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Learning Occupancy Priors of Human Motion From
Semantic Maps of Urban Environments

Andrey Rudenko , Luigi Palmieri , Johannes Doellinger , Achim J. Lilienthal , and Kai O. Arras

Abstract—Understanding and anticipating human activity is an
important capability for intelligent systems in mobile robotics,
autonomous driving, and video surveillance. While learning from
demonstrations with on-site collected trajectory data is a powerful
approach to discover recurrent motion patterns, generalization to
new environments, where sufficient motion data are not readily
available, remains a challenge. In many cases, however, semantic
information about the environment is a highly informative cue for
the prediction of pedestrian motion or the estimation of collision
risks. In this work, we infer occupancy priors of human motion
using only semantic environment information as input. To this
end, we apply and discuss a traditional Inverse Optimal Control
approach, and propose a novel approach based on Convolutional
Neural Networks (CNN) to predict future occupancy maps. Our
CNN method produces flexible context-aware occupancy estima-
tions for semantically uniform map regions and generalizes well
already with small amounts of training data. Evaluated on synthetic
and real-world data, it shows superior results compared to several
baselines, marking a qualitative step-up in semantic environment
assessment.

Index Terms—Deep learning for visual perception, human
detection and tracking, human motion analysis, human motion
prediction, semantic scene understanding.

I. INTRODUCTION

UNDERSTANDING and predicting human motion is an
increasingly popular subject of research with the goal of

improving the safety and efficiency of autonomous systems in
spaces shared with people. Application areas include mobile ser-
vice robots, intelligent vehicles, collaborative production assis-
tants, video surveillance, or urban city planning. Human motion
in these scenarios is influenced by many factors, including other
agents in the scene and the environment itself, which can be
represented by a topometric map and semantic information [1].
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Fig. 1. Predicting occupancy priors in semantically-rich urban environments.
Top left: an urban scene from the Stanford Drone dataset. Top right: semantic
map of the environment. Bottom left: CNN-predicted occupancy distribution
priors of walking people in the environment, encoded with a heatmap: warmer
colors correspond to states with higher probability of observing pedestrians.
Bottom right: ground truth occupancy distribution.

While indoor human navigation is often motivated by avoiding
collisions with static and dynamic obstacles, surface semantics
have a strong impact in outdoor (e.g. urban) environments.
For instance, pedestrians walk most of the time on sidewalks,
sometimes on streets, unpaved areas and greenspaces, and very
rarely over obstacles. Modeling the influence of semantics is a
challenging task, typically approached with data-driven methods
using human trajectory data in a given environment [2]–[4]
without knowing the goal of the target agent. Powerful in scenes
known beforehand, such approaches may suffer from poor gen-
eralization to never-seen or changing environments where no
data is available.

In this letter, we research the possibility of inferring occu-
pancy priors of walking people in previously unseen places with
limited input, namely using only the semantic map of the area.
A prior occupancy distribution is intuitively interpretable and
beneficial for a large variety of applications, such as improved
goal estimation [5], [6] (for instance in Fig. 1, not all walking
directions are likely to be the goal of a person) and crossing
intention recognition in autonomous driving tasks [7], [8], where
possible “illegal crosswalks” could be easily detected. The usage
of semantic map-based occupancy priors may further improve
the accuracy of map-based motion prediction approaches [9],
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Fig. 2. Structure of the semapp network. Input semantic tensor of size
|<height>x<width>x<features>| is downsampled twice before
passing through a bottleneck and getting upsampled to the original resolution
again. Black arrows indicate skip connections. The kernel sizes and strides are
denoted as |<kernel width>x<kernel height>s<stride>|.

which often assume constant priors for each semantic class. Such
occupancy estimation can guide a cleaning robot towards more
heavily used areas, or a service robot in search of people to assist.

Traditionally, Inverse Reinforcement Learning (IRL) has been
used to learn semantic preferences of walking people in urban
and semantically-rich environments [10]–[12]. It is indeed possi-
ble to use the learned preferences to simulate trajectories and in-
fer the prior occupancy distribution in a new environment. In this
work we review the IRL methodology, applied to the occupancy
prior distribution inference, and discuss its limitations. In order
to address them, we introduce a novel extension to the recent
method by Doellinger et al. [13], which uses a Convolutional
Neural Network (CNN) to predict average occupancy maps
indoors, with semantic map input for the urban scenes. We train
our method on scenes from the Stanford Drone Dataset [14],
as well as on simulated environments. In comparison to several
baselines, our CNN method predicts much more accurate prior
occupancy priors in terms of KL-divergence to the ground truth
distributions. Crucially, it makes a qualitative improvement of
estimating flexible occupancy priors for semantically-uniform
areas by considering local context and interconnections between
different semantic regions.

In summary, we make the following contributions:
1) We analyze and discuss state-of-the-art methodology for

inferring occupancy prior distribution in semantically-rich
urban environments.

2) Addressing the limitations of the prior art, we propose a
novel method based on Convolutional Neural Networks
(displayed in Fig. 1 and 2).

3) We execute a thorough comparison of the discussed meth-
ods with several baselines, and show qualitative and quan-
titative improvement of the KL-divergence scores when
using our CNN method.

The letter is structured as follows: in Section II we review the
related work, in Section III we detail the proposed solutions and
in Section IV we describe the training and evaluation. Results are
presented in Section V, and a discussion in Section VI concludes
the letter.

II. RELATED WORK

The ability to understand a human environment and its af-
fordances is useful in a number of tasks where intelligent au-
tonomous systems need to reason on observed events, antici-
pate future events, evaluate risks and act in a dynamic world.
Examples include person and group tracking [15]–[17], in par-
ticular over a camera network with non-overlapping fields of

view, human-aware motion planning [18]–[20], motion behavior
learning [21], human motion prediction [22], [23], human-robot
interaction [24], video surveillance [25] or collision risk as-
sessment [26]. Apart from basic geometric properties of the
workspace, its semantics have a large impact on human motion
in these tasks. Modeling this impact is challenging, therefore a
popular approach is learning the motion patterns directly from
data without explicitly specifying semantic features [2]–[4],
[27]. However, many of those methods either need additional
training input in new environments or experience transfer issues.
To the best of our knowledge, only a few methods explicitly
highlight the performance in new environments outside the
training scenario [10], [28]–[30]. As we will later describe, our
approach explicitly uses only semantic maps as input and there
will be no need to adapt the learned models to new environments,
described with the same semantic classes.

Modeling the effect of surface classes on human motion was
mainly used in reactive approaches such as [31] and planning-
based approaches [9], [10]. These methods leverage semantic
segmentation tools for understanding and detecting the seman-
tics in the environment.

Several approaches exist to segment available semantics [32]–
[34] and to build semantic maps of the environment [35], [36] – a
prerequisite to the methods presented in this letter. We build on
those methods to predict areas frequently used by pedestrians
based on the semantic class of the surface. Several Inverse
Reinforcement Learning (IRL, or Inverse Optimal Control, IOC)
approaches make use of semantic maps for predicting future
human motion [9], [10], [30]. In particular, they use the semantic
maps for encoding the features of the reward function. However,
these IRL approaches are limited to one weight per feature and
thus do not generalize well to new environments or heteregenous
datasets with different geometries [37], [38]. In this work, we
review an adaption of the Maximum Entropy IRL algorithm [39]
to the task of occupancy priors estimation, and compare our
CNN-based approach to it.

III. OCCUPANCY PRIORS ESTIMATION IN

URBAN ENVIRONMENTS

In this work, we study the problem of estimating occupancy
priors of walking humans in semantically-rich urban environ-
ments. The problem is formulated as follows: given a grid-map
of the environmentMwith associated feature responses f(s) =
[f1(s), . . . , fK(s)],

∑K
k=1 fk(s) = 1 for each state s ∈M over

the set ofK semantic classes, we seek to estimate the probability
p(s) of a walking human being observed in this state.

If we assume having access to a large set of trajectories T M
inM, the problem of estimating p(s) can be solved by counting
visitation frequencies in each state:

p(s) =
D(s)∑

s′∈MD(s′)

∣∣∣
T M

, (1)

whereD(s) is visitation count of state s over all trajectoriesT M.
In this letter, we estimate this distribution in environments where
no trajectory data are available. One natural way to overcome
the lack of trajectories is to simulate them, in particular using
learned human walking preferences. To this end, in Section III-A
we first review an Inverse Optimal Control (IOC) method [10]
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Algorithm 1: Backward Pass.

1: function BackwardPass(T i
M,θ)

2: V (s)← −∞
3: for n = N, . . . , 1 do
4: V (n)(sg)← 0

5: Q(n)(s, a)← R(s,θ) + EP s′
s,a

[V (n)(s′)]

6: V (n−1)(s)← softmaxaQ(n)(s, a)
7: end for
8: π(a|s)← eα(Q(s,a)−V (s))

9: return π

for predicting motion trajectories in semantic environments, and
discuss its applicability and limitations. Then, in Section III-B,
we propose a novel approach based on Convolutional Neural
Networks, which is an extension of the occupancy prior estima-
tion method by Doellinger et al. [13]. For this task, we assume a
semantic map of the environment f(M), or a method to extract
it, to be available. Without loss of generality and for the sake of
visual clarity, the states in this letter are represented with one-hot
vectors, i.e. ∀s∃ks.t.fk(s) = 1 and ∀j �= k : fj(s) = 0.

A. Inverse Optimal Control on Multiple Maps (IOCMM)

Both Reinforcement Learning (RL) and Inverse RL or Inverse
Optimal Control (IOC) frameworks deal with modeling optimal
behavior of an agent, operating in a stochastic world S and
collecting rewards R on the way to their goal state sg ∈ S .
An agent’s behavior is encoded in a policy π(a|s), which maps
the state s ∈ S to a distribution over actions a ∈ A. When the
reward function is not known beforehand, which is the case in
many real-world applications, one possiblity is to learn it from
a set of observations T with an IOC method. In this case, the
reward function is parametrized by a set of parameters θ.

Modeling the behavior of an agent navigating in the environ-
ment, which is described with a set of features f(s) for each
state, suits the problem of recovering occupancy priors from
semantic map inputs well. Prior art, however, has not dealt with
abstract quantities, such as occupancy expectations, focusing
rather on the policy of an individual agent [40] or multiple agents
jointly [41]. In our work we adapt the IOC framework to this
task. As our IOC implementation is based on [10], we give a
short summary of their approach in this section.

MDP-based Maximum Entropy Inverse Reinforcement
Learning (MaxEnt IRL) [39] assumes that the observed mo-
tion of agents is generated by a stochastic motion policy, and
seeks to estimate this policy with maximum likelihood to the
available demonstrations. The reward an agent gets in state
s is linear with respect to the feature responses in that state:
R(s,θ) = r0 + θTf(s), where r0 > 0 is the base reward of a
transition and θ is a set of weights or costs of the semantic
classes:

∑K
k=1 θk = 1, θk ∈ [0, 1]. Given R, the distribution

over the sequence of states s is defined as

p(s,θ) =

∏
t e
R(st,θ)

Z(θ)
=

e
∑

t r0+θT f(st)

Z(θ)
. (2)

Finding the optimal θ∗ vector is equivalent to maximizing
the entropy of p(s,θ) in Eq. 2 while matching the semantic

Algorithm 2: Forward Pass.

1: function ForwardPass(T i
M, π)

2: D ← 0
3: for n = 1, . . . , N do
4: s← s0
5: while s �= sg do
6: D(s)← D(s) + 1
7: s′ ← π(a|s)
8: s← s′

9: f̂θ ←
∑

s f(s)D(s)

10: return f̂θ

Algorithm 3: IOCMM.

1: θ ← 1/K
2: repeat
3: f̂θ ← 0, f̄← 0
4: Batch Bm maps
5: for m = 1, . . . , Bm do
6: T ← Batch Bt trajectories fromMm

7: f̄← f̄ + 1
|T |

∑|T |
i f(T i)

8: R(s,θ)← r0 + θTf(s)
9: for i = 1, . . . , Bt do

10: π ←BackwardPass(sg)
11: f̂θ ← f̂θ+ ForwardPass(s0, π)
12: f̄← normalize(̄f)
13: f̂θ ← normalize(̂fθ)
14: ∇Lθ ← f̄− f̂θ
15: θ ← θeλ∇Lθ

16: until ||∇Lθ|| < ε

class feature counts of the training trajectories. An iterative
procedure based on the exponentiated gradient descent of the
log-likelihood L � log p(s|θ) is described by Kitani et al.
in [10]. The gradient∇Lθ is computed as the difference between
the empirical mean feature count f̄ = 1

|T |
∑|T |

i f(T i), i.e. the
average features accumulated over the T training trajectories in
the mapM, and the expected mean feature count f̂θ, the average
features accumulated by trajectories generated by the current
parameters θ:∇Lθ = f̄− f̂θ. The weight vector is then updated
as

θ ← θeλ∇Lθ , (3)

where λ is the learning rate, and the expected mean feature count
f̂θ is computed using an iterative algorithm described below.

The algorithm iterates backward and forward passes, detailed
in Algorithm 1 and 2 respectively. The backward pass uses the
current θ vector to compute the value function V (s) for each
state s in M given the goal state sg – the final state of the
trajectory T i

M ∈ T M. A stochastic motion policy πθ(a|s) to
reach sg in M under R(s,θ) is then computed and used in
the forward pass to simulate several trajectories from s0 to sg ,
where s0 is the initial state of T i

M. The expected mean feature
count is computed as a weighted sum of feature counts f̂θ =
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∑
s f(s)D(s) in the simulated trajectories, and the backward-

forward iteration is repeated for a batch of trajectories in T M.
The θ vector is updated as in Eq. 3 using the cumulative f̂θ for
the trajectories in the batch, and the algorithm is iterated until the
gradient∇Lθ reaches zero. In order to learn from multiple maps,
including those where only a subset of K features is present, we
run the backward and forward passes for a batch of trajectories
in a batch of maps, accumulating the visitation counts D(s)
across several maps. The resulting Inverse Optimal Control on
Multiple Maps (IOCMM) method is detailed in Algorithm 3.

Having obtained the optimal θ∗ weights, it is possible to
compute the reward R(s,θ∗) and simulate trajectories in any
environment which is described by a subset of K semantic
features. By simulating semantic-aware trajectories, an average
visitation count for each state, normalized across all states inM,
yields the occupancy probability p(s), as in Eq. 1. Apart from
the θ∗ vector, this simulation depends on the distributions from
which the initial and goal states s0 and sg (hereinafter denoted
s0,g) are drawn: since the algorithm is inherently unaware of
the semantics behind classes, omitting this step may result in
s0,g generation inside of obstacles or other high-cost areas. To
counteract this issue, we consider two strategies: (1) directly
learn probabilities to sample the start or goal position in a
state s, conditioned on the semantic class f(s) of the state:
p(s0,g|f(s)), and (2) generate the s0,g only from low-cost
regions with the softmax function over the estimated cost of
the state: p(s0,g) ∼ e−R(s,θ

∗)/τ . Furthermore, to generate long
trajectories spanning across the map, both distributions (1) and
(2) are scaled linearly proportional to the distance between the
s0,g and the center of the map.

1) Analysis and Discussion: While delivering adequate re-
sults in our experiments, as we show in Section IV, the IOCMM
approach to occupancy priors estimation has an inherent draw-
back. With rigid costs of a semantic class k, defined by the
corresponding θk weight, the IOCMM method cannot produce
flexible estimations for a spatial region given its position in
a wider topological structure. For instance, if we assume that
the grass surface is walkable, then it will have a low cost
and predicted people would largely ignore paved paths in a
park. However, this behavior is probably not confirmed in the
training data, which will increase the costs of the grass regions,
potentially making them not traversable in some cases where
such behavior is expected. Controlled by one θk parameter, the
cost of the semantic class stays constant over the entire map.
Similarly, learning to step on the road surface in places where
this behavior is unavoidable will inevitably lead to decreasing
the costs of the road surface everywhere in the map. Learning
such flexible behavior requires reasoning over the local context
and interconnections between different semantic attributes and
the surface. To this end, we propose our Convolutional Neu-
ral Network-based approach “Semantic Map-Aware Pedestrian
Prediction” (semapp), described in the next section.

B. Semantic Map-Aware Pedestrian Prediction (semapp)

Convolutional Neural Networks (CNNs) have shown great
successes for operations on map data, such as semantic
segmentation [32] or value function estimation for deep rein-
forcement learning [42]. For our task of predicting occupancy

distributions of walking humans in semantic environments, we
need a method to map the feature responses f(M) to proba-
bilities p(s). To this end, we extend the network to predict oc-
cupancy values in semantics-free geometric environments [13].
This network, based on the FC-DenseNet architecture [43], has
reasonably few parameters which helps to avoid overfitting when
training on limited amounts of data. Experiments with different
architectures have been made in [13] but the authors have found
their results to be very robust to such changes. We thus decided to
perform no further optimization on the network architecture. The
method in [13] is referred to as Map-Aware Pedestrian Predic-
tion (mapp), therefore we call our extension “Semantic mapp,”
or semapp. Extending the architecture from [13] to semantic
inputs by changing the input from one binary input channel
to one channel for each semantic class allows the network to
differentiate between pedestrians walking on grass, sidewalks
and streets additional to avoiding obstacles. The architecture is
outlined in Fig. 2.

The network directly outputs the map-sized tensor with the
occupancy distribution, so, unlike IOCMM, semapp requires no
trajectory simulation for inference. Consequently, for training
we convert the trajectories T M in each map M into the oc-
cupancy distribution using Eq. 1. This conversion itself is not
without meaning: trajectories, as compared to the processed oc-
cupancy distribution, contain additional temporal information.
However, this information is not necessarily relevant for the task
at hand - in fact, we are deliberately discarding the temporal
aspect of human motion, inferring instead the generalized prior
of observing a person in any state of the environment. Using
directly the distribution emphasises the relationship between
the topology of the environment and the desired occupancy
priors. Furthermore, it relaxes the requirements to the data itself:
detections are sufficient, and there is no need for continuous
tracks.

Since the network operates on map crops of fixed size, we
decompose a larger input image into a number of random crops
of appropriate size and then rebuilt the final distribution p(s) for
state s as an average of predicted occupancy values of s in all
crops which include that state (see Fig. 3). In this case random
crops, as compared to regular grids, remove the aliasing issues
from combining adjacent crops.

IV. EXPERIMENTS

In this section, we give an overview of the training data
(Section IV-A) and the experiments’ design, as well as details
on the training and baseline implementation (Section IV-B).

A. Datasets

We evaluate all methods on two datasets of human trajec-
tories in semantically-rich environments: the Stanford Drone
Dataset [14] and a set of simulated maps. Both datasets are
summarized in Table I.

To prove the concept of learning occupancy distributions from
semantic maps, we created the “U4” dataset which includes 80
hand-crafted maps of simulated Urban environments with four
semantic classes (sidewalk, grass, road and obstacle) and man-
ually marked ∼30 trajectories in each map. In this dataset, we
pay particular attention to “illegal crosswalk” detection, i.e. such
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Fig. 3. (a) CNN training on crops from larger maps in the Stanford Drone
Dataset, (b) corresponding crops from the ground truth distribution. (c) Inference
for a large map by averaging the inference for random crops in the test image,
(d) full predicted occupancy distribution from 500 crops.

TABLE I
DATASETS SUMMARY

Fig. 4. Training examples from the U4 dataset: each pair shows the semantic
map on the left and the ground truth occupancy distribution on the right. Semantic
classes include vehicle road in dark gray, pedestrian areas and sidewalks in light
gray, unpaved areas and grass in green and obstacles in red.

scenes where global topology of the environment encourages
people to step onto the driveway and cross it. Additionally, as
people often tend to cut sharp corners by walking over grass,
such behavior is also included in this dataset. Several scenes
from U4 are shown in Fig. 4.

The Stanford Drone Dataset (SDD) [14] was recorded on the
Stanford University grounds, which include a wide variety of
environments and semantic classes, e.g. shared roads for cyclists
and vehicles, pedestrian areas, college buildings, vegetation and
parking lots. The dataset includes 51 top-down scenes with
bounding boxes for various agents, from which we extracted
trajectories of people, approximating the position by the center
of the bounding box. We chose 25 scenes sufficiently covered
by trajectories and scaled the maps to the constant physical

Fig. 5. Semantic segmentation, obtained by our proof-of-concept pipeline in
the Stanford Drone dataset. Left: input images. Middle: ground truth labels.
Right: predicted semantic map.

resolution of 0.4 m per cell. We manually segmented each scene
into nine semantic classes: pedestrian area, vehicle road, bicycle
road, grass, tree foliage, bulging, entrance, obstacle and parking.
Some example scenes from SDD are shown in Fig. 1, 3 and 5.

B. Training and Evaluation

To our knowledge, there exist quite some works on human
motion prediction [1] but none of the existing methods predicts
prior occupancy distribution of walking people in urban environ-
ments only based on semantic information – a task considerably
different from trajectory prediction [9], [10]. Therefore in our
experiments we mainly compare the IOC and CNN solutions
to the problem against the ground truth distributions and the
following baseline methods:

1) uniform distribution overM
2) uniform distribution over the walkable states inM
3) semantics-unaware mapp network [13]
For quantitative evaluation we measure Kullback-Leibler di-

vergence (KL-div) between the predicted and the ground truth
distribution:

DKL(PGT||QPred.) =
∑

x∈M
PGT(x) log

PGT(x)

QPred.(x)
. (4)

We train and evaluate IOCMM, semapp and the baselines
separately on the U4 and Stanford Drone datasets. Training and
inference parameters are summarized in Table II.

We optimized the hyperparameters for IOCMM prior to
the main experiments on a small portion of data from both
datasets. For KL-div benchmarking we learn the θ weights from
leave-one-out maps in the dataset, and validate the result in the
remaining map, iterating over all maps in the respective dataset.
Furthermore, we evaluate the impact of the number of simulated
trajectories for inference in the new map (as in Eq. 1), measuring
runtime and solution quality. Finally, we estimate the two s0,g
sampling strategies, detailed in Section III-A, separately.

Training the mapp and semapp networks on the U4 dataset
is straightforward as the size of the maps (32 by 32 pixels)
is equivalent to the network input. From the larger images in
the SDD (on average 146 by 152 pixels) we take 500 random
crops of size 64 by 64 pixels. Each crop in the training data
is augmented 7 times by rotation and mirroring. In both cases,
leave-one-out maps are used for training and validation (50/50),
and the remaining map is used for evaluation. We followed the
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TABLE II
IOCMM AND SEMAPP PARAMETERS USED FOR TRAINING AND INFERENCE IN THE U4 AND STANFORD DRONE DATASETS

TABLE III
AVERAGE KL-DIV IN THE U4 AND STANFORD DRONE DATASETS

training procedure and hyperparameters from [13] which turned
out robust enough for our application. In particular, we trained
the networks for 100 epochs with binary cross-entropy loss using
the Adam optimizer [44], and stopped the training when the
performance on the validation set did not improve for 15 epochs.
Further parameters are detailed in Table II.

C. Semantic Segmentation

As a proof-of-concept that the semantic maps, required for
the methods presented in this letter, can be obtained from im-
ages during runtime, we have set up a preliminary pipeline for
semantic segmentation using UNet implementation in Keras and
TensorFlow [45]. We trained the CNN with the 19 images from
the Stanford Drone dataset, augmented 3 times with rotation,
and tested on the remaining 6 images. Even with such neg-
ligible amount of data, our experiments (see Fig. 5) reached
0.64 frequency-weighted IoU in the training dataset (78% ac-
curacy), and 0.53 IoU (69% accuracy) in the test dataset. We
are confident, that using state-of-the-art semantic segmentation
techniques [46] the performance, necessary for the application
of our method, will be reached. Combining these two pipelines
is of prime priority for our future work.

V. RESULTS

We report the mean and standard deviations of the KL-
divergences for both datasets in Table III. In the U4 dataset,
both IOCMM and semapp outperform the other baselines, fur-
thermore both proposed sampling strategies for IOCMM show
similar performance after appropriate hyperparameter optimiza-
tion. Semapp, in addition to the quantitative improvement of
minimum 14% over the closest baseline (IOCMM), offers a clear
qualitative improvement in identifying crucial non-linearities in
the predicted priors, as displayed in Fig. 6. This figure shows

the extent to which semantics of the environment impact the
distribution prediction – all semantics-unaware methods in our
comparison, e.g. uniform p(s) over M and mapp, perform
poorly. On the contrary, in both datasets semapp outperforms all
baselines, due to its ability to reason over spatially-connected
regions using convolutions, learning not only local contexts
where motion probability is high, but also which locations are
usually avoided by pedestrians. Interestingly, in the SDD dataset,
due to incomplete ground truth coverage of the scenes (as seen
in Fig. 1 and 3), removing unwalkable spaces from the uniform
distribution over all states inM only decreases performance of
this baseline. The reason here is that for many walkable states,
where no motion is recorded in the ground truth, probabilities
increase, resulting in worse KL-div scores. Despite using this
imperfect training material, semapp consistently outperforms
all baselines with the best KL-div score and smaller standard
deviation between maps.

In Fig. 7, we visualize the generalization capabilities of the
IOCMM method. To this end, we show the optimal θ∗ weights
in each individual map in both datasets, and compare them to
the globally optimal set of weights, learned from training on all
maps in the respective dataset. Here lies one benefit of the Inverse
Optimal Control strategy to find occupancy priors: IOCMM does
not only generalize well on a large amount of maps, but also
retains high performance when learning from small amounts
of data. In fact, when training on a fraction of maps from the
dataset (e.g. as little as 10 random maps), IOCMM on average
still converges to the globally-optimal θ∗ costs for semantic
classes, and thus the KL-div scores do not drop. This property
is not shared by semapp, which needs a large selection of maps
sufficiently covered by trajectories to generalize across various
local contexts.

Both methods, IOCMM and semapp, depend on the number of
random samples during inference. IOCMM samples trajectories
between random start and goal positions, while semapp samples
random crops from the larger semantic map. In Fig. 8 we show
the relation between the number of samples, performance and
inference time in the large maps of the SDD dataset. Runtimes
were measured for Python implementations of both algorithms
on an ordinary laptop with Intel Xeon 2.80 GHz ×8 CPU and
32 GB of RAM. The CNN is implemented using Theano on the
built-in GPU Quadro M2000 M. It is worth mentioning that the
inference time of semapp on one crop of size 64 by 64 pixels
(equivalent to 25.6× 25.6 m) is ∼ 0.054 seconds, appropriate
for real-time application.
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Fig. 6. Qualitative comparison of results in the U4 dataset. A binary occupancy map of the environment highlights the amount of structure imposed by semantics
in urban scenes. There is little surprise that the semantics-unaware mapp approach for learning occupancy priors [13] is not learning any meaningful behaviors
apart from the fact that people (often) tend to be found close to obstacles. On the contrary, IOCMM correctly estimates the priors in different walkable areas. On
top of that, CNN-based semapp is capable of detecting all “illegal crosswalks” in these scenes, as well as cutting over grass in such places where the topology of
the environment encourages to do so, e.g. see the sharp corner in the third row.

Fig. 7. Optimal θ costs of various semantic classes, learned by IOCMM in
each individual map, are shown in gray. Globally optimal weights for the entire
dataset are overlaid in black. Left: U4 dataset. Right: Stanford Drone dataset.

VI. CONCLUSION

In this letter, we research the problem of learning human
occupancy priors in semantically-rich urban environments using
only the semantic map as input. Considering two established
classes of approaches to this end (Inverse Optimal Control and
Convolutional Neural Networks), we show that our CNN-based
semapp approach is outperforming all baselines already with
limited training data. The IOCMM approach, on the other hand,
can be used to reasonably estimate the costs of semantic classes
from several maps and few trajectories. However, it is limited to
constant weights, which may not reflect the behavior of people in
all local contexts of semantically-complex environments. This
approach lacks reasoning on spatial relevance of surfaces to infer

Fig. 8. Runtime and performance of IOCMM (left) and semapp (right) in the
SDD dataset as a function of the number of sampled trajectories/crops during
inference. Both methods’ runtime scales linearly with the number or random
samples, while performance improves exponentially.

cases where people may prefer to walk on one surface class over
another, or not walk at all.

In future work, we intend to further investigate the pos-
sibilities of applying advanced IOC techniques, for instance,
non-linear IRL with complex features [47], non-linear reward
modeling [48], automated feature extraction to exploit local
correlations in the environment [49], [50], IOC with multiple
locally-consistent reward functions [51], and with CNN-based
reward function approximator [52]. Furthermore, we plan to
validate semapp with on-the-fly semantics estimation and extend
it to first-person view for application in automated driving to
infer potential pedestrians’ entrance points to the road.
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