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ORU Örebro University
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PCL Path-Crossing from the Left

PCR Path-Crossing from the Right

QTC Qualitative Trajectory Calculus

QTCC Qualitative Trajectory Calculus Version C

RMSH Robot Meets Stationary Human

ROL Robot Overtakes Left

ROR Robot Overtakes Right

ROS Robot Operating System

SAR Spatial Augmented Reality

SEEV Salience Effort Expectancy Value

UoL University of Lincoln

vSMU Vehicle Safety Motion Unit
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1 Introduction
The results covered in this report contribute to ILIAD objectives O4 (human-aware AGV
fleets in shared environments), by ensuring a correct human-robot spatial interaction,
and O6 (human safety), by supporting communication of navigation intents, to create a
shared environment that is also safe for humans.

These objectives are part of Work Package (WP) 3: Human-aware AGV Fleets. WP 3
covers methods, theory and experiments supporting robot awareness of humans and
socially normative behaviour in shared spaces. Within WP 3, this deliverable focuses on
tasks T3.4 and T3.5, with the following two goals.

• Learn human spatial behaviour models and develop qualitative representations to
track, predict and reason about human-robot joint motion (T3.4) with the goal of
legible and collision-free paths. Conduct user studies to evaluate perceived legibility
by users.

• Investigate means to communicate intended robot motion and equip the vehi-
cles with such means including indicators or laser projection devices for graphic
communication on the floor and surrounding surfaces (T3.5).

At a closer level, task T3.4 is highly coupled with tasks T3.3, T4.2, T4.3 and T5.2. Reli-
able human tracking (provided by T3.3) and current robot motion planning (from T5.2)
are main inputs to asses human-robot interaction. This interaction may lead to safety
constraints additional to the ones described by tasks T4.2 and T4.3 and eventually feed
back to the robot motion planning.

This document describes the implementation and validation by user studies of the
proposed frameworks for spatial interaction (T3.4) and navigation intent communication
(T3.5). First, Section 2 gives an overview of the safety framework employed in ILIAD, and
where the work of T3.4 and T3.5 fits in. The qualitative human-robot spatial interaction
from T3.4 is detailed in Section 3 and the work on mutual communication of navigation
intent ftom T3.5 is in Section 4.

2 Safety and Human Robot Interaction in ILIAD
In industrial applications with environments shared between humans and robots, Au-
tonomous Mobile Robots (AMRs) must move safely around humans and in a way which
humans perceive to be safe. Physical human safety in robot navigation can be all but as-
sured by simply stopping robot motion when anything is detected closer than a minimum
safe distance to a robot’s safety laser(s). This is highly inefficient and usually conflicts with
personal space [7], thus perceived as unsafe. We will describe in this section the ILIAD
approach to safety in Human Robot Spatial Interaction (HRSI).

2.1 Definition
To increase safety and readability, in ILIAD we propose a safety stack with five different
layers, each one focused on a different interaction level and designed to minimise the
activation of the lower ones (see Table 1). Higher layers try to prevent unnecesary human
robot interactions and potentially harmful manoeuvres. Middle layers will give relevance
to Human Robot Interaction (HRI) at local, shorter timeframes and finally the lowest layer
will ensure basic safety.

Our top-most safety layer (layer 5) is flow-aware motion planning using maps of
dynamics (from T5.2 and T2.1, to be covered in detail in D5.3). This layer creates (global)
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robot paths that are consistent with human patterns, reducing the amount of potential
interference. It is based upon statistical information about human behaviours, trying to
adapt robot paths to general expected motion flows, learned from site-specific data; as
opposed to reacting to currently observed people, which is handled by the lower layers.

Below this one, there are the three middle safety layers. Navigation intent commu-
nication is the fourth safety layer proposed in ILIAD, as it makes robot behaviour more
legible to humans. It creates an information loop between human and robot, and es-
timates what is the current worker focus depending on his gaze. These features may
prevent most of the actions of the other layers, by allowing humans to avoid conflicting
robots and making them aware of their whereabouts. This layer is the focus of T3.5 and is
described in more detail in Section 4.

Next, safety layer 3 provides awareness to the presence of humans in the robot’s
path during path execution, which wasn’t covered by the flow-aware motion planning
and navigation intent communication layers. Situation-aware planning (see Section 3)
allows to include human interactions into the path planning pipeline, aiming to increase
perceived safety by humans while preventing any safety risk along the robot’s trajectory.
This layer will provide dynamic costmaps based on human interaction to the navigation
planning, and will allow safe and legible spatial interactions.

In order to allow humans to carry on safely and undisturbed, a speed modulation
of the robot’s planned trajectory may be sufficient. Initially, the Vehicle Safety Motion
Unit (vSMU) (to be reported in D4.3) will filter out velocities that could harm humans
moving around the Autonomous Ground Vehicle (AGV). It creates speed constraints,
derived from an extensive injury safety database (see D4.4), in order to produce speeds
that are guaranteed not to cause injury. These speed constraints are then extended in
the Extended vSMU safety layer to improve legibility and predictability of robot motion
while still avoiding replanning as much as possible for efficiency reasons.

Finally, the lowest safety layer prevents the robot from getting close to any obstacle.
Safety stops are the last resort. They halt the robot without taking into account any
software condition but the readings of the safety laser sensor.

# Layer Role WP

5 Flow-aware global motion planning Create paths consistent with human behaviours WP5
4 Navigation Intent Communication Make robot motion legible by humans WP3
3 Situation-aware planning Include local interactions into planning WP3
2 Extended vSMU: Speed Constraints Adjust robot speed to human interactions WP3, WP4
1 Safety stops Avoid collisions

Table 1: Safety layers in ILIAD. Highlighted ones are described in this deliverable.

This deliverable will focus on the safety features derived from local human interaction.
That is, the three middle safety layers which deal with local information about human
activity and use it to intelligently influence the behaviour of the robots and humans.

2.2 Implementation and Integration of the Safety Stack in ILIAD
Path planning modules centralize all the navigation information in ILIAD. These path
planning modules take into account both global human patterns from flow-maps [3, 4, 5, 6]
(layer 5) and local human information obtained from situational constraints (layer 3).

Layer 4 (see Section 4) uses navigation information from the robot to communicate
navigational intent to humans, using a projector mounted on the robot. Additionally, we
make use of eye-tracking devices for monitoring gaze and attention direction, which may
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be used in this module to adjust the displayed information depending on the attention of
surrounding humans.

Human tracking information (Task 3.3, see also D3.1 and D3.2) is the basic input
to safety layer 3 in ILIAD. Several real-time human tracking systems can be used here,
reducing the coupling between human tracking and safety in ILIAD: from the lightweight
one described in [1] to the multimodal proposed by [2] and the further improvements
developed in Task 3.3. These systems fuse data from the robot’s on-board RGB-D camera
and laser, and do not require any sensors to be installed in the environment.

We use tracking information and robot motion data to create situational constraints.
These are generated from the the specific interaction described by human-robot relative
trajectory using Qualitative Trajectory Calculus (QTC). The Qualitative Trajectory Calculus
(QTC) module generates a discrete-space qualitative description of human-robot relative
motion, a QTC state (see Section 3.3).

QTC state evolution is later used in the HRSI detection module. This module will
estimate the most likely interaction from the QTC flow describing the relative trajectory,
using the approach proposed in Section 3.5. Detected interaction will be one from the set
of relevant ones previously defined in Section 3.4.

Depending on the detected spatial interaction, we define areas around the robot that
should be avoided using cost map constraints. These maps have two uses. First, they
shape valid paths generated by the path planning module, thus defining safety layer
3. But also, they are used by the Continuous Trajectory Assessment (CTA) module to
continuously monitor the potential risk of remaining path. The CTA module guarantees
that the proposed path is safe for humans by closely monitoring the robot’s path execution
in presence of humans. A safe path may turn unsafe if a human changes trajectory, a new
actor appears in the scene or any other change occurs.

Depending on the risk level, the CTA module can trigger different actions. A lower risk
level allows to stick to the original navigation plan, which is usually preferred, and relies
on reducing robot speeds to allow humans to proceed undisturbed. This is addressed by
the extended vSMU module, implementing safety layer 2. If the current path is unfeasible
due to safety reasons, a recalculation of the current plan is requested. This will generate a
completely new trajectory, taking into account current human interaction. This module
will abort the current plan and request a new one. This is a last resort action, to be taken
only if the situation at hand is considered harmful.

Finally, layer 1 has no software implementation, as it is a hardware component limiting
the minimum distance detected from laser sensors that allows the robot to move.

3 Qualitative Human-Robot Spatial Interaction
This section addresses HRSI awareness with per-situation probabilistic models of qualita-
tive abstractions of human and robot movement. Our probabilistic models use Qualitative
Trajectory Calculus Version C (QTCC) [8] to encode the movements of two positions in
space from one point in time to a subsequent point in time. This lets us represent pairs
of trajectories in HRSI as sequences of qualitative states, where each state describes the
relations of the movements of both human and robot.

3.1 Related Work
Common approaches to robot navigation consider humans the same as any other obsta-
cle [9], resulting in movements that are inefficient and perceived as unsafe. Human-Aware
Navigation (HAN) is required for legible paths which are more likely to be perceived as
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Figure 1: Interaction between ILIAD safety layers.

safe [10]. Approaches for HAN often consider Hall’s proxemic zones [7], but neglect to
consider the intentions of human’s movement [9].

Predictive models address this limitation by identifying and forecasting human trajec-
tories. They rely on studying human motion in social environments, so that most likely
paths are known when a similar situation is matched. These works propose the use of
qualitative domains and symbols to reduce the complexity of the task at hand [11] and
include desired features (that increase social normativity) [12]with good performance in
crowded scenarios.

However, these approaches do not capture in their motion models the presence of a
robot. There is the implicit assumption that humans will move as if the robot was just
another pedestrian. This is not appropriate for navigation of heavy industrial robots,
which cause humans to feel unsafe when the robot moves close to them. Also, using these
models as path planners for the robot may not provide the safest route, but instead the
most human-like. This is particularly relevant for the domain at hand: shared warehouse
environments. Within industrial applications, robots need to ensure safety over any other
requirement, so mimicking human trajectories (e .g., cutting through a crowd) may be
discouraged.

QTC used in our HRSI model describes relative movements of both human and
robot [8] in the same way that two humans walking on intersecting trajectories negotiate
their movements without knowledge of their quantitative positions [13]. A set of per-
situation Hidden Markov Models (HMMs) of transitions between QTC states can be used
to classify the HRSI situation from QTC sequences generated from pairs of human and
robot trajectories [14]. Here we extend the HRSI situation classification of [13], modelling
additional situations.

3.2 QTC Model
Our probabilistic model uses sequences of QTCC states to develop a discrete transitions
HMM for each of a set of HRSI situations, defined as classes in Section 3.3 and extending
our previous work [1]. We encode pairs of human and robot trajectories using QTC version
C (QTCC) [8]. In QTCC, movements of two agents in space are represented by a 4-tuple
of state descriptors (h1, r1, h2, r2). Each descriptor expresses a qualitative spatial relation
using a symbol ∈ {−, 0,+}. With this 4-tuple of descriptors comprised of 3 symbols, there
a total of 34 = 81 possible QTCC states.

7



H2020-ICT-2016-2017: 732737 ILIAD Deliverable D3.3

Figure 2: QTCC state (−,−,0,−): the human is moving directly towards the robot, while
the robot is moving toward and on its left side.

The relations of the descriptor symbols are defined as follows, where t is the earlier of
the two points in time, r is the robot’s position, and h is the human’s position:

h1) movement of h w. r. t. r at time t :

− : h is moving towards r

0 : h is neither moving towards nor away from r

+ : h is moving away from r

r1) movement of r w. r. t. h at time t :

The same as h1), but with h and r swapped

h2) movement of h w. r. t. the line
−→
h r at time t :

− : h is moving to the left side of
−→
h r

0 : h is moving along
−→
h r or not moving at all

+ : h is moving to the right side of
−→
h r

r2) movement of r w. r. t. the line
−→
r h at time t :

The same as h2), but with h and r swapped

For example, Figure 2 shows an interaction: a human is moving towards the robot
(h1 =−) and the robot is approaching too (r1 =−). The human is directly headed towards
the robot (h2 = 0) but robot is towards its left side (r2 =−).

3.3 Classes of HRSI
In [15] there were two relevant classes in human robot spatial interaction. We extend this
initial classification to account for the interactions in warehouse environments. Specifi-
cally, we focus on interactions that require a robot to adjust its movements to accommo-
date the human’s. In order to account for these, we model the following situations (see
Figure 3) with HMMs for our classifier:

• Passing By on the Left (PBL): Both actors pass each other on the left side from their
perspective, moving in opposite directions.

• Passing By on the Right (PBR): Both actors pass each other on the right side from
their perspective, moving in opposite directions.
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• Robot Overtakes Left (ROL): The robot passes on the left of the human while both
move in the same direction.

• Robot Overtakes Right (ROR): The robot passes on the right of the human while
both move in the same direction.

• Path-Crossing from the Left (PCL): The robot has to slow or stop movement to allow
the human to move across the robot’s intended path from the robot’s left side.

• Path-Crossing from the Right (PCR): The robot has to slow or stop movement to
allow the human to move across the robot’s intended path from the robot’s right
side.

• Rejection: Any situation in which a human is detected, but a qualitative constraint
of the robot movement as described in Section 3.5.2 and 3.5.3 is not required. E .g.,
Robot Meets Stationary Human (RMSH): The robot moves toward the stationary
human, and stops when close. We record trajectory pairs from examples of RMSH
situations to test our multi-HMM classifier’s ability to reject such situations. For
these situations we apply a default constraint, i.e. Section 3.5.1, enforcing safe and
comfortable distance between human and robot.

Passing By on the Right(PBR)Passing By on the Left (PBL)

Robot Overtakes Right (ROR)Robot Overtakes Left (ROL)

Path-crossing on the left (PCL) Path-crossing on the right (PCR)

Figure 3: HRSI Classes

3.4 Creating HMM for our Multi-HMM Situation Classifier
We consider in this study 6 classes C = (‘PBL’, ‘PBR’, ‘ROL’, ‘ROR’, ‘PCL’, ‘PCR’), exluding
rejection, thus we will model 6 different HMMs, where the observation corresponds to a
new state. Each HMM is comprised by |Q |× |Q | transition matrices listed in Ai , a |Q |× |Q |
observation matrix B , and the 1×|Q | initial state vectors listed in Ii . These account for all
possible transitions in QTCC states Q = ((−− −−) . . . (++ ++)), as in [8] on each class.
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Our system is composed by the collection of transition matrices A = (A1 . . . A|C |), and
initial state vectors I = (I1 . . . I|C |), indexed by class number. Each element of the list of
per-class HMMs H = (H1 . . . H|C |) is a tuple composed by (Ac , B , Ic ) with c indexing the
class’s name in C , fully describes our system.

All of the classifier’s HMMs share B as their observation matrix. We use B to account
for the possibility of generating incorrect QTCC states due to sensor and tracking error,
assuming a probability t = 0.95 that the true (hidden) QTCC state matches the emitted
QTCC state generated from tracked human and robot positions. So, we initialise matrix
B almost as an identity matrix with some noise, with diagonal B [i , i ] = t and the rest of
elements B [h , o ] = 1−t

|Q |−1 | (b 6= o ).
A list S of recorded QTCC state sequences, generated from human-robot trajectory

pairs, is used to obtain A, and I . First, we map each QTCC state in each sequence Si to its
index in Q . Each state sequence in S will have a class label assigned li ∈ [1 . . . |C |], so that
the list of labels will be L = (L1 . . . L |S |) and L s is the class label for sequence Ss . Initially, A
and I are assigned uniform probabilities. Then we use the recorded state sequence list S
to model the probabilities

ILn
[Sn [1]] = ILn

[Sn [1]] +1 for n = 1 to |S |,
ALn
[Sn [q ],Sn [q +1]] = ALn

[Sn [q ],Sn [q +1]] +1 for n = 1 to |S |, and q = 1 to |Sn | −1.

Finally we normalise matrix B , the matrices of A, and the vectors of I , such that each
row sums to 1. With these HMMs, we can classify a QTCC sequence as the class of the
HMM that estimates the highest log-likelihood of the given sequence being observed [16].
If the Kullback-Leibler (KL) divergence [17] of these log-likelihoods, normalised to sum to
1, from a uniform distribution of the same size is greater than a given threshold then the
sequence is instead rejected.

3.5 Situational Constraints
The goal of our constraints is to ensure more socially legible trajectories and to reduce
the number of times the robot stops due to proximity of humans to its safety laser(s). It
is also relevant within the warehouse robotics context that robots adhere to their initial
paths, for the sake of fleet coordination and legibility.

Situational as constraints described here are an extension of the proposal in [18].
Originally, constraints were defined by cost-maps in velocity space. We aim now for a more
generic solution using metric cost-maps, allowing constraints to be applied to any motion
planners which rely on hierarchical cost-maps, but still maintain speed modulation in
place. Hierarchical cost-maps also allows to include other constraint sources such as
local obstacles detected by sensors, multiple human constraints, etc.

Hence, constraints can work in two ways. Firstly they can impose speed restrictions
on the robot proportional to the cost of movement. Secondly they can be used to update
the most efficient path, triggering a request for replanning when the maximum or average
cost of a path passes a set threshold.

3.5.1 Default Costmap Constraints

A default constraint costmap is defined in order to create a safety area around the closest
human when none of the situations modelled by our multi-HMM situation classifier are
detected. This default costmap is influenced by the classical proxemics approach. Cell
costs in this default costmap are defined using the following two parameters:

• Distance to human (D ): to penalise reductions in the relative distance between
human and robot.
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Figure 4: Default constraints, example in simulation.

Figure 5: Block Left Constraint examples in simulation, for situations PBL, ROL, and PCL
ordered from left to right. The white arrow indicates the human position and orientation.

• Arc around human-robot connecting line (A): to create a penalty arc around the
human, this is, penalised spaces for the robot on the sides of the human.

Using these basic parameters, the cost map creates a basic exclusion area around humans
that is always valid. Figure 4 illustrates an example of the default constraints implemented
in the ILIAD safety stack.

3.5.2 Block Left

For the situations PBL, ROL, and PCL we assign higher costs to cells left of the line
−→
h r ,

proportional to their distance to the human (D ), but covering a much wider penalisation
area than the default distance cost. We then apply the default constraint as described in
Section 3.5.1 to cells which have not been assigned a cost, ensuring the robot maintains a
comfortable distance from the human, even on the side which is not being ‘blocked’. (See
Figure 5.)

3.5.3 Block Right

For the situations PBR, ROR, and PCR, we generate the constraint cost-map using an
identical approach to that described in Section 3.5.2, but instead assigning high costs to

cells on the right side of the line
−→
h r . (See Figure 6.)
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Figure 6: Block Right Constraint examples in simulation, for situations PBR, ROR, and PCR
ordered from left to right. The white arrow indicates the human position and orientation.

Figure 7: Illustration (left) and photograph (right) of laboratory setup for recording HRSI
situations.

3.6 Validation: User Studies
3.6.1 Laboratory Setup for Recording HRSI Situations

The robot used for this validation is one of several automated pallet trucks belonging
to the ILIAD Project. This one, ‘robot5’, is a modified Linde CitiTruck, equipped with a
front-facing safety laser, a 3D lidar, a Kinect 2 RGBD camera, and a computer running
Robot Operating System (ROS), interfacing with the sensors, and the pallet truck’s motor
controllers.

In the University of Lincoln (UoL) robotics lab we placed coloured tape on the floor,
marking start and end positions for the human and the robot, as pictured in Figure 7. In
the diagram on the left of Figure 7, arrows indicate start positions, and crosses indicate
end positions. The robot follows the path between the black positions. In HRSI situations
where the robot is stationary, the robot stays at the start position. When the robot begins
moving it emits a click sound, which we use to signal the human to move. In conditions
where the robot does not move, the experimenter speaks the signal ‘go’. We record the
robot and nearest human position on the robot’s metric map, from when the robot begins
moving, to when the human reaches their end position. Human positions are tracked
within an ‘active area’ to reduce the risk of the experimenter being tracked instead of the
interacting human. The human moves as follows for the different situations:

PBL – The human moves from the green arrow to the green cross, moving to their left to
pass the robot.

PBR – The same as PBL, but the human moves to their right to pass the robot.

ROL – The human moves from the yellow arrow to the yellow cross, moving as slowly as
possible to allow the robot to overtake at a safe speed.

12
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ROR – The same as ROL, but the human moves from the blue arrow to the blue cross.

PCL – The human moves from the topmost red cross to the other red cross.

PCR – The human moves from the bottom red cross to the topmost red cross.

RMSH – The human stands stationary at the yellow cross, the robot moves from the black
arrow to the black cross.

3.6.2 Training dataset

To train our multi-HMM classifier we recorded 35 interactions between a robotics expert
and the robot for each of the 6 situation classes of Section 3.3, and 15 interactions for
the rejection situation RMSH. A total of 225 HRSIs. We create the multi-HMM classifier’s
HMMs as described in Section 3.4, using QTCC sequences generated from human and
robot trajectories using QSRlib [19]. We use QSRlib’s ‘collapse’ feature when generating
all of our QTCC sequences from HRSIs, to remove repeating states, reducing the variance
between sequences from HRSIs of differing length. We used 3-fold cross validation for
preliminary estimation of our classifier’s performance, to measure the likely impact of
changes to our model to its ability to classify HRSI situations beyond those recorded in
this training set.

3.6.3 Test dataset

To test the ability of our multi-HMM classifier to classify the situation of spatial interac-
tions between the robot and non-experts of varied age, gender and cultural background,
we conducted a study. In this repeated measures study, participants enacted HRSI situa-
tions using the methods described in Section 3.6.1. These situations were enacted in a
randomised order, with each participant also performing 1 of a set of 5 rejection situations,
chosen at random. We realised in hindsight that only 1 of these situations, RMSH, would
need to be rejected by our classifier as the others did not involve the robot moving. Thus
with 11 participants, we recorded a total of 66 interactions, including 2 RMSH interac-
tions. We created the multi-HMM classifier’s [! ([!)HMM using QTCC sequences from
the training set, and evaluated its performance in classifying the HRSI situation of QTCC

sequences from the study’s HRSIs. Training of the classifier took only 50 ms to execute.
Each classification took 60 ms to execute on average. The number of interactions recorded
per class is detailed in the study’s confusion matrix in Figure 8, which has its statistics
explained in Section 3.6.4.

3.6.4 Results and discussion

Figure 8 is a confusion matrix containing metrics of the performance of the classifier at
predicting the HRSI situation from QTCC sequences, using training set sequences. The
cells of the confusion matrix with a green or pale red background contain the count of
classifications for the predicted class and actual class given by the cell’s row and column
respectively. Below each of these counts is the count as a percentage of the total number
of classifications. The rightmost column of the matrix contains, in this order, the count of
QTCC sequences classified as the row’s class, and the precision and False Positive Rate
of classifications as the row’s class. The bottom row of the matrix contains, in this order,
the count of QTCC sequences that are labelled with the column’s class, and the recall and
False Negative Rate of classifications as the column’s class. The bottom-right cell contains,
in this order, the total count of all classifications, the overall accuracy, and the overall
misclassification rate.
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Figure 8: Confusion matrix for validation of our multi-HMM classifier using QTCC se-
quences from study HRSIs as test data.

14



H2020-ICT-2016-2017: 732737 ILIAD Deliverable D3.3

The classifier’s overall accuracy is high at 95.45%, as it must be as a component of the
safety focused HAN approach in ILIAD. The ability of our qualitative probabilistic model
to accurately classify HRSIs with 11 non-experts, trained on HRSIs with 1 robotics expert,
demonstrates the benefit of abstracting HRSIs to a qualitative description. It should be
noted that while no rejection situations were misclassified, the precision of rejections is
relatively low at 66.67%. This could be due to the small number of RMSH interactions
recorded in our study, as explained in Section 3.6.3, as 3-fold Cross-Validation using the
training dataset with its 15 RMSH interactions showed much higher rejection precision
at 78.95%. The classifer is much less likely to confuse any of the other 6 classes, with
precision and recall > 90% for all of these classes. We hope that we can improve the
rejection precision and in turn the overall accuracy of our classifier by recording more
examples of RMSH interactions and other rejection situations.

4 Mutual Communication of Navigational Intent
Navigation intent communication, the fourth safety layer in the ILIAD safety stack, ensures
perceived safety in HRI. It comprises of bi-directional communication of navigation
intent.

In the direction robot-to-human, we have developed a navigation intent commu-
nication system based on Spatial Augmented Reality (SAR) for AGVs. This enables the
AGV to communicate its navigation intent using SAR such that humans can intuitively
understand the robot’s intention and feel safe in the vicinity of robots.

In the direction human-to-robot, eye gaze can convey information about intentions
beyond what can be inferred from the trajectory and head pose of a person. Hence,
we propose eye-tracking glasses as safety equipment in industrial environments shared
by humans and robots. An implicit intention transference system was developed and
implemented to recognize the human navigation intent and communicate it to the AGV.
This allows pro-active safety approaches in HRI.

4.1 Implementation
The SAR based intention communication system was developed using a standard short-
throw projector, Optoma X320UST, with 4000 ANSI lumens which was mounted pointing
in the direction of the forks as shown in Figure 9. Ideally, the coverage of the projected
floor space should enclose the area around the vehicle and be sufficiently large to allow
displaying the intention of the vehicle over a time horizon of at least 3 s. It is, however,
hard to realise full coverage of the whole 360 degrees around the robot. So, we selected the
most important cone in the forward direction, which is sufficient as the robot drives only
forward in our experiments and the projected area was always between the person and
the robot during the encounters. The motivation behind the selection of the projector
was to guarantee the visibility of projected intentions in brightly lit environments like
warehouses and also to increase the field of view (FOV) so that the projected patterns
are larger and clearly visible from a distance. The projector is connected to an on-board
computer which renders images using an available pose estimate of the vehicle’s location
together with information regarding the current mission.

The rendering of images is done using the GLUT framework, using the reference frame
provided by the navigation system. This allows us to render the image to be projected
by updating the pose of a virtual camera (in the GLUT framework) using the localization
estimate of the AGV along with extrinsic calibration parameters (i .e., the pose of the
projector/virtual camera expressed in an AGV-fixed coordinate frame). The calibration
approach for the projector display is described in [21].
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Figure 9: AGV communicating its future trajectory intentions. Four patterns were defined
to be used in the experiments. 1: Line(Right), 2: Arrow(Left), 3: Blinking Arrow (Arrow
that blinks at 1Hz) and 4: Nothing.

Eye gaze can convey information about intentions beyond what can be inferred from
the trajectory and head pose of a person. We propose eye-tracking glasses as safety equip-
ment in industrial environments shared by humans and robots. We have investigated the
possibility of human-to-robot implicit intention transference solely from eye gaze data.
Our results [20] have shown that, in the given scenario, a rather naive navigation intent
predictor based on the simple rule, ’if people look more often to one side of the robot,
they intend to go to that side,’ would have predicted the correct navigation intention in
72.3 % of the encounters. Building upon this encouraging result that human navigation
intention can be predicted from the eye gaze data, we developed an advanced implicit in-
tention transference system, and implemented and tested it with workers at an industrial
warehouse.

In the final system, the robot has access to human eye gaze data in real-time, and
it responds in real-time to the received eye gaze data through SAR projections (see Fig-
ure 11). In order to achieve this functionality, we defined an Area of Interest around
Robot (AOI-Robot) as shown in Figure 10 (label 5). This area of interest is used to decide
when the person is looking at the robot, and includes an area that spans over the robot,
projection and some area around the robot such that the robot would be in the field of
view of the human. The eye gaze information is obtained through the eye-tracker worn
by the human. We determine if the eye gaze is within the defined AOI-Robot or not using
the Pupil Capture software, developed by the eye tracker manufacturer Pupil Labs. A
network connection is established via ROS (see Figure 11) between the eye tracker and
the robot and this is used to communicate the location of the eye gaze to the robot’s SAR
module and the robot responds to this information: if the eye gaze is within AOI-Robot,
then the projected arrow remains static, and if the eye gaze is not within the AOI-Robot,
then the projected arrow blinks to get the human’s attention. (Video of the demonstration
is available at https://youtu.be/lMEp6TcjDiw.)

This is intended as a proactive safety approach in HRI in industrial scenarios to ensure
safety where the robot makes an attempt to get the human’s attention when the human
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Figure 10: (1) Eye-tracker worn by a participant (2) Empatica E4 band used for measuring
electrodermal activity. (3) SAR projection “Arrow” projected on the shared floor space
to convey robot’s navigation intent. (4) Robot (a retrofitted Automatic guided vehicle)
with SAR intention communication system. (5) The defined area of interest AOI-Robot.
(6) Eye gaze fixation.

Figure 11: The methodology of implicit intention transference.

is in the vicinity of an AGV. The approach of blinking to get the attention is supported
by our experiments that were recently published [22], which show that a blinking arrow
immediately got the human’s attention.

The developed system has won the first prize for software innovation at International
Conference on Social Robotics 2019 held at Madrid, Spain.1

4.2 Validation: User studies
In order to evaluate the developed intention communication system, we conducted
experiments where the humans encounter an AGV from different directions in different
situattions. The robot used in these studies is the AGV ‘robot1’ located at Örebro University
(ORU) and, as ‘robot5‘ used in Section 3.6, is a modified Linde CitiTruck, but equipped
with a projector as described above. The AGV projected various patterns on the shared
floor space to convey its navigation intentions. We analysed trajectories, eye gaze patterns,
Heart Rate (HR) and Electrodermal Activity (EDA) of humans while interacting with an
autonomous forklift and carried stimulated recall interviews (SRI) and questionnaire
based evaluations in order to identify desirable features for projection of robot intentions.

During these experiments, the robot followed pre-computed paths, not modified
during the trials.

1Certificate available at https://orubox.box.com/s/fvvnj3o12od2y8ceyftt16j28h411067
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Figure 12: Experimental layout design: During the experiment, the humans (denoted by
Hi ) moved from Hi to Ri and the small forklift robot (denoted by Ri ) moved from Ri to Hi .

4.2.1 Robot to Human Intention Communication study at ORU

Using the developed SAR based intention communication system, we studied how hu-
mans can intuitively understand the robot’s intention and feel safe in the vicinity of robots.
We conducted experiments using various patterns projected on the shared floor space to
convey the robot’s navigation intentions (for experimental layout see Figure 12). During
the experiment every participant encountered the robot 4 times, each time with a different
pattern being projected on the shared floor space. The four chosen patterns, shown in
Figure 9, were:

A Line (indicating the path the robot intended to follow for the next 5 seconds)

B Arrow (indicating the current driving direction of the robot)

C Blinking Arrow (Arrow mentioned in (B) that blinks at 1Hz)

D Nothing (in order to observe the baseline behaviour when encountering robot)

Patterns A, B, C were supposed to convey the future trajectory of the mobile robot in
an intuitive manner. They are not intended to replicate human-like intention communi-
cation, but rather exploring the possibilities that a robot has conveying its intentions to
a human. Pattern A depicts the future trajectory over a time horizon of 5 seconds while
patterns B and C communicate less detailed information using an arrow pointing along
the instantaneous movement direction. The blinking arrow pattern C, blinks the B arrow
pattern at a frequency of 1 Hz. The arrow was chosen for several reasons. Bertamini et
al. [23] provide evidence that angles attract attention while Bar and Neta [24] suggest that
the human brain can detect sharp features very fast as this can help to signal potential
danger. Larson et al. [25] showed that a triangle with a downward-pointing vertex is
recognised more rapidly than the identical shape with an upward-pointing vertex. Also
the work in [26] used arrows to indicate the intention of their robot and concluded that
their system is intelligible. Furthermore, people are used to arrows indicating directions
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as in everyday life these are widely used. Accordingly, we believe that using an arrow to
communicate the future path of a robot seems to be a good choice, as due to its angled
v-shaped top it is supposed to attract the attention and might be detected faster than
other symbols. Furthermore, it has already been used successfully and people already
have a conception about the meaning of an arrow. This facilitates the understanding of
this pattern and thus helps humans to understand the intention of the robot faster. In
order to compare how a projection influences human behavior, the last condition D does
not consist of any projection at all.

Using the eye gaze information, we were able to identify which pattern most strongly
attracts attention. With the laser tracking data, we found that a mobile robot projecting
its intentions on the shared floor space encourages humans to actively choose safer paths
by not getting too close to the robot. From retrospective recall interviews, we found
out that the ‘ARROW’ projection pattern was perceived being best suited for intention
communication and a projected pattern on the floor made humans choose safer paths
partially because it was perceived as a part of the robot. Our results also show that, in
the given scenario, a navigation intent predictor based on the simple rule, ‘If people look
more often to one side of the robot they intend to go to that side’, would have predicted
the correct navigation intention in 72.3% of the encounters. Based on this result, we
have further implemented a human-to-robot implicit intention transference system (as
described in Section 4.1), and tested it with industrial workers at Orkla and at the ORU
robot lab as described in the following.

4.2.2 Bi-directional Intention Communication Study at ORU Robot Lab

Experiments were conducted at the ORU robotlab where the participants interacted with
the AGV when the implicit intention projections were enabled, and this was compared
to the baseline condition of no projection and static projection. Data collected in the
experiment2 included the following:

1. Total time taken to finish the tasks.

2. Trajectory (recorded using a Qualisys motion capture system).

3. Eye tracking data using Pupil Pro glasses.

4. HR and EDA data from the Empatica E4, and also from the BioPac (recorded the
data at a much higher frequency than the Empatica, the idea here is to compare the
data from both the systems and recommend what system would be most suitable
for evaluating such dynamic HRI scenarios).

5. Questionnaires.

This study was conducted in collaboration with the Psychology department at ORU,
which includes a Master’s thesis of two students from the psychology department titled
’Predicting attention allocation during human-robot interactions: An eye tracking study’.
This study is a first attempt to apply the Salience Effort Expectancy Value (SEEV) atten-
tional model to human-robot interactions in a simulated industry setting. The SEEV
attentional model was originally developed to predict attention allocation in workspaces,
taking into account the roles of Salience, Effort, Expectancy, and Value. Overt attention
was measured via eye tracking in adult participants (N = 18) while they interacted with the
AGV during a simple transportation task. The robot moved according to a pre-randomised
pattern (turning left, turning right, or going straightforward) and projected an arrow cue

2Experiments were conducted in the end of November 2019 and analysis of this data is ongoing.
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on the floor communicating its intent of movement (static projection, responsive projec-
tion, or no projection), resulting in nine conditions. Each participant underwent all nine
conditions once. The model parameters were set for three predefined areas of interest
(robot, robot periphery, projection) following previous applications of the SEEV model
and taking into account the specificities of the current HRI. The results showed a poor
model fit for the SEEV model when predicting the participants’ eye gaze. These results
suggest that the original SEEV-model for predicting attention allocation does not apply to
the current HRI, and that a more adequate model needs to be developed. Processing of
the trajectory, and psychophysiological data is ongoing in order to build spatio-temporal
gaze patterns with the associated HR and EDA data for performing further analysis.

4.2.3 Implicit Intention Transference Study at Orkla

In order to validate the implicit intention transference system with the industrial workers,
a study was conducted at Orkla Foods in Örebro, Sweden, where the industrial workers
acted as the participants. During the experiment,participants were asked to observe the
robot and its projections to identify the behavior of projections with respect to their eye
gaze and were asked to say it out loud when they had guessed the behaviour (a link to the
video from Orkla: https://youtu.be/ov8q_KXB2a4). The time that they were trying to guess
the behaviour was timed using a stopwatch and during this time, an Empatica E4 band
was used to measure the EDA of the participants. Seven participants have participated
in this study. All the participants have understood the behaviour of the projections with
respect to the eye gaze. The time they needed to understand the behaviour of projections
with respect to eye gaze was 17±2.3 seconds (N = 7). We take this as an indication that
the designed behavior of projections that respond to the eye gaze was intuitive and easy
to comprehend. They were also verbally asked if a system like that would be useful when
working with AGVs that are operating freely unlike the current AGVs which stick to a
defined path. They have verbally opined that such a system could indeed be useful.

A significant increase in the EDA data was seen when the participants were trying to
understand the behaviour of the projections. A rise in the EDA data is an indicator of an
increase of cognitive load and stress [27] and considering the newly introduced intention
communication system, the rise in the EDA is understandable. We suggest the usage of
EDA as a potential training tool for industrial workers to measure their progress in training
in a quantitative manner; i .e., by measuring how the stress levels and cognitive load vary
during training. Apart from using the eye tracker as an intention communication tool,
we have used it to record the pupil diameter during the experiment. We noticed that the
pupils were dilated when the participants were doing the task despite being exposed to
bright projections, which would normally result in a decrease of pupil diameter. This is
another indicator of increased cognitive load [28]. However, further analysis needs to be
conducted on the collected data to determine whether the increase in pupil dilation is
due to increased cognitive load alone.

4.2.4 Focus Group Study at Orkla

A focus group study about modalities of communication for AGVs was conducted at Orkla
foods on Nov 20, 2019. This focus group was conducted in collaboration with experts in
human factors at Skövde University and RISE Viktoria in Göteborg. A total of 7 workers
from Orkla foods have participated in this focus group. Two focus group sessions of 4
and 3 participants respectively were conducted. The participants were asked about their
general challenges in working around the AGVs and investigated about what is working
well and what could be improved, and then further discussed what the future holds in
terms of communication modalities of AGVs. Audio recordings of approximately 4 hours
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(in Swedish) were recorded during these sessions, which is now transcribed, translated to
English and ready to be analysed. Another interesting aspect here is that the two groups
had certain differences in terms of their adaptability towards technological developments
– one of the groups was pro-technology and the other was not, which could be very
interesting to investigate. The obtained insights from this focus group could be highly
valuable for the future of intention communication abilities of AGVs, and the results from
this study are expected to be submitted for publication in July 2020.

4.3 Ongoing and future work
4.3.1 Survey Article on Application of Eye Tracking in HRI

As a part of the literature study for the conducted work, a survey article on the topic
‘Application of eye tracking in HRI’ is in progress. The aim of the article is to give a
literature overview, focusing on the evolution of interest in this area of research, types of
hardware, applications, and analysis methods. The identified works are classified into
following categories: (a) Using eye tracking to study gaze behavior, (b) Using eye tracking
to predict human intent, and (c) Using eye tracking to control a robot. We expect that
this work would be a useful contribution for the HRI research community. This work is
expected to be submitted for a publication in May 2020.

4.3.2 Anthropomorphic Intention Communication

System development is ongoing for communicating intentions of AGV in an anthropo-
morphic manner by placing a humanoid robot on the AGV. A humanoid robot which
is connected with the AGV would serve as a broadcaster of the AGV related intention
communication to the human workers in its vicinity by using gestures, speech and head
orientation. This is expected to be a natural way of intention communication for the
workers cohabiting the environment. A Master student is working on this project full-time
since March 2020 and experiments are planned for July-August 2020 in the robot lab at
ORU.

5 Conclusions
This work has presented the proposed safety stack for ILIAD as a whole, describing the
roles of each one and their implementations. Each layer in the stack is designed to
address safety at a different scope, trying to reduce the activations of the layers below it.
I .e., an efficient flow-aware mapping should minimize interactions and as a result reduce
potential replannings or speed restrictions. Similarly, a reasonable speed profile should
prevent emergency stops from the robot.

Some of the elements of this safety stack have already been introduced in other de-
liverables, leaving the focus of this work for the intermediate layers dealing with local
Human Robot Spatial Interaction (HRSI) and navigational intent communication. Results
in mutual communication of navigational intent show positive results attracting human’s
attention to the AGV in their field of view and an increase in the cognitive load. These facts
point to a greater human awareness of robot intentions. Future works on the performed
experiments will determine the level of acceptance and perceived safety obtained from
this approach.

The Continuous Trajectory Assessment (CTA) module delivers both situation-aware
planning and extended Vehicle Safety Motion Unit (vSMU) based on the outputs produced
by the HRSI classifier. We have presented here the framework used in the ILIAD Project
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to classify HRSI situations. If global planning is unable to create paths avoiding Human
Robot Interaction (HRI), the classified situation will define how the intermediate safety
layers will react in ILIAD. An efficient and accurate prediction will have a direct impact
in the number of safety stops triggered by the lowest safety layer. The high accuracy
of our multi-HMM HRSI situation classifier when tested on the HRSIs recorded in our
experiment demonstrates its suitability for use in a situational Human-Aware Navigation
(HAN) approach, with some room for improvement in the precision of rejection, which
may be possible by taking the steps described in Section 3.6.4. Future work will evaluate
the performance of this approach in the project’s overall safety architecture, comparing
the baseline system against the HAN system and measuring the the legibility of the chosen
paths and the perceived safety of the participants.
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