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1 Introduction
This report presents a summary of the work on spatio-temporal representations for long-
term operation (task T2.1), and the application of these representations for long-term
localisation and mapping (task T2.2) and learning of activity patterns (task T2.3), in the EU
H2020 project ILIAD during its first 24 months. The research has been jointly developed
by partners University of Lincoln (UoL) and Örebro University (ORU), with UoL being the
main beneficiary.

The main objective of WP2 is to ensure long-term operation of the ILIAD system. The
system should maintain and update its representations of the environment over time
and learn site-specific information for each particular logistics warehouse. This includes
monitoring both (i) the typical activity patterns of human workers and (ii) the effects of
those actions, by learning the dynamics of expected activity and adapting to unexpected
changes in the environment over time. It further includes (iii) self-monitoring the quality
of localisation and mapping.

In summary, the main achievements of WP2 during the first 24 months of the project
to meet these objectives have provided the ILIAD system with an ability to:

• efficiently represent the changing structure and semantics of the environment over
time;

• model the environment dynamics;

• reliably self-localise in dynamic and changing environments; and

• predict the presence and movement of humans at specific times given the current
context.

The rest of this report is structured as follows. Section 2 reviews the fundamental
spatio-temporal representations developed for learning and prediction across the ILIAD
system (T2.1). Section 3 describes the application of these representations within novel
algorithms for persistent, performance-aware mapping and self-localisation (T2.2), build-
ing on the methods for sensor calibration, mapping and self-localisation developed in
WP1, as reported under Deliverable D1.2. Section 4 describes the further application of
the developed spatio-temporal representations for learning and predicting site-specific
models of human activities, corresponding to the typical patterns of activity at a particular
warehouse site (T2.3). Finally, Section 5 provides a summary and draws conclusions on
the work so far, together with the outlook and future research directions for the ongoing
research in WP2 of the ILIAD project.

2 Spatio-Temporal Representations for Long-Term Operation
In task T2.1 we have surveyed Artifical Intelligence (AI) approaches and representations
for long-term operation [1], as part of a Special Issue of the IEEE Robotics and Automa-
tion Letters (RA-L) journal on AI for Long-Term Autonomy [2]. The survey [1] reviewed
AI approaches for long-running robots, including key aspects of knowledge representa-
tions in the context of navigation and perception, such as the maintenance of multiple
representations of possible environment states, robustness to appearance change and
learning about dynamics, as well as reasoning about the locations of objects and people
in the environment. We have further proposed, implemented and evaluated a number of
complementary representation schemes, described in the following sections.

Spatio-temporal maps, as opposed to spatial-only, geometric maps, are attracting
more and more interest in the field of robotic mapping. While traditionally, mapping
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has been performed using a static-world assumption, or including methods for actively
filtering out moving objects, we are seeing a greater interest in map representations that
explicitly represent time-dependent events: for example, temporal patterns of when a
particular place is occupied or not, or the the motion patterns through an environment.
For a detailed review of approaches, please see [3, 1].

2.1 Spatio-temporal representations in ILIAD
In the remainder of this section, we introduce the spatio-temporal representations that
we have worked on in ILIAD’s task T2.1. There are mainly four representations that
have either been developed entirely, or substantially contributed to, as part of ILIAD;
Circular–Linear Flow Field maps (CLiFF-map) [4], Spatio-Temporal Flow maps (STeF-
map) [5, 6], Warped Hypertime (WHyTe) [7], and finally deep neural networks for spatio-
temporal mapping [8, 9].

These representations are complementary, as each covers different aspects of spatio-
temporal mapping. CLiFF-map (Section 2.2) represents local motion patterns in a contin-
uous fashion, but does so at discretely sampled locations in a map. STeF-map (Section 2.3)
similarly represents local motion patterns at discrete locations. It further adds information
about temporal variability; i. e. how motion patterns change over time (such as differ-
ent times of day). However, it represents motion patterns as a discrete set of directions
only, and does not represent the speed or intensity of each pattern. Warped Hypertime
(Section 2.4) is a generative model that is designed for predicting future states of the
map, including occupancy, velocities, etc. Of these three representations, CLiFF will be
preferable for global flow-aware motion planning when high spatial resolution is needed
and STeF will be preferable in environments with strongly time-dependent motion pat-
terns, while WhyTe is expected to be preferable when applied to motion prediction. In
WP5, we are currently developing a hierarchical motion planner that can make use of
several underlying maps (and their respective cost functions) and select the best available
trajectory. Finally, the deep-learned representations (Section 2.5) are utilised for different
purposes, namely to facilitate long-term updates of semantic map information and fast
global localisation.

2.2 Circular–Linear Flow Field maps (CLiFF-map)
One map representation of environment dynamics that has been developed within ILIAD
is the Circular–Linear Flow Field map (CLiFF-map) [4], which is a probabilistic approach
for general flow mapping. It is designed to handle the motion of objects (e. g. people) as
well as the flow of continuous media (e. g. air). CLiFF-map represents motion patterns
using multimodal statistics to jointly represent speed and orientation, also enabling the
reconstruction of a dense map from spatially and temporally sparse data.

The CLiFF-map model consists of a set of Gaussian mixture models (GMMs), each
representing typical motion directions and speeds at a specific location. CLiFF-map also
maintains variables describing the confidence of its model at each location, as well as the
likelihood of observing motion there. To deal with the circular nature of the random vari-
able representing direction, the probabilistic model of velocity assumes a semi-wrapped
normal distribution, which can be seen as a distribution on a cylinder such that the orien-
tation is wrapped around its circumference and the speed is directed along its height (see
Figure 1).

Figure 2 summarises the main points in the CLiFF-map mapping procedure. The first
step (data collection) is to record velocity measurements. For flows of people, this can be
done either via people tracking with on-board sensors, or with data from an overhead
camera. For air flow measurements, it can be done with an on-board anemometer. For
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Figure 1: Illustrating the semi-wrapped Gaussian mixture model used by CLiFF-map. Left:
velocity observations at one location. Right: the CLiFF-map component at this location.
In this example, the model represents the raw data by a mixture of two Gaussian model
components.

each location, sampled from the area covered during data collection, the raw velocity
measurements are clustered and used to generate a semi-wrapped Gaussian mixture
model (as shown in Figure 1 and the top-right part of Figure 2). From the potentially
sparse locations, the map can be densified using a process called imputation, where
expected data at new locations are computed from the surrounding observed locations.
Finally, the quality of the map is estimated with a Gaussian process, which combines the
observed motion ratio and observation ratio into a continuous measure of trust for each
point in the map.

In summary, CLiFF-map builds a time-averaged model of the flow field at a discrete set
of locations. For further details, please refer to the work of Kucner et al. [4, 10]. Section 4 in
the present document illustrates how the representation can be used to learn site-specific
patterns.

2.3 Spatio-Temporal Flow maps (STeF-map)
The human activities in an environment may change over time, e. g. pedestrian flows at
the entrance of a work place at the start and end of a shift are likely to be in opposite
directions. While the CLiFF-map representation described above builds a model of the
average flow field, the aim of the STeF-map representation [5, 6] is to create a model of
human motion which is able to predict the flow patterns of people over time, as well as
where and when these flows are happening.

The underlying geometric space is represented by a grid, where each cell contains
k temporal models, which correspond to k discrete orientations of pedestrian motion
through the given cell over time (where k = 8 in our experiments as in Figures 3 and 17a).
The temporal dimension of activities is modelled using periodic functions, by applying the
Frequency Map Enhancement (FreMEn [11]) to recorded detections of human motions in
each of the k directions in each cell of the grid. FreMEn is a mathematical tool based on
the Fourier Transform, which considers the probability of a given state as a function of
time and represents it by a combination of harmonic components. Then, transferring the
most prominent spectral components to the time domain provides an analytic expression
representing the probability of human motion (in a given direction for a given grid cell) at
a given time in the past or future.

After computing the probabilities for every single orientation, we conclude that the
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Figure 2: Overview of the CLiFF mapping procedure. Top left, Data collection : A robot is
travelling through an environment collecting velocity measurements. In four locations
dynamics were observed (black arrows), while in two locations there was no motion.
(The velicity measurements from one location is shown in polar coordinates in the “raw
data” plot at the top right.) Bottom right, Sparse map : Based on the raw data, to each
observed location in the map a probabilistic velocity model (GMM) is associated (as shown
in Figure 1. Based on the amount of collected data a Gaussian Process in constructed,
estimating the trust in the estimated velocity models in unobserved locations. Bottom
left, Dense map: To obtain a dense map, information from observed locations (green
points) are combined to estimate the velocity model also in unobserved locations (red
points). The in�uence of observed locations is proportional to the distance and intensity
of motion. This �gure is reprinted from Kucner [10].
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