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1 Introduction
This report presents a summary of the work on spatio-temporal representations for long-
term operation (task T2.1), and the application of these representations for long-term
localisation and mapping (task T2.2) and learning of activity patterns (task T2.3), in the EU
H2020 project ILIAD during its first 24 months. The research has been jointly developed
by partners University of Lincoln (UoL) and Örebro University (ORU), with UoL being the
main beneficiary.

The main objective of WP2 is to ensure long-term operation of the ILIAD system. The
system should maintain and update its representations of the environment over time
and learn site-specific information for each particular logistics warehouse. This includes
monitoring both (i) the typical activity patterns of human workers and (ii) the effects of
those actions, by learning the dynamics of expected activity and adapting to unexpected
changes in the environment over time. It further includes (iii) self-monitoring the quality
of localisation and mapping.

In summary, the main achievements of WP2 during the first 24 months of the project
to meet these objectives have provided the ILIAD system with an ability to:

• efficiently represent the changing structure and semantics of the environment over
time;

• model the environment dynamics;

• reliably self-localise in dynamic and changing environments; and

• predict the presence and movement of humans at specific times given the current
context.

The rest of this report is structured as follows. Section 2 reviews the fundamental
spatio-temporal representations developed for learning and prediction across the ILIAD
system (T2.1). Section 3 describes the application of these representations within novel
algorithms for persistent, performance-aware mapping and self-localisation (T2.2), build-
ing on the methods for sensor calibration, mapping and self-localisation developed in
WP1, as reported under Deliverable D1.2. Section 4 describes the further application of
the developed spatio-temporal representations for learning and predicting site-specific
models of human activities, corresponding to the typical patterns of activity at a particular
warehouse site (T2.3). Finally, Section 5 provides a summary and draws conclusions on
the work so far, together with the outlook and future research directions for the ongoing
research in WP2 of the ILIAD project.

2 Spatio-Temporal Representations for Long-Term Operation
In task T2.1 we have surveyed Artifical Intelligence (AI) approaches and representations
for long-term operation [1], as part of a Special Issue of the IEEE Robotics and Automa-
tion Letters (RA-L) journal on AI for Long-Term Autonomy [2]. The survey [1] reviewed
AI approaches for long-running robots, including key aspects of knowledge representa-
tions in the context of navigation and perception, such as the maintenance of multiple
representations of possible environment states, robustness to appearance change and
learning about dynamics, as well as reasoning about the locations of objects and people
in the environment. We have further proposed, implemented and evaluated a number of
complementary representation schemes, described in the following sections.

Spatio-temporal maps, as opposed to spatial-only, geometric maps, are attracting
more and more interest in the field of robotic mapping. While traditionally, mapping
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has been performed using a static-world assumption, or including methods for actively
filtering out moving objects, we are seeing a greater interest in map representations that
explicitly represent time-dependent events: for example, temporal patterns of when a
particular place is occupied or not, or the the motion patterns through an environment.
For a detailed review of approaches, please see [3, 1].

2.1 Spatio-temporal representations in ILIAD
In the remainder of this section, we introduce the spatio-temporal representations that
we have worked on in ILIAD’s task T2.1. There are mainly four representations that
have either been developed entirely, or substantially contributed to, as part of ILIAD;
Circular–Linear Flow Field maps (CLiFF-map) [4], Spatio-Temporal Flow maps (STeF-
map) [5, 6], Warped Hypertime (WHyTe) [7], and finally deep neural networks for spatio-
temporal mapping [8, 9].

These representations are complementary, as each covers different aspects of spatio-
temporal mapping. CLiFF-map (Section 2.2) represents local motion patterns in a contin-
uous fashion, but does so at discretely sampled locations in a map. STeF-map (Section 2.3)
similarly represents local motion patterns at discrete locations. It further adds information
about temporal variability; i. e. how motion patterns change over time (such as differ-
ent times of day). However, it represents motion patterns as a discrete set of directions
only, and does not represent the speed or intensity of each pattern. Warped Hypertime
(Section 2.4) is a generative model that is designed for predicting future states of the
map, including occupancy, velocities, etc. Of these three representations, CLiFF will be
preferable for global flow-aware motion planning when high spatial resolution is needed
and STeF will be preferable in environments with strongly time-dependent motion pat-
terns, while WhyTe is expected to be preferable when applied to motion prediction. In
WP5, we are currently developing a hierarchical motion planner that can make use of
several underlying maps (and their respective cost functions) and select the best available
trajectory. Finally, the deep-learned representations (Section 2.5) are utilised for different
purposes, namely to facilitate long-term updates of semantic map information and fast
global localisation.

2.2 Circular–Linear Flow Field maps (CLiFF-map)
One map representation of environment dynamics that has been developed within ILIAD
is the Circular–Linear Flow Field map (CLiFF-map) [4], which is a probabilistic approach
for general flow mapping. It is designed to handle the motion of objects (e. g. people) as
well as the flow of continuous media (e. g. air). CLiFF-map represents motion patterns
using multimodal statistics to jointly represent speed and orientation, also enabling the
reconstruction of a dense map from spatially and temporally sparse data.

The CLiFF-map model consists of a set of Gaussian mixture models (GMMs), each
representing typical motion directions and speeds at a specific location. CLiFF-map also
maintains variables describing the confidence of its model at each location, as well as the
likelihood of observing motion there. To deal with the circular nature of the random vari-
able representing direction, the probabilistic model of velocity assumes a semi-wrapped
normal distribution, which can be seen as a distribution on a cylinder such that the orien-
tation is wrapped around its circumference and the speed is directed along its height (see
Figure 1).

Figure 2 summarises the main points in the CLiFF-map mapping procedure. The first
step (data collection) is to record velocity measurements. For flows of people, this can be
done either via people tracking with on-board sensors, or with data from an overhead
camera. For air flow measurements, it can be done with an on-board anemometer. For
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Figure 1: Illustrating the semi-wrapped Gaussian mixture model used by CLiFF-map. Left:
velocity observations at one location. Right: the CLiFF-map component at this location.
In this example, the model represents the raw data by a mixture of two Gaussian model
components.

each location, sampled from the area covered during data collection, the raw velocity
measurements are clustered and used to generate a semi-wrapped Gaussian mixture
model (as shown in Figure 1 and the top-right part of Figure 2). From the potentially
sparse locations, the map can be densified using a process called imputation, where
expected data at new locations are computed from the surrounding observed locations.
Finally, the quality of the map is estimated with a Gaussian process, which combines the
observed motion ratio and observation ratio into a continuous measure of trust for each
point in the map.

In summary, CLiFF-map builds a time-averaged model of the flow field at a discrete set
of locations. For further details, please refer to the work of Kucner et al. [4, 10]. Section 4 in
the present document illustrates how the representation can be used to learn site-specific
patterns.

2.3 Spatio-Temporal Flow maps (STeF-map)
The human activities in an environment may change over time, e. g. pedestrian flows at
the entrance of a work place at the start and end of a shift are likely to be in opposite
directions. While the CLiFF-map representation described above builds a model of the
average flow field, the aim of the STeF-map representation [5, 6] is to create a model of
human motion which is able to predict the flow patterns of people over time, as well as
where and when these flows are happening.

The underlying geometric space is represented by a grid, where each cell contains
k temporal models, which correspond to k discrete orientations of pedestrian motion
through the given cell over time (where k = 8 in our experiments as in Figures 3 and 17a).
The temporal dimension of activities is modelled using periodic functions, by applying the
Frequency Map Enhancement (FreMEn [11]) to recorded detections of human motions in
each of the k directions in each cell of the grid. FreMEn is a mathematical tool based on
the Fourier Transform, which considers the probability of a given state as a function of
time and represents it by a combination of harmonic components. Then, transferring the
most prominent spectral components to the time domain provides an analytic expression
representing the probability of human motion (in a given direction for a given grid cell) at
a given time in the past or future.

After computing the probabilities for every single orientation, we conclude that the
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Figure 2: Overview of the CLiFF mapping procedure. Top left, Data collection: A robot is
travelling through an environment collecting velocity measurements. In four locations
dynamics were observed (black arrows), while in two locations there was no motion.
(The velicity measurements from one location is shown in polar coordinates in the “raw
data” plot at the top right.) Bottom right, Sparse map: Based on the raw data, to each
observed location in the map a probabilistic velocity model (GMM) is associated (as shown
in Figure 1. Based on the amount of collected data a Gaussian Process in constructed,
estimating the trust in the estimated velocity models in unobserved locations. Bottom
left, Dense map: To obtain a dense map, information from observed locations (green
points) are combined to estimate the velocity model also in unobserved locations (red
points). The influence of observed locations is proportional to the distance and intensity
of motion. This figure is reprinted from Kucner [10].
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(a) Prediction at 10:00

(b) Prediction at 18:00

Figure 3: STeF-map representation at two different times after some training.

dominant orientation a every cell for that instant of time t , corresponds to the orientation
with the highest predicted probability:

cellθ = argmax(pθ (t )), θ ∈ i
2π

k
, i ∈ {0, 1, . . . , k −1}. (1)

If we apply that approach for every single reachable cell in the map, we obtain a map
representation of people flow that evolves over time if some rhythmic patterns are found
over time (Figure 3).

2.4 Warped Hypertime
In ongoing work, we are also developing a “warped hypertime” spatio-temporal represen-
tation which facilitates learning and prediction of both discrete and continuous spatial
representations [7, 12]. An overview of the approach is given in Figure 4.
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Figure 4: Warped hypertime representation: The data points (x , t )observed over time (top,
black) are first processed by frequency analysis [11] to determine a dominant periodicity
T . Then, the time t is projected onto a 2D space (called hypertime) and the vectors
(x , t ) become (x , cos(2π t /T ), sin(2π t /T )). (See bottom, left). The projected data are then
clustered (bottom, center, blue) to estimate the distribution of x over the hypertime space
(green). Projection of the distribution back to the uni-dimensional time domain allows to
calculate the probabilistic distribution of x for any past or future time.

This representation first uses FreMEn [11] to identify (temporally) periodic patterns in
the data gathered. Then, it transforms each time periodicity into a pair of dimensions that
form a circle in 2D space and adds (concatenates) these dimensions to the vectors that
represent the spatial aspects of the modelled phenomena. Finally, a generalised model
is built by applying traditional techniques like clustering or expectation-maximisation
over the warped time-space representation. The resulting multi-modal model represents
both the structure of the space and temporal patterns of the changes or events. In this
way, the proposed method can turn a spatial representation into a spatio-temporal one
by extending it with several wrapped dimensions representing time, with each pair of
temporal dimensions representing a given periodicity observed in the gathered data. We
hypothesise that since this model respects the spatio-temporal continuity of the modelled
phenomena, it will provide more accurate predictions than models that partition the
modelled space into discrete elements, or that models which neglect the temporal aspects.

2.5 Deep Learned Representations
In contrast to the above hand-crafted representations, we have also investigated deep
neural networks for spatio-temporal representation fusing quantitative and qualitative
information, e. g. for predicting human motion patterns [8] and long-term 3D semantic
mapping [9].

A Convolutional Neural Network (CNN) is a partially connected neural network where
the neurons are connected to the features within a set of spatial constraints. This archi-
tecture can be achieved through a “convolution” operation, which is highly parallelisable
with GPU implementation. Due to this partial connectivity, CNN-based architectures
have been widely-used in image-processing applications. Compared to hand-engineered
features, CNNs can learn task-specific visual features from low-level geometric features to
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Figure 5: The deep learning architecture for learning from sequential data.

high-level semantic features with end-to-end learning. A Recurrent Neural Network (RNN)
is a class of neural networks, which can learn the transitions of the hidden state given a
sequence of observations. Hence, RNNs are widely used for temporal prediction from
consecutive observations. Complementary to neural network architectures, e.g. CNN and
RNN, a Gaussian Process (GP) is a Bayes-based non-parametric model to approximate the
posterior of the data under the assumption of a multi-variate Gaussian prior for regression
and classification problems. As a non-parametric method, GP measures the similarity of
all the training examples from the kernel function and predicts the unknown examples
with both mean value and its deviation (uncertainties).

Within ILIAD, we leverage the advantages of different types of neural networks and
Gaussian processes for different tasks. That is, we use CNN for visual feature learning,
RNN for sequential prediction and GP for uncertainty modelling. As a consequence, we
use a sequence-to-sequence encoder-decoder model for learning from sequential data.
The inputs are a sequence of robot observations Ot , Ot+1, ..., Ot+n and the learning target
Pt , Pt+1, ..., Pt+n (this can be any learning target, e. g. robot position, semantics, pedestrian
trajectory, etc.) For each observation, a CNN or multi-layer perception is used to learn
an effective feature embedding. Then the CNN-learned features are used as the input of
the recurrent neural network (RNN), and the RNN can learn the transitions of prediction
targets in a hidden state space. With the consideration of consecutive observations, the
RNN is likely to make more robust predictions with a properly learned “remember” or
“forget” mechanism. Moreover, a (non-parametric) Gaussian Process can be applied
to the outputs of an RNN to learn the uncertainties for applications where prediction
uncertainties are important to know.

This architecture is generic and can be used for solving multiple robotic problems. For
example, we have adapted this architecture for long-term self-localisation in Section 3.1,
long-term semantic mapping in Section 3.2, and the prediction of pedestrian trajectories
in Section 4.4.
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Figure 6: The left image shows a superimposed point cloud from ten Velodyne scans
using NDT Fuser and the right image is the birds-view image of the superimposed point
cloud by projecting the z values on the x − y plane. We set a visual scope of 100x100x10
meters and resolution of 0.4 meters per pixel to generate a 400x400 gray-scale image for
learning.

3 Reliability-aware long-term localisation and mapping
In T2.2 we have surveyed the background literature on long-term mapping and locali-
sation [1]. We have further developed new approaches for long-term localisation and
mapping. This includes a new ‘front-end’ for long-term mapping and localisation, which
includes algorithms for detecting and tracking people in the environment, in collabo-
ration with the EU-funded project FLOBOT [13], which can then be excluded from the
‘back-end’ optimisation.

3.1 Long-term localisation
Reliability-aware long-term localisation and mapping consists of two components: long-
term localisation and persistent reliability-aware mapping. For long-term localisation,
the robot should be able to self-localise with a priori knowledge of the environment when
the “kidnapping” happens. For example, during long-term operation, robot localisation
is likely to fail when the robot is switched off or moved by a human. Conventional Lidar-
based global localisation methods either register the local Lidar scan with the global map
or deploy Monte-Carlo Localisation (e. g. NDT-MCL as described in D1.2) initialised with
uniformly distributed particles. However, these geometry-based methods are not scalable
for large-scale applications. Even for small maps, it may take hundreds of seconds to
converge to a correct pose estimate [14].

In ongoing work, we are experimenting with employing a deep neural network, instead
of using geometry-based methods, to estimate the distribution of the robot’s 6DOF global
pose to initialise the particles in NDT-MCL. More specifically, we first superimpose ten
frames of consecutive Velodyne 3D lidar scans using NDT Fuser (as described in D1.2),
and encode the superimposed point cloud as a gray-scale birds-eye image as shown
in Figure 6. Then a deep regression neural network is used to learn the 6DOF global
pose, using ground-truth data from a previously recorded map. We use the first ten
convolutional layers of the VGG-16 architecture as the base net and another two triple-
layer fully-connected layers to learn the three-dimensional t p = (px , py , pz ) position and
four-dimensional rotation (quaternion) r p = (qx , qy , qz , qw ), respectively. We propose the
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Figure 7: The deep learning architecture used for global localisation. In the mini-batch
training, a batch of paired images is used. The weights of the pair of images are shared.
Currently, we use the convolutional layers of the VGG-16 network architecture pretrained
by ImageNet for dense feature extraction, and two multi-layer fully-connected regressors
are used for predicting the global position and orientation.

following loss function for minimising the position loss and rotation loss.

trans_rot_loss= ||t p − t g t ||2+λ (1−< r p , r g t >2) (2)

Here,< r p , r g t > is the inner product of the predicted quaternion and ground truth quater-
nion, and the second term indicates the distance between two normalized quaternion
vectors.

Given a pair of images from time t −1 and t , the predicted global poses T p
t−1 and T p

t ,
and the ground truth poses T g t

t−1 and T g t
t , we can calculate the relative transform from

the predictions and ground truth and make them geometrically consistent.

consistency_loss= trans_rot_loss( (T p
t−1)

−1T p
t , (T g t

t−1)
−1T g t

t ) (3)

More specifically, T ∗t is the transform matrix which can be obtained from the transla-
tion t and rotation r at time t . We convert the transform matrices back to pose vectors
to compute the translational and rotational losses. We find that with the assistance of
geometric consistency loss, the neural network can learn temporally consistent features,
thereby enhancing the robustness of global pose estimation.

The proposed deep neural network can learn site-specific and spatio-temporally
consistent features. However, the inference (prediction) is not fully probabilistic with
L2 loss. The drawback is that the uncertainty of the prediction cannot be provided. In
other words, the neural network cannot give the confidence of the re-localisation. In
our localisation pipeline, the confidence of global localisation is very important, which
determines whether to initialise the particles and switch to Monte-Carlo localization.
In order to mitigate this issue, we combine Gaussian process regression with the deep
localisation network to estimate the robot global pose with uncertainties; that is, we apply
a hybrid probabilistic regression technique where the deep neural network is used to
extract features and build the kernel of a Gaussian Process.

10



H2020-ICT-2016-2017: 732737 ILIAD Deliverable D2.1

Figure 8: A qualitative result of global localization using our deep learning architecture.
Given the bottom right image (created from a 3D lidar scan), the method provides an
accurate localisation estimate quite close to the ground truth, as shown to the left (full
map) and top right (zoomed in). The two green/red coordinate frames show the ground
truth and estimated position, respectively. This example is from the Michigan NCLT
dataset (http://robots.engin.umich.edu/nclt/). We use session 2012-01-08, 2012-01-14,
2012-01-22 for training and session 2012-05-11 for testing.

In the inference of Gaussian process regression, the conditional probability of the
latent variable of testing example f ∗ given the training data {X , y } is:

P ( f ∗ |X , y ) =N (K∗n (Knn +σ
2I )−1 y , K∗∗−K∗n (Knn +σ

2I )−1Kn∗) (4)

This conventional inference formula is not scalable as the computation of (Knn+σ2I )−1

is O (n 3). Instead of using all the training examples for the prior Knn , we use a reduced
set of points Z ∈Rm∗F (i. e., the inducing points) to approximate the whole training set,
where m is much smaller than n . Given the latent variables of the inducing points, u , the
posterior p (u |y ) can be estimated by a variational prior distribution q (u ), and then in
order to get the optimal Z , the marginal log likelihood p (y ) is maximised via maximising
the evidence lower bound (ELBO):

L (p (y )) =

∫

p (u )p (u |y )du =

∫

p (u ) ELBO(u )du

=

∫

p (u )E [l o g p (y |u )]−KL(q (u )||p (u )) du , (5)

where KL refers to the Kullback–Leibler divergence. Titsias et al. [15] prove the final
formula of the optimal inducing points Z and the mean and covariance of q (u ). In order
to further make the training scalable, we train the SVIGP [16] (Stochastic Variational
Inference Gaussian Process) from mini-batch data.

We use an RBF kernel in the Gaussian process and the kernel is constructed from
deep neural network features. To be more specific, we only use the Gaussian process for
the position (translation) prediction, and the feature of the last layer (shown in Figure 7)

11
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(a) A large uncertainty is obtained from the GP when the global localisation
fails. (Estimate is far from true position, and particles are very spread out.)

(b) A small uncertainty is obtained from GP when the global localisation
succeeds. (Estimate is close to true position, particles are concentrated
around the estimate.)

Figure 9: A qualitative result of Gaussian Process localisation with uncertainties. Particles
for initialising the MCL filter are shown with small red arrows. The ground truth pose and
the one estimated by our network are shown with two labelled coordinate frames.
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Figure 10: Histograms of translational and rotational error of the output from the global
localisation network. We have found that most of the translation errors are smaller than
20 metres and most rotation errors are smaller than 10 degrees. The median is 3.5 metres
and 2.3 degrees.

Figure 11: The proposed Recurrent-OctoMap is able to fuse a single-scan semantic
understanding into a global 3D map.

is used. By this means, the parametric neural network can be integrated with the non-
parametric Gaussian Process.

Since the creation of an ILIAD-specific long-term data set from warehouses has been
delayed, the Michigan long-term dataset (http://robots.engin.umich.edu/nclt/) has been
used for training and evaluation of the preliminary results shown in Figures 8 and 10.
Here, we have used the data collected in January 2012 for training and that in May 2012
for evaluation.

Our ongoing research is investigating the integration of the learning method with
the conventional geometry-based method, i. e. Monte-Carlo Localisation. We proposed
to use our learning method to estimate the distribution of the robot’s global pose, and
thereby to initialise particle filters. Currently our global localisation network achieves
a median translation error of 3.5 metres and a median translation error of 2.3 degrees
for the Michigan data set (covering approximately 1 km2). This is an encouraging result,
and will likely result in fast convergence of an MCL filter for global “kidnapped robot”
localisation. A publication on these results is planned for Autumn 2019.

13
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(a) An example obtained by Bayesian update.

(b) An example obtained by Recurrent-Octomap

Figure 12: A qualitative result of semantic mapping on the ETH parking-lot dataset.

3.2 Reliability-aware long-term mapping
3.2.1 Long-term semantic map updating

We have developed a novel approach for long-term 3D semantic mapping based on a
deep-learned Recurrent-OctoMap representation [9]. The most widely-used approach for
3D semantic map refinement is a Bayesian update, which fuses the consecutive predictive
probabilities following a Markov-Chain model. In contrast, this research proposes a
learning approach to fuse the semantic features, rather than simply fusing predictions
from a classifier. In this research, we represent and maintain our 3D map as an OctoMap,
and model each cell as a recurrent neural network (RNN), to obtain a Recurrent-OctoMap.
In this case, the semantic mapping process can be formulated as a sequence-to-sequence
encoding-decoding problem. It is worth noting that here we use a multi-layer perceptron
instead of CNN, and Gaussian processes are not used in this research. Moreover, in order
to extend the duration of observations in our Recurrent-OctoMap, we developed a robust
3D localisation and mapping system for successively mapping a dynamic environment
using more than two weeks of data, and the system can be trained and deployed with
arbitrary memory length.

We have validated our approach on the ETH long-term 3D lidar dataset. The experi-
mental results show that our proposed approach outperforms the conventional Bayesian
update approach with 16 % better overall accuracy for this dataset [9]. (See Figures 11
and 12.)
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(a) Ground truth reference map.

(b) Map to be evaluated (constructed without reference localisation).

Figure 13: Map quality evaluation, showing the two maps to be compared, and their
extracted topology graphs.

3.2.2 Reliability-aware mapping by map self-assessment

Per-map quality assessment T2.2 also contains work on quantifiable measures of map qual-
ity to understand where maps are “broken” or out of date. In the third and fourth years of
ILIAD, we will develop such measures that are suitable also for industrial use-cases such
as warehouses.

Work up until now has focused on evaluating state-of-the-art measures for map qual-
ity on warehouse data from ILIAD use cases. In particular, we have implemented and
evaluated the metrics of Schwertfeger [17] (as also specified in the “technical requirements
and performance measures” annex to D7.1). These metrics hinge on comparing the map
in question to a ground truth reference map. The comparison relies on extracting the
structure of the environment and representing it as a graph. In this deliverable we present
three of Schwertfeger’s metrics to evaluate the quality of the map: coverage, accuracy, and
local consistencies.

The method relies on comparison of topology graphs based on the Voronoi diagrams
of two 2D occupancy maps, one of which is the reference map. Figure 13 shows two maps
from a dairy production warehouse: one produced using ground-truth localisation from
Kollmorgen Automation, and one using the NDT Fuser mapping framework [18], which
will be compared to the reference map.

There are some notable issues with Schwertfeger’s approach for comparing maps that
are visible in Figure 13. Firstly, the method is not able to fully handle an environment that
is not fully connected (which is typically the case in warehouses) and is only partially able
to extract a topology graph from the maps in this example. No graph is computed for the
right room, on the other side of a door. Furthermore, some of the metrics are sensitive
to small perturbations and noise in the maps, and do not necessarily reflect low-quality
maps, as detailed below.
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The coverage measure is computed as the ratio between matched nodes in the refer-
ence graph to the total number of nodes in it. In this example, the coverage measure is
58 %. That is caused not by low quality of the map, but by the fact that even small changes
in the shape of the environment substantially change the resulting graphs. Furthermore,
the graph only covers part of the environment, which substantially limits the quality of
the evaluation.

The accuracy score is computed as the mean squared error of the position of the
matched vertices. In this example, the evaluated map and the ground truth map are built
from the same data set. Therefore both maps are aligned so that the global and relative
accuracy are equal. The accuracy score is computed as the ratio of the mean squared

error to a configured maximum error d GlobalAccuracy
max . Here the problem is that an arbitrarily

chosen maximum error makes it impossible to objectively compare the quality of two
maps. The mean squared error of locations of the nodes is equal to 81 pixels squared in
the example from Figure 13. As d GlobalAccuracy

max we have selected (2w )2, with w the width of

the longest wall; in this case d GlobalAccuracy
max = 169. This gives us a local and global accuracy

of 47 %.
We have also attempted to compute the local consistencies measure. This metric is

computed in a similar way as the relative accuracy, but the distance of one pair of con-
nected nodes in V is compared to the corresponding inter-node distance in V ′. However,
since the two graphs are not equal, due to some clutter, the distance is computed only
for the paired nodes, which in turn means that the average score for all of the evaluated
nodes is very low. The consistency score for this pair of maps is 28 %, which is far from
our target value of > 80 %.

In summary, computing map quality for this warehouse example using Schwertfeger’s
method, which we consider to be the closest thing to an established state of the art
for map quality assessment, does not yield results that are consistent with intuition for
our warehouse data sets. The map in Figure 13b looks quite similar to its ground truth
reference in Figure 13a but still the coverage and accuracy are both less than 60 %, which
is rather far from the ILIAD target values that were set out to be > 80% coverage and
> 95% relative accuracy. However, the low numbers seem to be caused by the nature of
the evaluation algorithm, rather then by the poor quality of the map.

In ongoing work, we are instead developing alternative methods for self-assessment
of map quality, which furthermore are designed to work without a ground-truth reference
map. Being able to estimate the quality of a robot-generated map without comparison
to a reference map is important both for easy deployment and low-maintenance during
long-term operation. This line of work will be presented in more detail in D2.2, but the
general approach is to learn statistical relations between elements of the map and identify
abnormal elements. Our approach is similar in spirit to that of Chandran-Ramesh and
Newman [19] but we will study the use of unsupervised methods in order to better address
ILIAD’s objectives of easy deployment and long-term introspective monitoring.

Per-scan quality assessment While the work above pertains to quantifying map quality and
identifying problem cases globally on the map level, we have also published work on
quantifying the quality of scan registration, which can be used while the map is being built
via scan-to-scan or scan-to-model registration [20]. We have performed a comparative
evaluation of a number of methods for geometric consistency checking from the literature,
in order to classify aligned versus misaligned 3D point cloud scans. In addition, we
have trained an AdaBoost classifier from a combination of these classifiers. We have
compared these methods on two data sets from qualitatively different environments in
order to avoid overfitting the classifiers to any particular environment; one structured
environment where building walls are the dominant features, and one unstructured
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Name Description

NDT1 NDT score
NDT2 NDT score with ground removed
NDT3 NDT score, only overlapping regions
NDT4 NDT score, with ground removed and only overlapping regions
RMS1 Root-mean-square point-to-point distance, with nearest-neighbour threshold 4 m
RMS2 RMS distance, threshold 2 m
RMS3 RMS distance, threshold 0.5 m
RMS4 RMS distance, threshold 0.25 m
RMS5 RMS distance, threshold 0.15 m
RMS6 RMS distance, threshold 0.05 m
RMS7 RMS distance, statistical threshold [22]
HEST NDT Hessian translation parameters
HESR NDT Hessian rotation parameters
PLEX Plane extraction [23, 19]
NORM Partitioned mean normals [24]
SIM1 Surface interpenetration measure [21]
SIM2 Surface interpenetration measure with overlap scaling
ADA AdaBoost, combining the above classifiers

Table 1: The scan alignment methods evaluated in Figure 14.

outdoor environment. We also evaluated how well the methods generalise by training in
one environment and testing in the other.

Figure 14 shows the accuracy of all the methods for the structured environment. The
methods that have been evaluated are listed in Table 1. From these results, it is clear
that using the NDT score as a classifier for detecting misaligned scans is a viable option,
especially when only computing the score function for points in overlapping segments
of the two point clouds (NDT3 and NDT4). This is true even when the classification
threshold is learned from a very different environment. Combining several classifiers with
AdaBoost did not lead to significantly better results. The best classifiers (NDT score and
AdaBoost) detect close to 100 % of the large errors (50 cm) and 90 % of the small errors
(10 cm) when trained on structured data, and 80 % of small errors when trained on an
unstructured data set. The RMS (root mean squared) point-to-point error is not good for
detecting small errors, and other methods such as the surface interpenetration measure
(SIM) [21] do not generalise from one environment to the other.

4 Learning and Predicting Site-Specific Activity Patterns
In T2.3 we have applied our spatio-temporal flow maps CLiFF-map and STeF-map to data
from a human tracking system to model site-specific activity patterns [5, 6]. We have also
applied deep-learned neural networks for predicting human motion patterns [8].

4.1 Learning activity patterns with CLiFF-map
Figure 15 shows an example CLiFF-map created from a people-tracking data set recorded
at NCFM (the National Centre for Food Manufacturing in Holbeach, UK) during ILIAD’s
Milestone 2 demonstration in September 2018.

We have also published research showing how the CLiFF-map representation can be
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(a) Accuracy on the structured Hannover data set (8-fold cross validation).

(b) Accuracy when trained on the unstructured Kjula data set and evaluated on the struc-
tured Hanover data set.

Figure 14: Accuracy of scan alignment classifiers for three ranges of error offsets. The best
classifiers (NDT score and AdaBoost) detect close to 100 % of the large errors and 90 % of
the small errors when trained on structured data, and 80 % of small errors when trained
on an unstructured data set.
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Figure 15: Example illustrating the generation of a CLiFF-map, taken from the MS2
demonstration at NCFM in September 2018. The top figure shows tracked pedestrians
(from Task 3.3), and the bottom figure illustrates the modes of the CLiFF-map that was
learned from long-term observation of pedestrian flows through this corridor. Each arrow
in the bottom figure represents the mode of one GMM component. (The variances and
mixing factors of the GMMs are not visualised, for clarity.)

exploited by RRT-style motion planning [25, 26]. Qualitatively, using CLiFF-maps has
been shown to enable robots to follow or avoid expected flows of people, depending on
the application. Quantitatively, we have shown that by planning on a CLiFF-map, the
planner finds a path quicker than when planning on a geometric-only map. These results
will be reported under WP5 (in D5.3).

4.2 Learning and predicting activity patterns with STeF-map
So far, in order to evaluate the STeF-maps approach, we ran experiments using two real
pedestrian datasets. Both feature complex human movement and enough days to train
the models and perform the evaluation from a long-term perspective.

The first one is a pedestrian tracking dataset recorded at the ATC shopping center in
Osaka (Japan), which covers an area of around 1000 m2 (Figure 16a). From this environ-
ment we used 52 consecutive days (26 Wednesdays and 26 Sundays), taking the first 46 to
perform exploration and the other 6 days as the evaluation data.

The second dataset was collected by a robot at one of corridors in the Isaac Newton
Building building at the University of Lincoln (UoL) as shown in Figure 16b. The robot
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(a) (b)

Figure 16: (a) ATC shopping center map - (b) UoL dataset: Robot location in the corridor
and example of a person walking seen by the Velodyne scans.

was placed in one of the T-shaped junctions covering a total area of around 75 m2 (see
Figure 16b). Our dataset spanned from mornings to late evenings for 14 days, sparsely
recorded over a four week period. From these, 12 days were used for training and the
remaining two were used for testing.

Learning the Activity Patterns To do the learning we assume that the model is provided with
people detections from the environment, containing the x , y coordinates together with
the angle of movement α for every timestamp t . These x , y positions for each detection
are discretised and assigned to a corresponding cell, and the orientation α is assigned to
one of the k bins, whose value is incremented by 1. In other words, we count the number
of people detections occurring in each orientation bin and cell. After a predefined interval
of time, we normalise the bins, and use the normalised values to update the spectra of
the temporal models (FreMEn models). Then, we reset the bin values to 0 and start the
counting again.

Predicting of the Site-SpecificActivities To predict the behaviour of human movement through
a cell at a time t , we calculate the probability for each discretised orientation θ , (θ = i 2π

k
and i ∈ {0 . . . k −1}), associated to that cell as

pθ (t ) = p0+
m
∑

j=1

pj cos(ω j t +ϕ j ), (6)

where p0 is the stationary probability, m is the number of the most prominent spectral
components, and pj ,ω j and ϕ j are their amplitudes, periods and phases. The spectral
componentsω j are drawn from a set ofωs that covers periodicities ranging from 1 to 24
hours with the following distribution:

ωs = s ·3600, s ∈ 0, 1, 2, 3, ..., 24. (7)

Computing the probability at multiple times we can obtain the time evolution of the
people behaviour going through a certain cell, as shown in Fig. 20b.

4.3 Learning and predicting activity patterns with Warped Hypertime
We have validated the Warped Hypertime approach on 2-dimensional data indicating the
positions of people in several corridors of the Isaac Newton Building at the University of
Lincoln, using the UoL dataset described above.

To valuate the model quality, we split the gathered data into training and test sets,
and learn the model from the training set only. Then, we partition the timeline of the test
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(a) (b)

Figure 17: (a) 8 bins discretising every 45 degrees the full circumference. (b) Model
prediction over 24h with m = 2 and probability distribution of each orientation at t =18:00
of one cell.

data into a spatio-temporal 3D grid. For each cell g , we count the number of detections
dg that occurred and compare this value with the value pg predicted by a given spatio-
temporal model. To demonstrate the model’s ability to estimate the spatio-temporal
distribution over time, we let it predict the most likely occurrence of people for different
times. Figure 18 shows that the predicted distributions of people depend on time and
follow the shape of the corridor (which is not part of the training data).

In ongoing work we are evaluating and comparing this approach alongside the other
reported spatio-temporal representations for learning and prediction in the ILIAD system.

4.4 Pedestrian trajectory prediction using deep learning
We have also used the sequence-to-sequence encoder-decoder architecture from T2.1
(Figure 5) to learn site-specific pedestrian pedestrian trajectories from long-term robot
deployment data, as part of our work in T2.3. In the pedestrian trajectory prediction
problem, the observations are global poses of the detected pedestrians. Hence we do not
use the CNN for feature encoding, and GP is not used in this application. It is worth noting
that we include the current time and day of the week (assuming a weekly periodicity in this
case) as another input feature of the neural network for time- and site-specific trajectory
prediction. An example of the 3DOF pose prediction is shown in Figure 19 and more
quantitative results can be found in our paper [8].

5 Ongoing and Future Work
Ongoing work in Work Package 2 will enable introspective active learning, by continuously
monitoring the acquired spatio-temporal models, making an appropriate assessment
of the precision and uncertainty in these models, and then taking actions to resolve the
uncertainty and remove the errors. This approach will also be used in turn to keep the
maps up-to-date and the robots successfully localised despite changes to the environment
structure and dynamics over time.

Furthermore, in order to evaluate and test the generalisation of the multiple spatio-
temporal models presented in this section, new data collection is been carried out in
scenarios that are similar to the ones the ILIAD robots will face in the final implementation.
Those are the NCFM and Orkla warehouse environments (Figure 20), where recordings
are being performed using both the pallets trucks and the forklifts.
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Figure 18: Predicted people presence in a corridor of the University of Lincoln, UK, at
various times of the day using the learned representation in Figure 4.
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Figure 19: A screen-shot of our 3DOF pedestrian trajectory prediction in a 3D lidar scan.
The detected people are enclosed in green bounding boxes with a unique ID. The coloured
lines represent the observed people trajectories. The red arrows indicate the predicted
poses for the next 1.2 s.

(a) NCFM, Holbeach, UK. (b) Orkla Foods, Örebro, Sweden.

Figure 20: Environments currently used for long-term data collection.

23



H2020-ICT-2016-2017: 732737 ILIAD Deliverable D2.1

References
[1] Lars Kunze, Nick Hawes, Tom Duckett, Marc Hanheide, and Tomas Krajnik. Artificial

intelligence for long-term robot autonomy: A survey. IEEE Robotics and Automation
Letters, 3(4):4023–4030, October 2018.

[2] L. Kunze, N. Hawes, T. Duckett, and M. Hanheide. Introduction to the special issue
on AI for long-term autonomy. IEEE Robotics and Automation Letters, 3(4):4431–4434,
October 2018.

[3] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and
J.J. Leonard. Past, present, and future of simultaneous localization and mapping:
Towards the robust-perception age. IEEE Transactions on Robotics, 32(6):1309–1332,
2016.

[4] Tomasz Piotr Kucner, Martin Magnusson, Erik Schaffernicht, Victor Hernandez Ben-
netts, and Achim J. Lilienthal. Enabling flow awareness for mobile robots in partially
observable environments. IEEE Robotics and Automation Letters, 2(2):1093–1100,
April 2017.

[5] Sergi Molina, Grzegorz Cielniak, Tomas Krajnik, and Tom Duckett. Modelling and
predicting rhythmic flow patterns in dynamic environments. In UK-RAS Network
Conference, December 2017.

[6] Sergi Molina, Grzegorz Cielniak, Tomáš Krajník, and Tom Duckett. Modelling and
predicting rhythmic flow patterns in dynamic environments. In TAROS, pages 135–
146, 2018.

[7] Tomas Vintr, Sergi Molina Mellado, Grzegorz Cielniak, Tom Duckett, and Tomas Kra-
jnik. Spatiotemporal models for motion planning in human populated environments.
In Student Conference on Planning in Artificial Intelligence and Robotics (PAIR). Czech
Technical University in Prague, Faculty of Electrical Engineering, September 2017.

[8] Li Sun, Zhi Yan, Sergi Molina, Marc Hanheide, and Tom Duckett. 3dof pedestrian
trajectory prediction learned from long-term autonomous mobile robot deployment
data. In 2018 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, May 2018.

[9] Li Sun, Zhi Yan, Anestis Zaganidis, Cheng Zhao, and Tom Duckett. Recurrent-
OctoMap: Learning state-based map refinement for long-term semantic mapping
with 3-d-lidar data. IEEE Robotics and Automation Letters, 3(4):3749–3756, October
2018.

[10] Tomasz Piotr Kucner. Probabilistic Mapping of Spatial Motion Patterns for Mobile
Robots. PhD thesis, Örebro University, 2018.

[11] Tomas Krajnik, Jaime P. Fentanes, Joao M. Santos, and Tom Duckett. FreMEn: Fre-
quency map enhancement for long-term mobile robot autonomy in changing envi-
ronments. IEEE Transactions on Robotics, 33(4):964–977, August 2017.

[12] Tomás Krajník, Tomás Vintr, Sergi Molina Mellado, Jaime Pulido Fentanes, Grzegorz
Cielniak, and Tom Duckett. Warped hypertime representations for long-term auton-
omy of mobile robots. ArXiv (to appear in IEEE Robotics and Automation Letters with
presentation at IROS’19), abs/1810.04285, 2018.

24



H2020-ICT-2016-2017: 732737 ILIAD Deliverable D2.1

[13] Zhi Yan, Li Sun, Tom Duckett, and Nicola Bellotto. Multisensor online transfer
learning for 3d lidar-based human detection with a mobile robot. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, October
2018.

[14] Tomasz Piotr Kucner, Martin Magnusson, and Achim J. Lilienthal. Where am I?: An
NDT-based prior for MCL. In Proceedings of the European Conference on Mobile
Robots (ECMR), September 2015.

[15] Michalis Titsias. Variational learning of inducing variables in sparse gaussian pro-
cesses. In Artificial Intelligence and Statistics, pages 567–574, 2009.

[16] James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data.
arXiv preprint arXiv:1309.6835, 2013.

[17] Sören Schwertfeger. Robotic mapping in the real world: Performance evaluation and
system integration. PhD thesis, Jacobs University Bremen, 2012.

[18] Todor Stoyanov, Jari Saarinen, Henrik Andreasson, and Achim J. Lilienthal. Normal
distributions transform occupancy map fusion: Simultaneous mapping and track-
ing in large scale dynamic environments. In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems (IROS), pages 4702–4708, 2013.

[19] M. Chandran-Ramesh and P. Newman. Assessing map quality using conditional
random fields. In Field and Service Robotics, pages 35–48, 2008.

[20] Håkan Almqvist, Martin Magnusson, Tomasz Piotr Kucner, and Achim J. Lilienthal.
Learning to detect misaligned point clouds. Journal of Field Robotics, 35(5):662–677,
August 2018.

[21] Luciano Silva, Olga R.P. Bellon, and Kim L. Boyer. Precision range image registration
using a robust surface interpenetration measure and enhanced genetic algorithms.
IEEE Transactions on Robotics, 27(5):762–776, May 2005.

[22] Szymon Marek Rusinkiewicz. Efficient variants of the ICP algorithm. In Proceedings
of the International Conference on 3-D Digital Imaging and Modeling, pages 145–152,
2001.

[23] J. Weingarten, G. Gruener, and R. Siegwart. A fast and robust 3D feature extrac-
tion algorithm for structured environment reconstruction. In Proceedings of the
International Conference on Advanced Robotics, 2003.

[24] Ameesh Makadia, Alexander Patterson, and Kostas Daniilidis. Fully automatic reg-
istration of 3D point clouds. In Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2006.

[25] Luigi Palmieri, Tomasz Kucner, Martin Magnusson, Achim J. Lilienthal, and Kai O.
Arras. Kinodynamic motion planning on Gaussian mixture fields. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages
6176–6181, May 2017.

[26] Chittaranjan Srinivas Swaminathan, Tomasz Piotr Kucner, Martin Magnusson, Luigi
Palmieri, and Achim Lilienthal. Down the CLiFF: Flow-aware trajectory planning un-
der motion pattern uncertainty. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 7403–7409, 2018.

25


	Introduction
	Spatio-Temporal Representations for Long-Term Operation
	Spatio-temporal representations in ILIAD
	Circular–Linear Flow Field maps (CLiFF-map)
	Spatio-Temporal Flow maps (STeF-map)
	Warped Hypertime
	Deep Learned Representations

	Reliability-aware long-term localisation and mapping
	Long-term localisation
	Reliability-aware long-term mapping
	Long-term semantic map updating
	Reliability-aware mapping by map self-assessment


	Learning and Predicting Site-Specific Activity Patterns
	Learning activity patterns with CLiFF-map
	Learning and predicting activity patterns with STeF-map
	Learning and predicting activity patterns with Warped Hypertime
	Pedestrian trajectory prediction using deep learning

	Ongoing and Future Work

