy is converted to link
kinetic energy while making no assumptions on how a
particular spring contributes to the maximum possible
link velocity.

In the following, we explain each sub-hypothesis and apply
the theory to the 3R robot. The resulting velocities are illustrated
in Fig. 3(c)–(e).

a) Hypothesis H2a. In the same spirit as the related work
on 1-DOF, H2a assumes that each elastic joint has a certain
maximum link velocity. The motivation behind this is to extend
the TMP from the rigid joint to the elastic joint case in a
very straightforward manner. Let us assume that there is no
dynamic coupling between the links, in other words, we have
n independent mass-spring systems, and that the entire elastic
energy can be converted to link kinetic energy. In each joint we
have a motor with the maximum velocity θ̇max,i, a spring with
available energy US,dyn,i, and the link inertia imi about the
current axis. We can again use (2) to determine the maximum
link velocity

q̇max,i = θ̇max,i +

√
2US,dyn,i

imi
, i = 1, . . . , n , (9)

in each joint. We can now derive the weak sense velocity poly-
tope by transforming the joint space hyperrectangle |q̇| ≤ q̇max

to Cartesian space via Jν(q). This is the same procedure as for
rigid joint robots, where q̇ is the motor velocity. The derivation
of the strong sense velocity polytope also remains the same,
cf. Sec. III-A1. The TMPs for the rigid and elastic case are
illustrated in Fig. 3(c)), which have the same shape, but are
different in size, meaning the elastic joint robot can reach higher
velocities.

b) Hypothesis H2b. Previously, we assumed that the inertia
about joint i is given by the decoupled link inertia imi. A more
conservative approach is to assume that all link inertias from
joint i to n are rigidly coupled. The maximum joint velocity
in this case is again determined with (9), where imi is now
being replaced by Mi,i, the i-th element of the main diagonal of
M(q). The results for the 3R robot are illustrated in Fig. 3(d).
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Fig. 3. Maximum Cartesian endpoint velocity for the 3R robot (configuration depicted in Fig. 1): Motor velocity polytopes (Rig.Rob) and the velocities of the
elastic joint robot obtained by the hypotheses (El.Rob). Subscripts: ws: weak sense, ss: strong sense.

Fig. 4. Hypothesis H2c: (a) Motor velocity bounds, spring ellipsoid (10), and
Minkowski sum, (b) transformation of joint-space Minkowski sum to Cartesian
space together with the strong sense velocities (ω = 0), (c) weak and strong
sense velocities.

Compared to the previous hypothesis H2a, H2b provides lower
velocities because the inertia about the joints is larger.

c) Hypothesis H2c. In hypotheses H2a and H2b, it was as-
sumed that the potential energy of every spring is converted to
kinetic energy in the particular joint. This allowed us to apply the
TMP theory from rigid joint manipulators to elastic joint robots.
In hypothesis H2c we do not assume that each joint has a certain
maximum velocity, but rather that the overall available elastic
energy is converted to kinetic link energy. Similar to hypothesis
H1 (cf. (5)), the joint space ellipsoid

Δq̇T M(q)

2US,dyn
Δq̇ = 1 , (10)

represents the contribution of the spring to the achievable link
velocity. According to (8), we now determine the geometric sum,
i. e., the Minkowski sum4 of the motor and spring velocities. The
result for the 3R robot is illustrated in Fig. 4. The joint velocities
obtained by the Minkowski sum can be transformed to Cartesian
space via Jν(q), which gives us the weak sense representation;
see Fig. 4(c). To derive the strong sense velocities, one needs
to find the intersection of the joint-space Minkoswki sum and
the nullspace of Jω(q), or the Cartesian velocities that satisfy

4The Minkowski sum for two sets C1 and C2 is defined as C1 ⊕C2 =
{c1 + c2|c1 ∈ C1, c2 ∈ C2}, i. e., the resulting set contains the sum of every
element from C1 and every element from C2.

ω = 0. For the 3R robot, we applied the 3D clipping algorithm
[16] to find the intersection of the Cartesian Minkowski sum
with the νx/νy-plane; see Fig. 4(b), (c). For systems/tasks with
more DOF, it can become difficult to derive the H2c strong sense
velocities. However, a subset of the feasible velocities can be
determined rather easily by first computing the strong sense
representation of the motor and spring velocities independently
(see Sec. III-A1 and (7)) and then calculating the Minkowski sum
of both representations. The sum of the two nullspace velocities
also belongs to the nullspace N (Jω(q)). The result for this
simplified approach is illustrated in Fig. 3(e) for the 3R robot. In
the figure, the motor polytope (red) is added to the spring ellipse
(yellow), which results in the red/yellow dashed representation.
It can be observed that these velocities are a subset of the
achievable strong sense velocities, which are represented by a
green line.

IV. VERIFICATION VIA OPTIMAL CONTROL

In order to verify our hypotheses, we formulate an optimal
control problem that can be solved to find the maximum feasible
endpoint velocities and the according robot trajectories. The
problem is numerically solved for the elastic 3R robot, where we
compare the optimal control solution to the velocities obtained
by the hypotheses. Afterwards, this comparison is also done for
the real-world throwing experiments previously conducted on
the DLR David system [9], [18].

A. Problem Formulation

The motor position, link position, and velocity form the sys-
tem state xopt = [xT

opt,1,x
T
opt,2,x

T
opt,3]

T = [θT, qT, q̇T]T, the

control input is the motor velocity w = θ̇, which is bounded by
|w| ≤ θ̇max. The cost function for the optimal control problem
has the standard form

Jopt = φ(tf ,xopt(tf )) +

∫ tf

t0

L(t,xopt,w) dt , (11)

where φ(tf ,xopt(tf )) is the Mayer term and L(t,xopt,w) the
Lagrange term. The initial and final time are denoted by t0
and tf . We want to maximize the translational endpoint veloc-
ity in the desired Cartesian direction ud and therefore select
the Mayer term φ(tf ,xopt(tf )) = −uT

dJν(xopt,2)xopt,3(tf ) +
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Fig. 5. 3R planar elastic joint robot: Comparison of the proposed methods and the optimal control solution which serves for verification. The weak sense results
for three different goal configurations are depicted in the upper row, the strong sense results in the lower row. The bar graph on the right illustrates the mean average
percentage error (MAPE) incl. variance w.r.t. the optimal control (OC) solution for each hypothesis. The smaller the error, the better the estimation of the maximum
reachable TCP velocity.

εtf . As the robot should reach the maximum velocity as fast
as possible, our secondary goal is to minimize the final time.
The Mayer term thus includes tf , which is multiplied by a small
positive constant ε. Theoretically, we do not need to specify a
Lagrange term, however, from a practical point of view we select
a small regularization term L(t,xopt,w) = 1

2 w
TRw in order

to smoothen the control input. Here, R ∈ Rn×n is a diagonal
regularization matrix where the entries take rather low values.
The optimal control problem is subject to the reduced elastic
joint dynamics. The maximum spring deflection yields the path
constraint |xopt,1 − xopt,2| ≤ ϕmax. At t = tf , the robot has
the desired configuration qd and the Cartesian velocity points in
the desired direction ud, which yields the terminal constraints
xopt,2(tf ) = qd and Jν xopt,3(tf )

||Jν xopt,3(tf )|| = ud. For the strong sense

analysis, we add the terminal constraint Jωxopt,3(tf ) = 0. In
order to keep the motion as small as possible, we select the
initial link position to be the same as the desired position, i. e.,
xopt,2(t0) = xopt,2(tf ) = qd.

B. Results for the 3R Elastic Joint Robot

For the 3R robot, we select three goal configurations, namely
qd,1 = [140,−100,−100]T ◦, qd,2 = [110,−70,−70]T ◦,
and qd,3 = [70, 30, 30]T ◦, which reach from a folded to an
outstretched configuration; see Fig. 5. The spring stiffness in
each joint is 500 Nm/rad, the elastic energy was increased to
4.87 J (ϕmax = 8 ◦) in each joint, all other parameters remain
the same. For each configuration, we solve the optimal control
problem for 100 evenly-spaced Cartesian directions, i.e., points
on the unit circle S1. The optimal trajectories were calculated

with the numerical toolbox GPOPS5 [19]. The robot trajectories
obtained via optimal control (weak sense) are visualized in the
attached video.

The results for the weak sense analysis are depicted in the
upper row in Fig. 5, the results for the strong sense analysis
in the lower row. The mean average percentage error (MAPE)
(cumulative for all three configurations) incl. variance for each
hypothesis w.r.t. the optimal control solution is illustrated in
the bar graph on the right. For the considered robot, the best
agreement with the optimal control results is accomplished
with hypothesis H2c, where the mean error (with negligible
variance) is 8 % for weak sense velocities and 9 % for strong
sense velocities. The MAPE for the other hypotheses is at least
two times higher. H1b is the only hypothesis that provides
a (over-)conservative approximation. Apparently, the robot’s
inertial coupling in M(q) has an influence on the achievable
TCP velocities. The higher the inertial coupling the worse the
estimation accuracy of hypotheses H2a and H2b, where it is
assumed that the links are decoupled. Hypotheses H1a and H1b
consider inertial coupling, however, the contribution of both the
motors and the springs is condensed in a scalar energy V that
defines the size of the ellipsoids. The best solution for this robot
is obtained by H2c, where the TMP approach is extended from
the rigid to the elastic joint case by summing the contributions
of the motors and the springs and taking inertial coupling into
account.

In terms of computation time, it took seven hours on average
on an Intel(R) Core(TM) i7-8565U CPU @ 2.0 GHz with 16 GB

5Following parameters were used: R = diag{0.1, 0.1, 0.1}, ε = 0.001,
mesh tolerance: 0.001, no. mesh iterations: 3, no. nodes per interval: min: 6,
max: 12.
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TABLE I
3R PLANAR ELASTIC JOINT ROBOT: TIME REQUIRED TO COMPUTE THE

MAXIMUM TCP VELOCITIES ILLUSTRATED IN FIG. 5

Fig. 6. Previous throwing experiments on the DLR David system [9], [18]:
Maximum measured TCP velocity and difference (absolute and relative) w.r.t.
the velocities estimated by the proposed hypotheses.

RAM (MATLAB 2020a) to compute the (100) optimal control
solutions for each configuration and weak/strong sense represen-
tation in Fig. 5, i.e., approx. a full two days for all results. In con-
trast, only 1.1 s were required in total to compute the velocities
resulting from all the hypotheses shown in Fig. 5. An overview
of the cumulated computation times for the 3R is provided in
Tab. I. The time required to compute H1a–H2b is similar to the
rigid joint case. H2c requires more time because the derivation
of the strong sense representation is computationally costly.

C. Evaluation of Previous DLR David Experiments

Next, we compare the results of our presented methods with
those from the ball throwing experiments that were previously
conducted on the DLR David system [9]; see Fig. 6 and the
video in [18]. The goal of the optimal control problem in [9]
was to throw a ball to a certain target distance for a fixed
final time. In the 2-DOF (planar) experiments (see Fig. 6(a)),
joints 1 and 4 were actuated. The excitation trajectories were

generated for different motor velocity limits and target distances.
In Fig. 6(a), we show the results for θ̇max = 2, 3, and 4 rad/s. For
each considered motor velocity limit, we select the experiment
with the farthest achieved throwing distance. The maximum
measured TCP velocities are illustrated in Fig. 6(a). In the figure,
these velocities are compared to the TCP velocities (absolute and
relative) estimated by the proposed hypotheses. In the 3-DOF
(three-dimensional space) experiment, joints 2–4 (shoulder and
elbow) were actuated, the maximum motor velocity was limited
to 2 rad/s. The results are depicted in Fig. 6(b).

Please note that the problem formulation of the previous
experiments is a bit different from the one in this letter. In
[9] the goal was to achieve a desired throwing distance and
not the maximum possible throwing distance, respectively TCP
velocity. This is reflected in the both the desired optimal control
and the actual robot trajectories, where the maximum motor
velocity and elastic deflection are typically not fully exploited. In
contrast, in the 3R optimal control solution, both quantities reach
their limits at a certain position along the trajectory. It is therefore
to be expected that the velocities obtained by our hypotheses are
larger than the velocities observed in the experiments. Never-
theless, hypotheses H1a and H2c agree reasonably well with
the experimental results. Regarding the 2-DOF experiments,
we obtain 11% (2 rad/s), 16% (3 rad/s), and 23% (4 rad/s)
difference w.r.t. the experiment for H1a, for H2c the difference
is 26% (2 rad/s), 21% (3 rad/s), and 21% (4 rad/s). Concerning
the 3-DOF experiment, the difference is 5% for H1a and 18%
for H1c. In our comparison for the 2-DOF experimental series,
the difference between estimated and measured TCP velocity
increases with maximum motor velocity; see Fig. 6(a). In [9],
the tracking error in motor position deteriorated for desired
motor velocities ≥4 rad/s, which resulted in (slightly) lower
endpoint velocities than expected. The authors of [9] explained
this with unmodeled dynamics and friction. Furthermore, the
assumption that the motors can be regarded as velocity sources
has limitations for high motor accelerations.

V. APPLICATION: SAFETY MAP FOR DLR DAVID

Besides analyzing peak performance, one of our major mo-
tivations for determining the maximum Cartesian endpoint ve-
locity of elastic joint robots is to derive the safety characteristics
of this robot type. We want to represent elastic joint robots in
the Safety Map framework [12], which allows us to compare
different robots (i.e., also rigid joint manipulators or mobile
robots) to human injury data. In this section, we apply our theory
to derive the Safety Map representation of the DLR David system
[20]. We want to determine the reflected robot mass [21] and
maximum velocity (weak sense) in the direction of the three
principal Cartesian directionsX ,Y , andZ for the red workspace
area depicted in Fig. 7 (left)6. The Safety Map representation is
determined for both the elastic and a hypothetically rigid version
of the robot. The links on the rigid version of David are driven
by the motors only and M(q) includes both the motor and

6We only consider actuation of the first four robot joints and ignore motions
of the wrist and hand. The maximum velocity of each motor is 8.51 rad/s, the
maximum available elastic energy in each FSJ joint is 5.3 J [14]. The considered
box has a 25 cm edge length, the center is located at [−0.2035,−0.45,−0.2]T m
w.r.t. the robot base located in the shoulder.
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Fig. 7. Application of our approach to safety assessment of the DLR David
system in the Safety Map framework [12]. The reflected mass and velocity
ranges of the elastic (red) and hypothetically rigid David (blue) are compared to
the chest injury threshold (black line) by means of the Compression Criterion
(CC, threshold: 22 mm chest deflection). Every mass/velocity pair above the
threshold corresponds to (at least) 5% probability of serious chest injury. This
threshold was derived from Lobdell’s well-known chest collision model [24].

the link inertia. To determine the maximum endpoint velocities
for elastic David, we use hypothesis H2c, because it provided
good and, more importantly, conservative velocity estimates for
David previously. The Safety Maps are illustrated in Fig. 7. It
can be observed that elastic David has a lower mass range, but
it can reach much higher velocities than the rigid counterpart.
These results agree well with our expectation and previous
results [3], [22], [23]. In Fig. 7 we also depict the threshold for
the occurrence of blunt chest injury by means of the so-called
Compression Criterion [24]. Both rigid and elastic David are
capable of harming the human when high-speed motions are
performed in this workspace area. When operating an elastic
robot at velocities equal to its rigid counterpart, the elastic robot
is the safer option. However, as the impact velocity typically has
a stronger influence on injury probability than the reflected mass
[25], it is possible that the elastic joint robot poses a larger threat
to the human for certain body parts and collision scenarios than
a rigid joint robot.

VI. CONCLUSION

In this work, we proposed and evaluated several approaches to
determine the maximum achievable Cartesian endpoint veloci-
ties for gravity-free elastic joint robots. The peak TCP velocity
is an important characteristic for robot design, motion and task
planning to assess and optimize collision safety and perfor-
mance. In contrast to numerical optimal control tools, which are
typically employed in literature, our methods require minimal
computational effort. We verified our methods for a simulated
3R robot. Also for the previous ball throwing experiments
conducted on DLR David we observed a reasonable agreement
between the real and the estimated velocities. Finally, we applied
the theory to the global robot safety assessment and compared
the safety performance of DLR David with a hypothetically rigid
version of this robot and human injury data in terms of the Safety
Map framework.
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