
Intra-Logistics with Integrated Automatic Deployment:
Safe and Scalable Fleets in Shared Spaces

H2020-ICT-2016-2017
Grant agreement no: 732737

DELIVERABLE 5.6
Distributed fleet coordination methods for industrial vehicles

Due date: month 36 (December 2019)
Deliverable type: R

Lead beneficiary: UNIPI

Dissemination Level: PUBLIC

Main author: Lucia Pallottino (UNIPI)

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Contents
1 Introduction 3

2 Deconfliction for mixed Human-Robot scenarios 4
2.1 Introduction . 4
2.2 Background . 5

2.2.1 Notation . 5
2.2.2 Barrier Functions . 6
2.2.3 System Model . 7
2.2.4 Decentralized Safety Barrier Certificates . 8
2.2.5 Deadlock Detection . 9

2.3 Robot–Robot Interaction . 10
2.3.1 Quasi-deadlock Resolution . 10
2.3.2 Direction Bias Estimation . 11
2.3.3 Experimental Results . 13

2.4 Human–Robot Interaction . 13
2.4.1 Experimental Results . 14

2.5 Conclusions . 16

3 Distributed coordination for industrial vehicles 16
3.1 Introduction . 16
3.2 Problem Description . 17
3.3 The Multi–Robot Path Planning Approach . 19

3.3.1 Trajectory computation . 20
3.3.2 Negotiation Protocol . 23

3.4 Algorithm Properties . 24
3.5 Experiments and Results . 25
3.6 Conclusions . 27

4 Distributing the ILIAD fleet coordinator 27
4.1 Introduction . 27
4.2 Notation and preliminaries . 28
4.3 Coordination distribution - Critical points computation 30
4.4 Coordination distribution - Precedence constraints computation 31
4.5 Coordination distribution - Complete Distribution 31
4.6 Simulations . 31

4.6.1 Coordination of two robots . 32
4.6.2 Coordination in case of long critical section 33
4.6.3 Coordination of three robots . 35
4.6.4 Deadlocks . 36
4.6.5 Coordination of four robots . 36

4.7 Comments . 37

2

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

1 Introduction
Warehouse mobile robotics is nowadays entering the mass-production market, with com-
panies building autonomous mobile robots with different sizes and purposes. The shared
workspace among autonomous mobile robots and possibly human-piloted ones must
be safely and efficiently managed. The high number of mobile robots in the warehouse
has now to face new challenges since robots are heterogeneous in terms of dimensions,
shapes, dynamic constraints but also in terms of tasks to be accomplished. Hence the fleet
management system has to cope with both individual and fleet objectives to be achieved [1,
2]. In such cases coordination and control based on sensing and information sharing are
fundamental to cope with physical/environmental constraints and limitations. Motion
constraints, obstacles, unmodeled disturbances, communication constraints must be
taken into account in motion planning, coordination and control of such systems. The
coordination is performed through path computation to minimize one or multiple in-
dexes representing the individual objective, such as travelled distance, time of arrival
or energy spent. On the other hand collisions and stall situations must be avoided to
guarantee a safe and continuous flow of the fleet. We refer to Cao et al. [3] and Parker [4]
for an overview of the existing approaches and methodologies.

The problem of fleet coordination has been tackled by the scientific community
with either centralized or distributed algorithms [5]. In a fully centralized framework a
single decision entity collects all the available information on the fleet (position, task,
objective etc. of all robots) and provides a decision or action to all the fleet members
(the action to avoid an obstacle, another robot or the new task to be accomplished etc.).
In a fully distributed approach robots interact with each other and based on their local
information through network communications and/or local sensing decide the action to
implement [6].

Although nowadays the computational power and parallel computation are improving
enough to handle tens of agents with a centralized algorithm, the complexity of such
algorithms will never be able to manage thousands of autonomous cars in a city, or to plan
in real time the reaction to dynamical changes. From a practical point of view, manage-
ment systems should also be able to handle robots of different manufacturing companies
that have not been designed to interact with robots of other companies. Moreover, the
communication required to send and update a global plan to every agent may not be
reliable enough in a large environment and only local distributed communication may
be available to be used to plan and coordinate [7]. Even though decentralized approaches
cannot achieve global optimality, they manage to be robust to the lack of global infor-
mation and to possible central unit faults. However, one of the main critical points in
distributed algorithms is the prevention of deadlocks that may arise during the system
evolution. Examples of negotiations to avoid deadlocks can be found in Jäger et al. [8],
Koh et al. [9], and Manca et al. [10].

Since both approaches have benefits and drawbacks, in several applications ad hoc so-
lutions must be found evaluating the right level of centralized/distributed approach. This
depends on several aspects as the available hardware on the robots, their computational,
sensorial and communication capabilities. Other important aspects are the particular
responsibility that can be delegated to robots and those that must be kept in a central
decision center. For example, collision avoidance is usually delegated to robots that based
on the local information can compute alternative paths to avoid an unforeseen obstacle
while the assignment of the tasks are decided centrally.

In this deliverable we focus on the industrial application scenario where multiple
robots have to share a common environment. The environment can be narrow but
structured and known. On the other hand, the environment can also be shared with
other mobile platforms possibly driven by human operators. For this reason we have

3

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

approached the coordination problem in three different steps. First a particular case
of local coordination of robots in narrow spaces is considered. In multi robot system,
collision avoidance can be solved with a distributed approach based on interaction rules,
such as keep right lane along roads for cars. In case such rules are not strictly defined
coordination must ensure safety of the system. This becomes more difficult when entities
involved in the conflicting situation are not a priori programmable with a common rule
such as in case of human piloted robots. A deconfliction approach is hence proposed
to solve robot-robot conflicts in case of a fully cooperative approach, i.e., each robot
implement the same approach to avoid collisions. The approach is then tested in a
human-robot conflict where the human does not follow any rule except that he/she is
not is not ill-intentioned. We will show through simulations and experiments on small
robotic platforms how the conflict is solved.

A second step is the implementation of a fully distributed approach where a mixed
discrete-space/continuous-time distributed path planner is proposed for robot-robots
collision avoidance while a regular flow of the fleet is maintained. The proposed approach
is based on a discretized space on which the plan is performed while the speed is chosen to
optimally use the shared resources (intersections) to avoid stop-and-go behaviours. Simu-
lations and experimental results have been performed to sustain applicability and validity
of the approach in providing collision free trajectories under some realistic assumptions.

Finally, the evaluation of centralized/distributed approach has been performed on
the ILIAD coordinator proposed in D5.1. Several parts of the Iliad coordinator have been
distributed to show how and until which point the responsability of the coordination
can be delegated to robots. Simulation results show that the distributed approach can
yield better performance of the fleet in terms of arrival times while preserving safety and
liveness.

2 Deconfliction for mixed Human-Robot scenarios

2.1 Introduction
As a case scenario, picture two cars driving in opposite directions down a narrow corridor,
as usually seen in parking lots and garages. When the road is clear, both drivers may tend
to stay closer to the center of the roadway; consider the road to be wide enough to allow
both cars to pass at the same time. When the two cars are facing close enough, they will
start moving away from the center of the road in order to keep heading towards their
respective goal; we will refer to this scenario as the head-on scenario.

The head-on scenario is illustrated in more detail in Figures 1 and 2, where two vehicles
are operating in a right-hand rule driving environment. In the first example, Fig. 1a, the
two agents are driving far enough from the center of the road, allowing both cars to pass;
since no conflict is taking place, no further action needs to be taken. In Figs. 1b and
1c, the two cars are heading misaligned, therefore should avoid collision by steering to
the right, in compliance with local traffic rules. Finally, in Fig. 1d, the two agents are,
again, far enough from the center of the road, yet they are on the wrong side of the road,
respectively. However, it is inefficient to force both cars to steer right, as road rules would
require, since no conflicting motion is taking place.

Now, consider the scenario of Fig. 2, showing a hardware implementation with two
small robots (GRITSbots), the first utilizing an autonomous driving algorithm (AV) and
the second controlled remotely via a joystick by a human (HV): a further design goal is to
make the AV aware of the HV driving direction bias, e.g., if HV steers to the left, so should
AV, even if in contrasts to local traffic rules.

In this work we discuss a novel strategy of embedding traffic rules in navigation

4

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Figure 1: Head-on scenarios, defined as two agents driving in opposite directions down a narrow
corridor. Four different head-on scenarios (right-hand driving). From a) to c) the cars overtake as
the road rules impose; in d) the misalignment is strong enough for them to overtake regardless of
the rules.

Figure 2: Snapshot of two different head-on alignments for hardware experiments.

algorithms by i) making use of Barrier Functions to ensure collision avoidance, expanding
the work in Wang et al. [11], and ii) by relaxing the rules, allowing agents to break them,
under defined circumstances, in order to improve the system’s performance and human
user’s experience.

2.2 Background
2.2.1 Notation

Throughout, R, R+0 denote the set of real and non–negative real numbers, respectively.
Int(C) and ∂ C denote the interior and boundary of set C , respectively. The open ball in
Rn with radius ε ∈ R+ and center at x0 is denoted by Bε(x0) = {x ∈ Rn | ‖x − x0‖ < ε}. A
continuous function α : [0, a)→ [0,∞) for some a > 0 is said to be a class-K function
if it is strictly increasing and α(0) = 0. A continuous function β : (−b , a)→ R for some
a , b > 0 is said to be an extended class-K function if it is strictly increasing and β (0) = 0.
Given two vectors xi , x j ∈ Rn , we define the difference ∆xi j as ∆xi j = xi − x j . Given

5

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

f (x), g (x) sufficiently smooth in a domain D ⊂ Rn , we indicate the Lie Derivative as
L f g (x) = ∂ g

∂ x f (x).

2.2.2 Barrier Functions

A first step towards achieving the goal of securely deconflicting motion paths of vehicles,
is to ensure that every action that the autonomous agents take is provably safe under
appropriate assumptions, i.e., that agent-to-agent collisions will be avoided. To this end,
we are going to use Safety Barrier Certificates (SBC) [11], based on Zeroing Control Barrier
Functions (ZCBF) [12]. As the explicit purpose of this paper is to understand deconfliction
in a formal manner, we are here focusing our attention on an idealized situation from an
information-exchange vantage point. Throughout the text, we thus make the assumption
that relevant information about nearby agents are made available, such as each agent’s
control input and goal position. Note that these types of information can be obtained
through other means, e.g., through sensory data. For the sake of clarity, we omit this
aspect and instead focus directly on the motion deconfliction problem.

Here, the fundamentals of ZCBF are briefly recalled: consider a dynamical system in
control affine form,

ẋ = f (x) + g (x)u , (1)

where the state x ∈Rn and control u ∈U ⊂Rn , f and g are locally Lipschitz continuous,
and the system is forward complete, i.e., x (t) is defined for all t ≥ 0. By defining a set of
conditions on the states of a system, for example imposing a minimal distance between
agents, SBC ensure that the time evolution of the system is such that the states always
satisfy the original conditions. In this application, the system’s states will be the position
and velocity of each agent. Therefore, a safe state will be a combination of position and
velocity that will not result in a collision, given an acceleration command as input u .

Now, let C ⊂ Rn be the safe set, i.e., the states from which it is possible to avoid
collisions. In order to guarantee that a controller u is safe, we need to prove that such
a controller renders x forward invariant, i.e., if x (0) ∈C , then x (t) ∈C for all t ≥ 0. We
can encode C through the super-level set of a ZCBF candidate function h : D→R, with
C ⊆D ⊂Rn

C = {x ∈Rn : h (x)≥ 0}, (2)

which means that h (x), a function of the states in (1), is non-negative if the state x is safe,
and negative otherwise.

By differentiating h (x)with respect to time t (note that the state x is time-dependent,
however, to simplify notation we denote x (t) simply as x) and substituting it in (1), we
gather

d h (x)
d t

= L f h (x) + Lg h (x)u . (3)

The function h (x) is said to be a ZCBF if there exists an extended class-K function κ such
that

sup
u∈U
{L f h (x) + Lg h (x)u +κ(h (x))} ≥ 0 (4)

for all x ∈D . Given a ZCBF, we can define the admissible control space, as a function of
the states, as

S (x) = {u ∈U | L f h (x) + Lg h (x)u +κ(h (x))≥ 0}, (5)

with x ∈D . We now have all the necessary ingredients to state the following key results,
e.g. found in Xu et al. [13].

6

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Theorem 1 Given a set C ⊂Rn defined by (2) and a ZCBF h defined on D , with C ⊆D ⊂Rn ,
any Lipschitz continuous controller u : D → R such that u ∈ S (x) for the system in (1)
renders the set C forward invariant. C is asymptotically stable in D .

In this work, consistent with Wang et al. [11], the particular choice of κ(h (x)) = γh 3(x),
with γ> 0, will be adopted, which means that the controller needs to satisfy

L f h (x) + Lg h (x)u +γh 3(x)≥ 0 (6)

to render the set C forward invariant. Controlling the system in (1) with a controller
u ∈ S (x) and defining conditions on what renders a state x safe, encoded in C , we can
ensure that, indeed, if x (0) ∈C , then x (t) ∈C , for all t > 0.

2.2.3 System Model

Now that we have a general formulation of the Barrier Certificates, we can formulate them
in the particular context of autonomous driving. For this purpose, consider N mobile
agents moving on the plane, where each agent is indexed by N = {i | i = 1,2, ..., N }.
We model the agents’ dynamics as double integrators, as acceleration limitations play a
significant role when avoiding collisions

�

ṗi

v̇i

�

=

�

02×2 I2×2

02×2 02×2

��

pi

vi

�

+

�

02×2

I2×2

�

ui , (7)

where pi = (xi , yi) ∈R2, vi ∈R2, and ui ∈R2 represent the positions, velocities, and inputs
(acceleration commands) for agent i . Velocity and acceleration of the agent are limited
by ‖vi ‖∞ ≤βi and ‖ui ‖∞ ≤αi , with αi , βi ∈R+.

The aggregate state of all N agent’s positions and velocities will be denoted as (pT , vT)T ∈
R4N . Since the ZCBF h (x) in (2) is a function of the aggregate states, we want to express
it as a function of each agents’ position and velocity for the system in (7), i.e., hi j (p, v).
Considering the interaction between two agents, i and j , we can define the pairwise set
Ci j as

Ci j = {(pi , vi) ∈R4 | hi j (∆pi j ,∆vi j)≥ 0}, ∀ j ∈Ni . (8)

As shown in [11], it is possible to express the safety barrier constraint for system (7) as a
linear constraint in ui , which can be represented as

Ai j ui ≤ bi j . (9)

In particular, given the safety distance DS ∈R+, the safety barrier constraint satisfying (6)
is, as proven in [11],

−∆pT
i j∆ui j ≤ γh 3

i j

∆pi j

−
(∆vT

i j∆pi j)
2

∆p2
i j

+

+

∆vi j

2
+

(αi +α j)∆vT
i j∆pi j

q

2(αi +α j)(

∆pi j

−Ds)
,

(10)

for all i 6= j . We can write Ai j ui ≤ bi j as

Ai j = [0, ...,−∆pT
i j , ...,∆pT

i j , ..., 0] (11)

7

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

and

bi j = γh 3
i j

∆pi j

−
(∆vT

i j∆pi j)
2

∆p2
i j

+

∆vi j

2
+

+
(αi +α j)∆vT

i j∆pi j
q

2(αi +α j)(

∆pi j

−Ds)
,

(12)

where Ai j ∈RN−1×2, and bi j ∈R. Therefore, for any ui satisfying the inequality in (9), we
ensure that the control input is safe, that is, the acceleration inputs will keep the state of
the system in (1) such that the relative velocity and position of any two agents will not
result in a collision.

In the following, we will refer to ûi as the nominal controller, i.e. how we would like
to control our system (or agent i). With u∗i we will indicate an input to the system that is
safe, i.e. that will not result in a collision. Given a nominal controller ûi for the system in
(1), if the condition in (9) holds for ûi , the nominal control input is safe, therefore making
u∗i = ûi will pose no harm to the system. In the following section we are going to provide
a tool to keep the control u∗i safe when the linear inequality in (9) is not satisfied by the
nominal controller ûi .

2.2.4 Decentralized Safety Barrier Certificates

The time evolution of the system in (1) will be regulated by the nominal controller û=
(ûT

1 , ..., ûT
N)

T ; as collisions approach, we wish for the actual control input u∗i to be safe by
respecting the inequality Ai j u∗i ≤ bi j for all j 6= i , while staying as close as possible to ûi .
Since we are able to express the safety constraint as a linear formulation of ui , we can add
a quadratic cost that penalizes deviations from the nominal controller, while ensuring
safety, resulting in a Quadratic Programming problem (QP). The decentralized version of
the QP-based controller, as suggested in [11], is, for all i ∈N ,

u∗i = argmin
ui∈R2

‖ui − ûi ‖2

subject to Āi j ui ≤ b̄i j , ∀ j ∈Ni

‖ui ‖∞ ≤αi

(13)

where Āi j =−∆pT
i j and b̄i j =

αi
αi+α j

bi j .

Ni is the neighboring set of agent i , defined as

Ni = { j ∈N |

∆pi j

≤D i
N , j 6= i }, (14)

and where

D i
N =Ds +

1

2(αi +αmin)

�

3

√

√2(αi +αmax)
γ

+βi +βmax

�2

(15)

is the size of the radius of the neighbors associated with Ni , where

αmin =min
j∈N
{α j } (16)

αmax =max
j∈N
{α j } (17)

βmax =max
j∈N
{β j } (18)

8

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Figure 3: Graphical representations of the QP problem in (13), with a Type 1 deadlock
(left) and Type 2 deadlock (right).

are the lower and upper bounds of all agents’ acceleration limits and the upper bound of
all agents’ velocity limits, respectively. Using a controller u∗i as the one defined in (13) and
u∗ = (u∗1

T , ..., u∗N
T)T , ensures safety of the system since collisions are always avoided.

2.2.5 Deadlock Detection

The QP problem in (13) ensures safety of the system in (1) regardless of the control input
ûi generated by the nominal high-level controller. Although safety is guaranteed, there
are situations where the constraints imposed on the control input by (9) are such that the
solution to (13) drives the acceleration and velocity of an agent to zero. This prevents the
fulfillment of the original goal, if ûi 6= 0, and it depends on the geometry of the solution
space and of the cost vector of (13).

Consider the admissible control space Pi for agent i

Pi = {ui ∈R2 | Āi j ui ≤ b̄i j , ∀ j ∈Ni }. (19)

It is possible to evaluate the size of the feasible control space Pi , termed width of the
feasible set [14], with a Linear Program (LP)

min
ui∈R2,δi∈R

�

01×2 1
� �

uT
i δi

�T

subject to
�

Āi j −1
� �

uT
i δi

�T ≤ b̄i j , ∀ j ∈Ni

‖ui ‖∞ ≤αi .

(20)

The solution of the LP characterizes how much control margin is left for the strictest
safety barrier constraint, i.e, if δi ≤ 0 then Pi is not empty. In other words, a negative
δi indicates how much the bi j of the strictest constraint can be translated before having
Pi = ;.

Definition 2.1 An agent i is said to be in deadlock if it does not move, that is, if the solution
to (13) is u∗i = 0 and the speed is zero (vi = 0), while the nominal control command is
‖ûi ‖ 6= 0.

We identify three different deadlock scenarios, based on the geometry of the QP problem
in (13) (see Fig. 3)

1. Type 1 deadlock: δi ≤ 0, ui ∈ vertex(Pi);

9

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

2. Type 2 deadlock: δi ≤ 0, ui ∈ edge(Pi);

3. Type 3 deadlock: δi > 0.

In the following, we are going to build on the results in [11] by expanding the definition
of deadlock, allowing agents to take deconflicting actions earlier in time, resulting in a
faster responding disengagement. Moreover, given the particular case of interest seen in
Fig. 1, we are going to provide formal and statistical results to show how this proposed
method ensures collision avoidance in a pattern that matches the problem statement.

2.3 Robot–Robot Interaction
As a first step towards understanding the general motion deconfliction problem, we
consider a two-agent system, N = 2, where the robots are forced to interact in a pattern
relatable to Fig. 1. With this assumption of N = 2, Ni = { j }, i 6= j and i , j = 1, 2 if

∆pi j

 ≤ D i
N ; Ni = {;}, otherwise. This allows us to limit the deadlock types as seen

in Definition 2.1: since we will never have more than one inequality constraint in the
admissible control space in Ni , for all i ∈N the feasible set will never be empty. For
this reason, for any solution, it holds that u∗i ∈ edge(Pi) and hence Type 1 and Type 3
deadlock cannot occur.

Definition 2.2 Given α, β ∈ R+ as the acceleration and velocity thresholds, respectively,
and ε ∈R+ as the control threshold, an agent i is said to be in a quasi-deadlock if ‖ui ‖ ≤α,
‖vi ‖ ≤β , and the nominal control ‖ûi ‖>ε.

By introducing a lower bound on the acceleration and velocity, we wish to identify
those agents that are slowing down, while the difference between the nominal and the
actual controller, ε, ensures that this slowing evolution is due to the safety constraints
introduced in (9) and not by the actual control goal, and hence a risk of collision is
approaching.

2.3.1 Quasi-deadlock Resolution

If an agent enters a deadlock it stops; [11] presents a deadlock resolution tool, but this
requires the agent to have both speed and acceleration equal to zero. This results in a
slow-reacting system as, before taking any deconfliciting motion, any agent must come
to a complete stop. The quasi-deadlock aims at detecting when an agent is about to enter
a deadlock, allowing the controller to take preventive actions without the need for either
robot agent to come to a complete halt.

The conflict resolution tool proposed in the present paper as an improvement over
[11] can be summarized as follows: given the nominal control ûi , if agent i finds itself
to be in quasi-deadlock, perturb ûi such that the new nominal control is Γi ûi where

Γi = I +kγi

�

0 −1
1 0

�

and kγi ∈R for all i ∈N . This resolution tool is graphically explained

in Fig. 4. Γ ûi is a nominal perturbation to the left, or to the right, of ûi , depending on the
sign of kγi .

This translates into kγi encoding the concept of left-hand and right-hand driving,
based on its sign. In fact, if kγi > 0 (kγi < 0) the control input is perturbed to the left (right):
when an agent i slows down due to the constraint imposed by the presence of another
agent j , agent i will reshape its control input, steering slightly to the left (or right), based
on sign{kγi }. Moreover, according to the module of kγi , the perturbation will be more or
less aggressive, that is,

k (1)γi > k (2)γi →

ûi − Γ
(1)
i ûi

≥

ûi − Γ
(2)
i ûi

 . (21)

10

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Figure 4: Graphical representation of Pi , (Ni = 5) with quasi-deadlock resolution. On
the left, û is projected, resulting in Γ û; consequently the optimal solution u∗ changes.
On the right, kγ can be computed precisely as long as the optimal solution to Γ û is ∈
edge(Pi ∩Qi).

For this reason, we will also refer to kγi as agent i ’s direction bias. The quasi-deadlock res-
olution is summarized in Algorithm 1, where the subroutine Decentralized_LP computes
the width of the feasible set as in (20) and Decentralized_QP computes the optimal safe
controller as in (13).

Algorithm 1 Quasi-deadlock resolution

input ui , ûi , vi

δ←Decentralized_LP
if ‖ui ‖ ≤α & ‖vi ‖ ≤β & ‖ûi ‖>ε & δ≤ 0 then

ûi ← Γi ûi

u∗i ←Decentralized_QP(ûi)
return u∗i

2.3.2 Direction Bias Estimation

Assume that every agent’s goal is shared on the network, therefore û j is known by every
agent i , while kγ j is not. We also assume that the final optimal control u∗j is known by
every agent. As a first approach, we are going to ignore limits on the acceleration input, i.e.
αi =+∞. The problem to be faced is, can agent i learn kγ j from observing j ’s behavior?

Proposition 1 Consider the QP problem in (13), where αi =+∞, ∀ j ∈N , with the quasi-
deadlock resolution defined in Algorithm 1. If the nominal controller û j , and the solution
to the QP problem u∗j are known for all j ∈Ni , then agent i can compute kγ j .

Proof: Let us again consider the simple scenario of two agents driving toward each
other (position swapping) as described in the previous sections. Since we are solving the
problem in (13), a QP problem inR2, we know that the solution u∗j will solve all inequality
constraints and at least one of the inequalities will actually be solved as an equality [15].
Using the assumption that only two agents are present in the network, we can conclude

11

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

that the matrix A j i will always have one row, and therefore the solution will always be
along the line Ā j i u∗j = b̄ j , where Ā j i ∈R1×2 and b̄ j ∈R. We can express the cost function
in (13) as

‖u− Γ û‖2 =uT u+ ûT Γ T Γ û−2uT Γ û, (22)

where, to ease up notation, we define û j = û= [ûx , û y]T and u j =u= [ux , u y]T . Using the
Lagrangian multiplier λ ∈R, we can express the equality

H = uT u+ ûT Γ T Γ û−2uT Γ û+λ(Au− b) (23)

and, differentiating H along u we get

∂H

∂ u
= 2u−2Γ û+λAT = 0. (24)

Defining Ā j i = A = [a1, a2] and b̄ j = b , and recalling that Au = b , we obtain u =
Γ û− 1

2λAT from the previous equation and we get

λ= 2(AAT)−1(AΓ û− b). (25)

Finally, given that u= Γ û− 1
2λAT we conclude that

u= Γ û− (AAT)−1(AΓ û− b)AT (26)

which is linear with respect to the free parameter Γ . We define (AAT)−1 = γ and note
that γ ∈R, ∀A ∈R1×N and AAT 6= 0, since A 6= 0 being it a distance (see (11)); moreover
‖ûi ‖> 0 from the definition of quasi-deadlock (Def. 2.2). Equation (26) is a two-equation
system with one unknown parameter, kγ; solving for ux , we obtain:

k est
γ =

ûx −ux −γa1(a1ûx +a2û y − b)

û y +γa1(a2ûx −a1û y)
(27)

What this means is that, for a two-agent system, if we know the objective controller û
and the optimal safe controller u∗ for every agent, it is possible to obtain kγ of the agents
once they enter a quasi-deadlock scenario, i.e., Γ 6= 1, since if Γ = 1→ kγ = 0→‖u− Γ û‖2 =
‖u− û‖2. �

In Proposition 1 we did not take into consideration an important constraint of the QP
problem in (13): the acceleration limits

u j

∞ ≤α j . These limits introduce a saturation
in the system in the form of inequality constraints, limiting the admissible control space
P j ∩Qi , where Qi = {ui ∈ R2 | ‖ui ‖∞ ≤ αi }. This limits the kγ j estimation tool we
developed.

Proposition 2 Consider the QP problem in (13), with the quasi-deadlock resolution defined
in Algorithm 1. If the nominal controller û j , and the solution to the QP problem u∗j are
known for all j ∈Ni , then agent i can compute a lower bound on kγ j , where the solution

to (27) is such that

k est
γ j

≤

kγ j

.

Proof: As described in Fig. 4b, if the projection Γ û j falls along the half-line on the right
of Γ û j , the new optimal solution u∗j will fall on the vertex of P j ∩Qi , regardless of the
actual kγ j . However, the sign of kγ j will still be computed correctly and the resulting |kγ j |,
although wrong, will provide a lower bound on the actual value of kγ j . The existence of
u∗j is guaranteed by the definition of Type 2 quasi-deadlock. �

In this section we propose a simple mathematical model to encode rule-based quasi-
deadlock resolution, thanks to the direction bias kγ: left vs right handed, sign{kγ}, smoother
vs rougher, abs{kγ}. We then provide a way, for each agent i to compute the driving direc-
tion bias k j for j ∈Ni : this allows each agent to gain knowledge of the driving behavior
of the other nearby.

12

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Figure 5: Experimental results for different head on resolutions. Figs. (c)–(e), and (d)–(f)
show the same experiments, respectively, proposed as a series of consecutive snapshots
from the Robotarium. In (g) the arrival time comparison (original formulation - quasi-
deadlock resolution) of two agents heading towards each other, with a simulation time
limit of 60 seconds is shown. The initial displacement between the two agents is randomly
selected, for a total of 500 simulations.

2.3.3 Experimental Results

The Decentralized SBC with quasi-deadlock detection and resolution is here implemented
and tested on the Robotarium at the Georgia Institute of Technology [16], a remotely
accessible swarm-robotics testbed. In particular, two AVs are controlled with the goal
of swapping positions on the plane; four series of experiments are proposed, in close
relation to the problem statement of Fig. 1. The results are shown in Fig. 5.

In Figs. 5a and 5b the two agents are perfectly aligned, both implementing, respectively,
right (kγ < 0) and left (kγ > 0) handed driving bias. In Fig. 5c, the two agents are slightly
misaligned to their left on the vertical axis (both agents have kγ < 0); however, since the
misalignment is not significant, both agents steer to the right, as the rules of the road
require. In the experiment of Fig. 5d, instead, the misalignment is significant, as in Fig.
1d, resulting in both agents holding their side of the road. Figs. 5e and 5f present these
two experiments as a series of snapshots, to better visualize the agents’ behaviour.

As a further performance test, simulations are performed in order to compare the
behaviour of the Decentralized SBC with quasi-deadlock resolution (QD), as presented
in this paper, with their original formulation, as presented in [17] (NQD). In Fig. 5g the
results are shown for different misalignment conditions (ordinate); the simulations are
performed with the same starting conditions with both formulations and the difference
(N Q Dtime−Q Dtime) in the time arrival of the agents is shown (abscissa). Positive values
of the time difference indicate a faster goal achievement for the QD resolution; a limit
on the simulation time is fixed at 60 seconds. As the results suggest, the QD resolution
outperforms the NQD around the point of interest (perfect alignment). We observe that
there is an area where the NQD is faster; however, we argue that overall this new resolution
is faster and it never encounters a new deadlock (in the case of QD, all goals are met before
the time limit).

A video of the experiments is available online at https://goo.gl/ctzmM3.

2.4 Human–Robot Interaction
Consider now the case of a mixed two-agent network, where the first agent is autonomous
and implements Decentralized SBC with quasi-deadlock resolution as described in Sec-
tion 2.3, and the second agent is remotely controlled by a human driver. The human

13

https://goo.gl/ctzmM3

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

driver controls the robot agent via a joystick or keyboard and is able to set the acceleration
input at any instant; the human is asked to drive the robot as straight as possible to a
specific goal point in the x y plane, resulting in a head-on scenario like the one described
in Fig. 1b. We make the assumption that the human driver is not ill-intentioned, i.e., he
or she will not try to deliberately hurt the system, for example by avoiding to take any
deconflicting action when a collision is imminent. Instead, the focus is on establishing
driving biases as a way of deconlicting motions under relatively benign driving conditions.

We note that a human operator will not necessarily drive enforcing the notion of
SBC as discussed in the previous sections of this paper. Safety of the systems in (13)
can be guaranteed only when all agents respect the conditions of the problem. In the
experiments presented in this section, we will assume that the human drives without the
intent of harming the system, avoiding collision by steering (changing direction) when
she or he considers it to be necessary. Even though we have no reason to assume that
human drivers employ SBC, the autonomous vehicle will act as if the human was actually
using SBC. As will be seen in the subsequent section, this assumption does indeed provide
insight into a human driver’s behavior when related to her or his driving direction bias.

Assume that the AV has perfect knowledge of the HV input controller and of the HV
control goal, e.g., a position in the x y plane. Let ui be the control input for HV, i.e. the
control signal imposed from the joystick. HV implements a modified version of SBC, i.e., it
computes the inequality constraints for the problem in (13) as if in the autonomous case,
without however applying the computed optimal control, since it is directly imposed by
the outside user. The AV can observe the behavior of HV and has all the necessary tools to
mimic its QP problem, as seen in Section 2.3 for the fully autonomous case.

Let u0i (t) be the control input expected from agent i at any instant t and, dropping
the notion of time for ease of notation, let u⊥0i and u⊥i be the projection of u0i and ui ,
respectively, on the equality constraint Ai j ui = bi , where Ai j ∈R1×2 and b ∈R. Let Bε(u⊥0i)
be the ball of radius ε centered at u⊥0i and let Li = {ui | u⊥i ∈ Bε(u⊥0i)}. This is exlained
graphically in Fig. 6.

Definition 2.3 A user’s control input ui is said to be goal compatible with the control goal
u0i if ui ∈Li .

If the autonomous agent finds that HV is driving with goal compatible inputs, no
further actions will be taken, as AV considers that the human driver is trying to achieve
her or his original goal, i.e., it is accelerating or decelerating in the direction of the goal.
On the other hand, if ui /∈Li , AV considers HV to be perturbing its control away from the
original goal, e.g., to avoid a collision, as seen in Fig. 6.

With this new tool we can construct the human–robot interaction problem as the
robot–robot problem of Section 2.3, where u⊥0 = u∗ and u⊥ = u∗Q , where u∗Q is the optimal
solution associated to Γ û of Algorithm 1.

2.4.1 Experimental Results

A limited number of experiments is performed (more than 10) to validate the illustrated
results. In particular, the same human subject is presented with various head on scenarios,
each time with a different initial value of the autonomous agent kγ; the human subject
was asked to deconflict the agent according to personal preference and the reaction of
the autonomous agent and the kγH estimation was analyzed. No significant difference in
the behaviour of the autonomous agent was observed.

Experimental results for one of such experiments are shown here in Fig. 7 and 8. In
particular, the AV agent is programmed with kγA > 0 (left-hand driving) and the HV is
allowed to steer to the left or to the right, as controlled by a human driver via a joystick.
The autonomous agent ignores whether the upcoming agent is autonomous (and using

14

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Figure 6: Graphical representation of Pi of HV as seen from AV in a simple two agents
network. In this example, u /∈Li , therefore the control u is considered to be not goal
compatible, revealing a right-hand biased for HV.

Figure 7: Head-on scenario with mixed human-robot interaction. The AV starts with a
left driving bias, but updates it based on HV’s behavior. Snapshot evolution of head-on
interaction between HV (left) and AV (right).

Figure 8: Head-on scenario with mixed human-robot interaction. The AV starts with a left
driving bias, but updates it based on HV’s behavior. kγ of HV, estimated by AV. The shaded
area highlights the actions that are considered goal compatible and, therefore, ignored.

15

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

SCB) or is controlled by a human. Despite the lack of this information, given the generality
of the approach, the AV is able to estimate the driving direction bias and can update its
internal value of kγH accordingly.

In the experiment of Fig.and 8, the autonomous agent knows that the HV needs to
reach a point in the plane along its current trajectory of motion; any acceleration input
along that direction will not influence the computation of kγH . In Fig. 7 the evolution of
one particular experiment performed on a pair of GRITSbots is shown and in Fig. 8 the kγH

estimation performed by the AV is plotted against time. At about 1 second from the start
of this experiment (iteration 38) a goal compatible acceleration input is given: the user
commands the agent to accelerate forward, towards the goal. Later in the experiment, just
after the 4-second mark (iteration 125) the user starts steering the robot agent significantly,
resulting in a well-defined sign of kγH , suggesting that the HV is, indeed, steering to the
negative values of kγ, i.e. to the right of the goal.

2.5 Conclusions
A tool to solve conflicting motion paths for networks of multiagent robots was presented.
Focusing on the interaction of two robot vehicles heading towards a collision, we provided
a tool to deconflict the agents’ motion, while ensuring safety with the notion of traffic
rules. Based on the agents’ relative position and velocity, the agents will act according to
road rules, or decide to break them if particular conditions are present. We introduced the
notion of driving direction bias, as the direction (left or right) that will preferably be used
by the autonomous agent to deconflict its motion, together with a tool to estimate other
agents’ direction bias. Finally, we investigated a strategy to adapt the model, presented
for the autonomous vehicles, to a mixed human and robot interaction, where the robot
vehicle morphs its driving direction bias based on the observed human behavior.

Even though there is no reason to believe that human drivers employ barrier cer-
tificates, the construction in this paper suggests that this assumption still allows for an
effective deconfliction strategy between human and autonomous drivers. Moreover, we
believe that these results can be further generalized, removing the need to share the
agents’ state on the network and exploiting tools already present in the literature to esti-
mate the local agents’ states from sensor data [18]. Indeed, the performed experiments in
the Human-Robot interaction scenario are limited to just one human subject. Further
work is required to present a statistically significant set of experiments that should aim at
benchmarking the behaviour of this resolution tool with different human subjects and,
therefore, driving behaviours.

3 Distributed coordination for industrial vehicles

3.1 Introduction
Efficiently managing groups of robots in known environments involves path computation
to minimize one or multiple indexes, such as travelled distance, time of arrival or energy
spent. Mutual collisions and stall situations have to be avoided to guarantee a safe and
continuous flow of the fleet. Fast and reliable negotiation protocols in critical regions,
such as crosses and one-way roads, are hence required in case of a large number of robots.

The problem has been tackled in the Multi–Robot Systems path planning literature
with either centralized or distributed algorithms, applied on a representation of the
environment either discrete or continuous. Scientific literature on the topic is very rich
and an interesting survey can be found in [5].

16

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Figure 9: A screenshot of three robots negotiating an intersection

One of the most common environment representation is a discrete graph that ensures
obstacle avoidance by construction, i.e. nodes and edges are considered only on the
obstacle free part of the map. Examples of the generation of such graphs can be found in
[19] and [20]. Within such graphs, the problem of finding the optimal path for each robot
has been proved to be NP-hard in [21] and different algorithms based on heuristics have
been proposed, see e.g. [22, 23, 24, 25].

Different centralized approaches use a continuous space modelization and a sample
based motion planner (in [26] collisions are avoided by using special bounding boxes and
RRT* [27] is used as a planner while PRM* is used in [28]).

One of the main criticality in distributed algorithms is the prevention of deadlocks
that may arise during the system evolution. Examples of negotiations to avoid deadlocks
can be found in [8, 29, 30, 31, 9, 10].

A preliminary distributed protocol for multi-robot coordination has been proposed in
[32], in which both space and time were discrete and the collision free trajectories were
planned on a Time Expanded Network. In this work a new mixed discrete-space/con-
tinuous-time distributed path planner is proposed based on a similar approach. The
developed algorithm is based on a random sampling procedure in a hybrid configuration
space to exploit the ability of robots in tuning the speed (in a continuous interval) for
collision avoidance while a regular flow is maintained. To the authors best knowledge,
this is the first online distributed planning algorithm in space-time dimension that uses
an hybrid discrete–continuous configuration state to handle both robot paths and speed.
Taking inspiration mainly from FTM* [33] and RRT* variants [34, 35, 36], a sample based
planner is first used by each robot to compute a trajectory in the hybrid configuration
space. Second, collision free trajectories are computed based on information exchanged
by neighboring robots. The proposed approach is proven to provide collision free trajec-
tories under some realistic assumptions. Finally, simulations and experimental results
are reported to sustain applicability and validity of the approach.

3.2 Problem Description
Let G = (V ,E) be a topological graph (roadmap) representing the n dimensional work-
space, where V = {v1, . . . , vN } is the set of N nodes and E ⊆V ×V is the set of arcs (e.g.,
ei j = (vi , v j) is the arc from node vi to v j).

The node position is defined as q (vi) i.e. for n = 2, q (vi) = (xi , yi), and each arc ei j

17

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

is a path from q (vi) to q (v j). A weight ωi j that represents the length of the path in Rn

from q (vi) to q (v j) is associated to each arc. Consider a setR = {r1, . . . , rM } of M mobile
robots ri , ordered by priority. Each robot ri navigates the environment along the roadmap
with maximum admissible speed vmax. We will denote with ri the i -th robot (in terms
of priority) and with ri (t) its coordinates in Rn . The goal of this paper is to determine a
collision free trajectory on the roadmap for each robot through communication among
close-by robots.

The mixed discrete-continuous space is characterized by configurations s ∈Rn ×R+
whereRn is the discrete subset ofRn that contains the discrete poses of the robots. Hence,
first component is the pose of the vehicle in the environment and the second is time,
i.e. for n = 2, s = (x , y , t). In the following we denote with q (s) and τ(s) the discrete
coordinates in Rn and the continuous time t associated to s respectively. In this state-
time space, configurations s are associated to the roadmap, i.e. q (s) ∈G . In the following,
we will refer to this state-time space as time-expanded roadmap denoted with Gt . Let Ds

be the minimum required distance (safety distance) to be kept between robots to avoid
collisions. This distance may take into account robots’ physical dimensions and motion
constraints.

Definition 3.1 (Robot Collision) A collision between robots ri and r j at time t occurs if
‖ri (t)− r j (t)‖ ≤Ds .

To avoid collisions between robots that move along the graph, some assumptions on
the roadmap topology and robots desired positions are needed.

Assumption 1 (Roadmap Topology) Arcs are paths in the free environment such that the
distance between any two points along two different arcs is larger than Ds whenever the
points are at distance larger than a given D from any node. Moreover, any two nodes of the
graph must have distance larger than 2D .

The node is then characterized not only by its coordinates in the environment but
more precisely by the disc centered in the node with radius D . Hence, we can define

Definition 3.2 (Node and Time Interval Occupancy) A node v ∈V of the roadmap is oc-
cupied by robot r in the occupancy time interval T = [t1, t2] if ∀t ∈ T , ‖r (t)−q (v)‖<D .

Obviously, the occupancy time interval T depends on the path followed by the robot
(whose length is the cost associated to the arc) and its speed. However, based on Assump-
tion 1, a robot can not occupy two nodes simultaneously. In case of roadmaps in which
arcs are segments between nodes, the value of D can be directly computed as follows. Let
α be the minimum angle formed by arcs entering in a node. When two robots, moving
along two arcs entering in a node, are at distance larger than D = Ds

2 sin α
2

from the node,

no collision may occur. Notice that Assumption 1 generalizes such condition to non
rectilinear arcs. The main idea is to have a roadmap in which collisions may occur only in
the node occupancy disc or along the same arc.

Assumption 2 (Roadmap always connected) The considered roadmap is a strongly con-
nected graph. Moreover, robots never receive a task whose position in nodes or along arcs
lead to a graph connectivity loss.

Such assumptions are not restrictive and usually verified by city maps or warehouse
plans, where agents do not end their travel in the middle of a street/aisle blocking other
robots.

18

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Since collisions between robots may occur only along a single arc or at distance smaller
than D from the nodes, robots will be coordinated so that any pair of robots may occupy
the same node only in disjoint occupancy time intervals.

Let us now introduce the concepts of path and trajectory. First, the set of adjacent
nodes of z in G is adj(z) = {v ∈V |(z , v) ∈ E}.

Definition 3.3 (Path) A path P (vs , vg) = {vs , . . . , vg } is a sequence of consecutive adjacent
nodes of G from vs to vg .

Definition 3.4 (Trajectory) A trajectoryσ ∈Gt is a sequenceσ= {s1, . . . , sk } of configura-
tions si associated to nodes, i.e. such that q (si) ∈V . The sequence of nodes {q (s1), . . . , q (sk)}
is a path from q (s1) to q (sk)and the sequence of node traversing time instants {τ(s1), . . . , τ(sk)}
is positive and monotone.

To each trajectory it is possible to associate a trajectory cost based on the problem
specifications, e.g., minimum travelled distance or minimum travel time. In this paper
we propose a trajectory cost that weights both travelled distance and time of travel. Given
a trajectoryσ= {s1, . . . , sk }, its cost is

C (σ) = ht

k
∑

i=1

τ(si) +hc

k−1
∑

i=1

ωi i+1, (28)

where ωi i+1 is the length of the arc (q (si), q (si+1)), ht and hc are weighting factors. It
is worth noting that, with the proposed cost function, in case of two trajectories σ1 =
{s1, . . . , sk } and σ2 = {z1, . . . , zh} with same travel time (τ(sk) = τ(zh)) and same total
length, the one with smaller node traversing time is preferred. This choice is motivated
by the fact that the future necessity of coordination to avoid collisions is not predictable
by robots and hence it is preferable to move as fast as possible, i.e. small values for the
initial node traversing time instants.

In this work, a roadmap respecting Assumption 1 has been obtained based on auto-
matic Voronoi generator from [20]. The generated roadmap includes cycles to allow for
alternative routes, and encodes traversing costs for each edge, see for example the map in
Fig. 10.

Figure 10: An example of a graph built over a planar map of a customer of Magazino
GmbH and an image of the real environment

3.3 The Multi–Robot Path Planning Approach
The purpose of this paper is to provide a distributed algorithm, the Multi-robot Fast
Expanded Roadmap Tree (in short Mr.FERT), that, taking M initial and target robots con-
figurations, provides collision free trajectories controlling both robots speed and paths to

19

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

reduce energy consumed for speed changes. Robots communicate only with neighboring
robots, i.e. robots at distance smaller than a communication range Rc >Ds as described
in Section 3.3.2.

Definition 3.5 (Neighboring robots) Let N (p , t) = {i |1 ≤ i ≤M , ‖ri (t)− rp (t)‖ ≤ Rc } be
the set of indexes of neighbors of robots rp , i.e. the indexes set of robots at a distance closer
than Rc to rb .

For the sake of simplicity, the time dependency of set N (p , t) will be omitted in the
following.

Our approach consists of alternating phases of trajectories computations and negoti-
ations. In the trajectory computation phase, each robot plans its own trajectory over the
time-expanded roadmap Gt , taking into account the static obstacles. These obstacles are
generated in the negotiation phase considering potential collisions in space-time with
higher priority neighbors. Indeed, each robot rp receives, only from neighboring robots in
N (p), their latest planned trajectoryσ. Given the trajectoryσl = {s1, . . . , sk } received from
robot rl with l < p , the occupancy time interval for each node associated to the received
trajectories is computed as follows. For any arc (q (si−1), q (si)) inσl , the average speed on
the arc ei−1 i is ν̄i−1 i =

ωi−1 i
τ(si)−τ(si−1)

. Given average speeds along arcs, the time interval during

which node q (si) is occupied by rl is
�

τ(si)− 2D
ν̄i−1i

,τ(si) +
2D
ν̄i i+1

�

. With this approach the
occupancy time interval is computed taking into account the average speeds of the robot
along the arcs entering and exiting from the node q (si). During such time interval the
node q (si) is occupied by robot rl that has higher priority than rp and hence it represents
a static obstacle for robot rp in Gt . The computed time interval corresponds to a line
segment in Gt (represented as a cylinder in Fig. 11) along the time dimension associated
to node q (si) and represents a static obstacle for robot rp generated byσl .

Remark 1 It is worth noting that, with the proposed concept of node occupancy time
interval, it is also possible to handle unforeseen obstacles in the environment and detected
by robots. Indeed, in this case, if the obstacle is recognized as static, an infinite occupancy
time interval is associated to the node. A path can be found if the roadmap remains strongly
connected also if the node is neglected.

From the Definition 3.2 of occupied node and occupancy time interval, it follows
straightforwardly the following

Proposition 3 Let Σp =∪i∈N (p), i<pσi be the set of trajectories of neighboring robots with
higher priority than rp , and letσp = (s1, . . . , sk) be the trajectory computed by rp at a certain
time instant. For any node v ∈ {q (si)|i = 1, . . . , k} let Tv be the intersection of occupancy
time intervals for each i ∈N (p) and i ≤ p . If Tv is empty for any node v in σp , the robot
rp will have no collision with robots ri with i < p when it is at a distance smaller than D
from nodes v along trajectoryσp .

Fig. 11 shows an example of a trajectory computed to avoid collisions within space-
time intervals.

3.3.1 Trajectory computation

In the trajectory computation phase, collision free trajectories for each robot along arcs of
the roadmapG will be computed under the conditions of Proposition 3 to avoid collisions
at nodes. Collisions along arcs will be managed by the negotiation phase.

The main idea of the proposed approach is that each robot rp uses a sample based
planning algorithm to determine a collision free trajectory from the currently occupied

20

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Figure 11: A trajectory from node A to node C built over a space-time with 5 nodes. The
red cylinders are obstacles induced by other robots moving in the map, the green ones
are the occupied nodes of the current plan. The green dashed trajectory would intersect
an obstacle in B , while the continuous green line represents a collision free trajectory.

node vs to a desired one vg . The robots extract samples s ∈ Gt on the time-expanded
roadmap with q (s) ∈V and τ(s) ∈ [0,∞). Hence, nodes of the roadmap G are sampled
with an associated random node traversing time. Samples are then rejected or connected
in order to grow a tree T ⊂Gt consisting of unoccupied space-time sampled nodes. We
illustrate the procedure reported in Algorithm 2 used to obtain in short time a non optimal
collision free trajectory. Once one has been found, an optimization procedure is run as
reported in Algorithm 3.

Starting with the tree growth Algorithm 2, a sample can be connected to a node of the
tree if the associated nodes in the roadmap G are connected by an arc in E . Any node
v ∈G , associated to a sample s ∈T , i.e., with q (s) = v , is marked as visited and inserted in
the set V ⊂V of visited nodes. An additional set of samples Q ⊂Gt , from which the tree
grows, is initialized with the initial configuration Start = (vs , ts) where ts is the current
time. Inspired by FMT* [33], the sampling procedure picks a node w from the growing set
Q (Line 7), then it selects one of the adjacent nodes v of q (w) ∈V in the roadmap G that
are not marked as visited (Line 9), i.e. (q (w), v) ∈ E such that v 6∈V , and thus samples a
number t̄ ≥ ω(q (w),v)

vma x
to obtain a node traversing time t̄ +τ(w). The node traversing time

must be greater than the minimum time taken by the robot to reach configuration v from
q (w)while respecting its dynamic constraints plus the node traversing time τ(w). Indeed,
smaller values of the node traversing time would correspond to unfeasible trajectories.
The new node sample s = (v, t̄ +τ(w)) is feasible if the occupancy time interval does
not intersect static obstacles in Gt . In this case the occupancy time interval is computed
taking into account the average speed along the arc entering the node since the one on
the exiting arc will be computed in later iterations. If the new sample s = (v, t̄ +τ(w)) is
feasible, it is added to the growing set Q (Line 13) and to the tree T with the arc (q (w), v)
(Line 14), while v is marked as visited and inserted in V (Line 12). If a collision occurs,

21

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

the sample is discarded and a new one is generated (Line 17). Samples whose associated
nodes have all visited neighbors, i.e. adjacent nodes are all in V , are removed from Q
(Line 19). In case of empty Q the algorithm returns an unreachable goal message. On the
other hand, in case the goal node vg is reached, the algorithm provides the final node
traversing time tg and a trajectoryσ from (vs , ts) to (vg , tg) on the tree T (Line 21). With
the proposed procedure a feasible trajectory can be found in short time but no optimality
criterion is used in the trajectory construction.

Algorithm 2 Trajectory computation growing phase

1: Data: Graph G , Nodes vs , vg ∈V , Time ts ∈R+
2: Result: Non-optimized solution to single query
3: Goal← (vg ,∞), Start← (vs , ts)% Initialization
4: s ← Start, T ← {}
5: Q ←{s }, V ←{q (s)}
6: while q (s) 6= q (Goal) do
7: if Q = ; then
8: return goal unreachable

9: w ← sample node from Q
10: if adj(q (w)) 6⊂V then
11: v ← sample a node in adj(q (w)) \V
12: t ← sample time greater than t̃
13: s ← (v,τ(w) + t)
14: if s is feasible then
15: add q (s) to V
16: add s to Q
17: add node s and arc (q (w), s) to T
18: else
19: continue
20: else
21: remove w from Q

22: tg ←τ(s)
23: Trajectoryσ←Navigate T from (vs , ts) to (vg , tg) returnσ

Once a trajectory σ is obtained with Algorithm 2, an informed sampling approach,
similar to the one proposed in [35], is used to compute a trajectory of smaller cost. The
cost C (σ) can be used as an upper bound for the informed sampling of nodes in V .
Indeed, given a node v ∈ V the cost of any trajectory from Start to (v, t) is larger than
C (Start, v) = hc ‖q (Start)− v ‖+ht

‖q (Start)−v ‖
vma x

for any t (cost corresponding to a straight
line path covered at maximum speed). Similarly the cost of any trajectory from (v, t)
to Goal is larger than C (v, Goal) = hc ‖v −q (Goal)‖+ht

‖v−q (Goal)‖
vma x

for any t . Hence, any
trajectory from s t a r t to g o a l through (v, t) has cost larger thanC (Start, v)+C (v, Goal).
If such sum is larger thanC (σ), node v can be neglected since it will not be part of the
optimal trajectory. Hence, v is removed from the setW of candidate nodes initialized
with V . This procedure is repeated for all the candidate nodes inW anytime a trajectory
of lower cost is found. In that case the upper bound is updated and the candidate nodes
checked and possibly removed from W as described above. Such procedure, named
InformedPruning is reported in Line 7 of Algorithm 3. Once non optimal nodes are
removed fromW a candidate node inW is sampled (Line 8) together with a sample time
t (Line 9) to create a node w = (v, t) in the time-expanded roadmap Gt . If node w ∈Gt

and does not overlap any obstacle, a BestNeighbor subroutine is performed, similarly as
in RRT*. The BestNeighbor subroutine (Line12) checks all the neighboring samples in

22

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Algorithm 3 Trajectory computation informed phase

Data: Trajectoryσ from Algorithm 2, Graph G
Result: Optimized solution to single query
Q ←{Start}
BestCost←∞
W ←V
while stop not called do

ifC (σ)<BestCost then
BestCost←C (σ)
W ← InformedPruning(BestCost)

v ← sample fromW
t ← sample from [0,∞)
w ← (v, t)
if w is feasible then

s ← BestNeighbor(w)
if s is not empty then

add w to Q
Rewire Q if necessary
σ←UpdateSolution

returnσ

Q for the one, if any, that can be connected to w with minimum cost with a trajectory
that does not violate speed limits. If a sample s ∈ E is returned w is added in Q with an
associated trajectory from s to w covered at constant speed in time τ(w)−τ(s) (Line 14).
Finally, a rewiring procedure, similar to the one used in RRT*, provides, in probability, the
optimal path. Moreover, the motion feasibility inside BestNeighbor procedure uses the
agent’s maximum speed to reject invalid motions in space-time whenever the required
speed is larger than the maximum allowable or is negative (this would correspond to a
backward moving in time that is not allowed). As soon as the algorithm is stopped, by
e.g. a time thresholds, it provides the minimum cost trajectory over the tree built starting
from the trajectory obtained in Algorithm 2.

3.3.2 Negotiation Protocol

As the robot navigates through the environment, it exchanges information useful to
coordinate with other robots in its communication range. The planning problem hence
changes continuously and it is important that the robot can generate a new solution to
account for the latest information. Such re-planning must be performed in a very timely
manner, so that solutions are not out-of-date when they are finally generated, which
would lead to possible collisions.

The communication range must hence be determined in order to ensure that each
robot is able to prevent possible collisions. Let TA be the time dedicated to a trajectory
computation, through Algorithms 2 and 3. In the worst case scenario all the robots in the
communication range are heading toward the same node, and the lowest priority robot
travels at maximum speed. Moreover, such robot detects a collision after the second last
robot has found a collision free trajectory with all other robots with higher priority (in a
cascading effect), i.e. after a time equal to TA(M −1). The maximum distance travelled
before a possible collision is hence Dmax = TA(M −1)vmax. Concluding, to ensure collision
avoidance robots must communicate with all other robots at a smaller distance than
Rc = 2Dmax. The ability of improving the paths when more planning time TA is available
allows to dynamically tune TA based on the distance from the collision. This is a behavior

23

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

similar to the human driver, which in front of an intersection does not change its speed if
other cars are far away, slows down if they are close, and brakes in case of emergency.

Each robot sends to neighboring robots its own priority and trajectory from its current
configuration to the goal one. Lower priority robots check if their trajectories in Gt are
going to intersect static objects given by the trajectories computed by robots with higher
priorities as described at the beginning of Section 3.3. In case of a detected collision, a
new trajectory computation phase is initialized using the computed static obstacles. It
may occur that, after a fruitful negotiation, two robots would follow the same arc of the
roadmap at different speeds, with the faster robot behind the slower one leading to a
collision that must be avoided. More formally:

Definition 3.6 (Overtaking) An overtaking on an arc (vi , v j) ∈ E between rl and rk occurs
when ∃i , j , t0 < t1 < t2 < t3 such that (vi , t0) ∈ σl and (v j , t3) ∈ σl while (vi , t1) ∈ σk and
(v j , t2) ∈σk , whereσl andσk are the trajectories of rl and rk in Gt respectively.

To avoid overtaking and consequent collisions along the arcs, at each step of the
negotiation phase, nodes (v j , t2) and (v j , t3) are swapped betweenσl andσk . For multiple
agents on the same arc, the same approach is extended and provides a proper reordering
so that the robots occupy nodes vi and v j with the same temporal order. Hence, based
on that and on the assigned speed, robots on the same arc in G , with non intersecting
trajectories in Gt , verify the safety distance Ds .

Whenever a robot fails to find a path through Algorithm 2, an emergency situation
occurs (usually in case of traffic jams). The agent hence sets its speed to zero and sends
to all its neighbors an emergency message containing the currently or the last occupied
node. The occupancy time interval associated to the node in the message is an obstacle
for any other neighboring robot i independently from its priority. Moreover, the interval
width is set very large to induce each robot i to slow down before colliding with the
robot in emergency state. Indeed, once an emergency message is received, robot i has to
recompute a path through Algorithm 2 if one of the nodes in its path is the one received
in the message. In case of a computed trajectory that requires a velocity smaller than a
given threshold, the speed is set to zero (as usually done with real mobile robots) and the
robot i enters in the emergency situation and propagates a new emergency message.

3.4 Algorithm Properties
We can now prove that the proposed Mr.FERT protocol provides both collision and dead-
lock free trajectories under given assumptions.

Theorem 2 Based on Assumption 1 and in case of a communication radius Rc = 2Dmax,
the proposed coordination protocol ensures a collision free robots evolution.

Proof 1 With the assumed communication radius, we allow robots to complete the negoti-
ation phase even in the worst case scenario. In case of an emergency situation, collisions
are avoided with the protocol described above. If no emergency occurs, any robot has been
able to compute a trajectory whose occupancy time intervals do not overlap the obstacles
generated by other robots. From Proposition 3 collisions close to nodes are hence avoided.
Overtakings, if any, on the same arc are managed by the negotiation phase as mentioned in
previous section and hence collisions are avoided along the arc and in the nodes; hence the
thesis.

To ensure that stall situations are also avoided, we recall the deadlock given in Coffman
et al. [37], considering the robots as processes and the graph nodes as resources.

24

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Figure 12: An example of a graph built over a planar map and trajectory of three robots in
the related Time-Expanded Roadmap.

Theorem 3 Under Assumptions 1 and 2, in case of non occurrence of emergency situations
the Mr.FERT policy is deadlock free.

Proof 2 To verify that the evolution of the multi-robot system is deadlock free it is sufficient
to deny one of the four hypothesis of the definition of deadlock in [37]. In particular, in our
scenario, a circular chain of robots can not exist since the time-expanded roadmap is an
acyclic graph thanks to the increasing evolution of the time. In other words, the arcs of the
time-expanded roadmap only connect nodes with strictly increasing time and hence cycles
are not possible.

Under Assumption 2, a node is indefinitely occupied by the same robot only in case
the robot is in the emergency state. The case of all robots in emergency state occurs only
under high traffic levels in the roadmap. It is possible to prove that in case there exists
on the roadmap an arc free from robots for at least a segment of length D , at least one of
the robots on the arc is able to compute a collision free trajectory through Algorithm 2
and hence it exits from the emergency situation solving the temporarily stall. Formal
proof of this statement is omitted for space limitations and because of limited interest
since in case of traffic jams speed management is not a priority and the jam can be solved
differently, e.g., changing agent priorities.

3.5 Experiments and Results
The Mr.FERT algorithm has been tested both in simulation and in real world experiments
also in case of a non strongly connected roadmap to test applicability of the proposed
solution (an exemplary scenario is reported in Fig. 12).

First, the trajectory computation has been compared to the version of RRT* taken
from OMPL library, accordingly modified to work inR3 (i.e. x , y , t) with the addition of
a constrained maximum robot speed. The map used is a square large 250×250 with a
roadmap of 760 nodes.

Results of such simulations are reported in Fig. 13. The cost computed by our single
robot trajectory planner is smaller than the RRT* implementation, while the success rate is
always near 100% even for very small planning times. This is well suited to our multi robot
setup, where re-plans have to be done in real time. Both algorithms can further improve
the solution cost with more available time, however, given the considered application.
However, for replanning purposes, we are not interested in studying the behavior for
planning times larger than few seconds.

The very fast growth and the informed sampling approach of our trajectory computa-
tion, coupled together, allow for a first solution in less than 0.05 s, while a sub-optimal
solution (with cost less than 130% of the optimum obtained with an exhaustive approach)
can be found in less than 0.2 s.

25

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Time (s)

0.5 1 1.5 2 2.5

%
 S

u
c
c
e
s
s

0

20

40

60

80

100

MrFERT

RRT*

Time (s)

0.5 1 1.5 2 2.5

C
o
s
t

620

640

660

680

700

MrFERT

RRT*

Figure 13: Comparison between RRT* and Mr.FERT for a single robot, Left: Percentage of
successful plan, Right: Solution Cost

Figure 14: A team of robots tests the Mr.FERT policy on those three different roadmaps,
in simulation and in real world experiment

The informed sampling performs proportionally better when the distance between
start and goal is smaller, providing even 105% of the optimum in less than 0.1 s when the
distance is less than few meters (in Fig. 13 the distance between start and goal was 35 m).

The Mr.FERT algorithm has then been tested in multi-robot environments with custom
designed roadmaps and robot goals, in order to stress the algorithm capabilities and
requirements. An example of collision free trajectories in the time expanded roadmap for
three robots can be found in Fig. 12.

The three scenarios reported in Fig. 14 have been used as a simulation or experiment
benchmarks. In particular, the left roadmap of Fig. 14 is related to an experiment with
three iRobotCreate platforms crossing a door into a corridor in office space, see Fig. 9.

In our tests, the communication range is set to three times the maximum speed (2
m/s) multiplied by the maximum allowed planning time, 0.5 s, added to an additional
margin of tolerance in node occupation to avoid delays of non-perfect robots (during
real experiments). Such a configuration allows to negotiate trajectories usually two–three
nodes before any possible collision, giving enough time to the fastest robot to re-plan
during the negotiation phase. Indeed, no collision or deadlock occurred during the
extensive conducted simulations.

The algorithms were implemented in C++ using the OMPL framework for planning,
and ROS for controlling the robots, both in simulations using Gazebo and with real iRobot
Create2 using our own public ROS interface.1 Videos of simulations and experiments
together with the code and the instruction to run some simulations of this work can be
found at https://distributedplanning.bitbucket.io.

1The iRobot Create2 ROS interface can be found at https://github.com/CentroEPiaggio/irobotcreate2ros.

26

https://distributedplanning.bitbucket.io
https://github.com/CentroEPiaggio/irobotcreate2ros

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

3.6 Conclusions
A new approach for distributed multi-robot coordination using a hybrid space-time
modelization has been proposed. The approach allows to automatically tune robots
speed along their path, and was proven to be deadlock and collision free. A sampling
based planner and a negotiation protocol have been developed to allow on-line distributed
robot coordination where robots plan their path while moving. A set of simulations and
real experiments, have been performed to validate the approach and to test robustness
and applicability.

Proposed algorithm can be extended to coordinate multiple aerial vehicles, as a
roadmap can be generated for a 3-dimensional space, and the time can be added as
the fourth dimension. Moreover, it is possible to handle different robots with different
motion abilities in the same framework. Finally, proofs of deadlock and collision avoid-
ance do not depend on the cardinality of the roadmap, as they only use a safety radius
that can be easily used for generating a safety sphere around nodes in 3D space.

4 Distributing the ILIAD fleet coordinator

4.1 Introduction
Deploying fleets of autonomous robots in real-world applications requires addressing
three problems: motion planning, coordination, and control. These three problems are
intrinsically dependent: robot motions must be physically realizable by controls com-
puted by robot controllers, and must also be coordinated in order to avoid collisions and
deadlocks. Although methods for addressing these problems jointly have been studied,
real-world applications often pose further requirements that narrow down the range of
methods that can be used. Different motion planning strategies are applicable in different
environments and for different types of robots. Fleets may include different types of
robots with fundamentally different control schemes, and robot controllers are often
certified black boxes that ship with the robot platform and cannot be modified. In prac-
tice, there are many reasons for considering motion planning, coordination and control
separately. The work presented in Pecora et al. [38] proposes a lightweight coordination
method that implements a high-level controller for a fleet of potentially heterogeneous
robots. Very few assumptions are made on robot controllers, which are required only to
be able to accept set point updates and to report their current state. The approach can
be used with any motion planning method for computing kinematically-feasible paths.
Coordination uses heuristics to update priorities while robots are in motion, and a simple
model of robot dynamics to guarantee dynamic feasibility. The approach avoids a priori
discretization of the environment or of robot paths, allowing robots to “follow each other”
through critical sections.

Even though centralized methods deliver predictable fleet behavior, provable safety
and liveness, and high performance [39, 40, 41, 38, 42], they are not easily scalable, suf-
fer from single-point of failures and require for the central agent to have a complete
knowledge of the environment and the robots of the fleets. Therefore, it is of great inter-
est investigating strategies that try reducing centralization, in favor of more distributed
approaches. Indeed, distributed or decentralized solutions are by nature scalable and
relatively robust to communication failures [43, 10, 44, 45, 46, 47]. However, since they
rely on local information, the guarantees on their safety is highly dependent on their
“degree” of distribution.

Having said that, we investigated the possibility of distributing the coordination algo-
rithm presented in Pecora et al. [38], studying different strategies and levels of distribution

27

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

and comparing them to understand which approach is better suited for the fleet coordi-
nation problem.

4.2 Notation and preliminaries
We first introduce key concepts and a high-level description of the algorithm [38] as a
basis for our approach.

Paths and spatial envelopes. Consider a fleet of n (possibly heterogeneous) robots shar-
ing an environmentW ⊂R3. We use (·)i to indicate that variable (·) refers to robot i . LetQi

be the robot’s configuration space, and Ri (q)⊂R3 its collision space when in configuration
q ∈Qi . Consider a set of obstacles O ⊂W , so thatQfree

i = {q ∈Qi : Ri (q)∩O = ;} is the
set of feasible (i.e., collision free) configurations. Let p i : [0, 1]→Qi be a path in the con-
figuration space parametrized using the arc lengthσ ∈ [0, 1]. Then, path planning is the
problem of finding a (possible executable) path p i (σ) ∈Qfree

i from one feasible starting
configuration q start to a final one q goal ∈Qfree

i , such that q start = p i (0) and q goal = p i (1), typ-
ically subject to a set of kinematic constrains fi (q , q̇)≤ 0 (Fig. 15.a). Furthermore, for each
p i , the spatial envelope Ei is defined as a set of constraints such that ∪σ∈[0,1]Ri (p i (σ))⊆Ei .
If the equality holds (which we assume from now on), a spatial envelope is the sweep of the

robot’s footprint along its path (Fig. 15.b). Henceforth, let E {σ
′,σ′′}

i =∪σ∈[σ′,σ′′]Ri (p i (σ)).
Note that Ei ∩O = ; ∀i ∈ {1, . . . , n} by construction, that is, collisions between robots

and the set of obstacles O are avoided via path planning. Also, we assume that robots are
provided with a low-level safety system for detecting and avoiding obstacles that are not
other robots and are not included in O . The focus of the fleet controller proposed in this
paper is therefore to avoid inter-robot collisions, not other unforeseen obstacles.

Critical sections. Given a pair of paths p i and p j , collisions may happen only in the
set {qi ∈ Qi , q j ∈ Q j | Ri (qi) ∩ E j 6= ; ∨ R j (q j) ∩ Ei 6= ;}. In particular, let Ci j be the
decomposition of this set into its largest contiguous subsets, each of which is called a
critical section (Fig. 15.c and 15.d). For each critical section C ∈Ci j , let `C

i ∈ [0, 1] be the
highest value of σi before robot i enters C ; similarly, let u C

i ∈ [0,1] be the lowest value
of σi after robot i exits C . Considering two temporal profiles σi (t) and σ j (t), if there
exists a time t ′ such that Ri (p i (σi (t ′)))∩R j (p j (σ j (t ′))) 6= ; (i.e., the robots collide while
laying in their envelopes), then `C

i < σi (t ′) < u C
i and `C

j < σ j (t ′) < u C
j . Hence, given a

set of pathsP , the coordination problem is the problem of synthesizing, for each pair
(i , j 6= i) such that Ei ∩E j 6= ;, a constraint on temporal profilesσi (t) andσ j (t) such that
Ri (p i (σi (t ′)))∩R j (p j (σ j (t ′))) = ; for all t ′. We assume that, when idle, a robot i is placed
in a parking position defined by a path p i of length one. This entails that idle robots are
considered in the computation of critical sections.

Precedence constraints and critical points. Precedence constraints are relations among
the temporal profiles of two robots. A precedence constraint is a pair

mi , m j

�

, with
mi , m j ∈ [0, 1], stating that robot i is not allowed to navigate beyond arc length mi along
its path until robot j has reached arc length m j along its path — formally,σ j (t)<m j ⇒
σi (t)<mi . As explained in [38], mi changes over time to reflect updated precedences and
to allow for robots to “follow each other” through critical sections. In general, collisions
are avoided if, for each C ∈Ci j and for each t ,σi (t) andσ j (t) adhere to the constraint
〈mi (t), u C

j 〉, that is, robot i yields for robot j at an appropriately computed arc length
mi (t) along its reference path; this arc length depends on whether robot j has exited
critical section C (that is, reached arc length u C

j) and on its current progress through the

28

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Figure 15: Preliminary concepts.

critical section:

mi (t) =

¨

max
�

`C
i , ri j (t)

	

ifσ j (t)≤ u C
j

1 otherwise
(29)

where ri j (t) is defined as

supσ

§

σ ∈ [σi (t), u C
i] : E

{σi (t),σ}
i ∩E

{σ j (t),uC
j }

j = ;
ª

. (30)

Let T be the set of precedence constraints regulating the motion of the robots in the fleet.

A constraint
¬

mi , u C
j

¶

∈ T defines unambiguously which robot should yield, where it
should yield, and until when yielding is necessary for critical section C . We use (i <C j) ∈
T to indicate that robot j has precedence over robot i at a critical section C . A key feature
of the approach is that T can be updated while robots are in motion. In particular, any
heuristic function can be used to determine the precedence constraints in T , as long as a
conservative model of each robot’s dynamics is employed to filter out ordering decisions
that may not be physically realizable (as detailed in [38]).

Let Ti (t) = {mi | ∃ j :
¬

mi , u C
j

¶

∈ T (t)} be the set of all the arc lengths at which robot
i may be required to yield. We define the critical point σ̄i (t) of robot i at time t as the
value ofσ corresponding to the last reachable configuration along p i which adheres to
the set of constraints T (t), i.e.,

σ̄i (t) =

argmin
mi∈Ti (t)

mi if Ti (t) 6= ;,

1 otherwise.
(31)

Then, coordination is the problem of computing and updating periodically the set of
critical points Σ̄= {σ̄1, . . . ,σ̄n}, such that collisions do not occur. Algorithm 4 shows the
main body of the supervisory control loop proposed in [38].

2Assuming an ideal communication network, current robot states are available via message passing without
delays, message loss or disorder.

29

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Algorithm 4 Coordination at time t .

sample states2

1: if new goals have been posted then
2: update the set of pathsP (using appropriate planners)
3: update the setC of critical sections

4: revise the set T (t) of precedence constraints
5: compute the set of critical points Σ̄(t)
6: communicate changed critical points
7: sleep until control period Tc has elapsed

Under the assumption of a perfect communication (messages are not delayed or lost),
and conservative models of the robots’ dynamics, the algorithm ensures that collisions
never happen (see [38] for a formal proof).

Now that the main elements of the coordination framework have been introduced,
in the next section we will analyze possible solutions for its distribution. We focused on
three different level of distributions, where each of them propose a modified version of
the original coordination algorithm 4.

4.3 Coordination distribution - Critical points computation
The first attempt at distribution is based on modifying the way critical points are computed
(line 5 of algorithm 4) after the set of precedence constraints has been defined. Recalling
that the computation of the precedence constraints T defines the set Ti (t) of the arc
lengths at which robot i may be required to yield, our first solution is to modify the
definition of this set. We propose to filter the set Ti (t) so as to include only the elements
that are close to the worst-case stopping arc length at time t , si (t). This quantity is defined
as the lowest arc length at which the robot could stop assuming it is driving at full speed.

The filtered set is formally defined as T̃i (t) = {mi | ∃ j :
¬

mi , u C
j

¶

∈ T (t)∧mi − si (t) < ε},
the critical points can be computed similarly to (31) as follows:

σ̄i (t) =

argmin
mi∈T̃i (t)

mi if T̃i (t) 6= ;,

1 otherwise.
(32)

The idea is that a robot should modify its behavior only when it becomes “critical”, i.e., in
case it would be impossible for the robot to stop in time if no action is promptly performed.
However, while allowing for maintaining the safety of the algorithm, avoiding collisions if
a conservative model of the robot is used to define si (t) and the proximity threshold ε,
this solution does not offer advantages from the point of view of the scalability. Indeed,
the centralized system is still required to compute all the precedence constraints. This
can hence be seen as a first attempt to define control laws for a safe coordination based on
local information and not taking into account all the available information to the central
unit.

This approach can not be directly used as a full distribution of the coordination
protocol where control laws depend only on nearby robots. Indeed, there exist critical
sections that are big enough so that different robots requiring access to the critical section
may be far apart, e.g., long corridors. For this reason, the proposed coordination is based
on the closest point where the robot can stop to leave access of the associated critical
section required also by a possible far apart robot. By computing critical points only for
pairs of nearby robots would lead to unsolvable conflicts along corridors where access
should be managed by far apart robots.

30

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

4.4 Coordination distribution - Precedence constraints computation
A different approach, that aims at reducing the computations required to the centralized
system, is to modify the way the set T (t) of precedence constraints is revised (line 4 of
algorithm 4). In the current ILIAD coordinator implementation, precedence constraints
are computed for all the critical sections C ∈Ci j involving the robots. However, a possi-
ble solution might be to filter out the critical sections that are still “far” and should not
influence the current state of the two robots. To implement this criterion, we rely on the
concept of worst-case stopping arc-length at time t previously defined and the informa-
tion on whether a robot is inside the critical section. Thus, a precedence constraint for
a critical section C ∈ Ci j should be computed if the maximum distance of the robots
between the start of the critical section and their worst-case stopping arc-length is lower
than safety threshold, i.e., max(l C

i − si (t), l C
j − s j (t))<ε.

Using this approach, the number of critical sections for which a precedence constraint
has to be computed is reduced, and some of the conflicts might be resolved naturally
without the real need of centralized coordination. As for the previous case, collisions can
be avoided if a conservative model of the robot is used to define si (t) and select the safety
threshold ε.

4.5 Coordination distribution - Complete Distribution

Algorithm 5 Coordination at time t - Distributed approach.

sample state;

1: communicate state
2: listen for other robot states
3: update the setC of critical sections
4: revise the set T (t) of precedence constraints
5: compute the set of critical points Σ̄(t)
6: sleep until control period Tc has elapsed

While the other two proposed approaches still rely on a centralized system that has
information on all the robots (or possibly distant robot) of the fleets and communicates
with all of them, a completely distributed approach would require to distribute the re-
sponsibility of coordination, and each agent should define its set of constraints on the
temporal profile based on local sensing and communication.

In this completely distributed approach, the centralized algorithm 4 is substituted by
the distributed coordination algorithm 5. At each control period, each robot of the fleets
samples its state, communicates it to the robots within its communication radius, and
receives their states. Based on the received information, the critical sections, the prece-
dence constraints and the critical points are updated. In the completely decentralized
approach the coordination is performed only for the robots that are able to communicate
with each other, and the precedence constraints are resolved locally by each agent. While
this approach reduce the computational cost of the required computations there are cases
in which the presence of large critical sections may jeopardise the overall safety as shown
in the simulation results.

4.6 Simulations
In this section we aim at showing the behaviours of the different approaches in different
scenarios and highlight their points of weakness and strength. We compare the ILIAD

31

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

approach described in D5.1, named Centralized in the following, and the three proposed
approaches: the critical points computation approach based on the worst-case stopping
length (Section 4.3), named Filtered Critical Points, the precedence constraints computa-
tion approach based on closest critical points (Section 4.4), named Filtered Precedence
Constraints, and the fully distributed approach (Section 4.5), named Distributed. Dif-
ferent approaches are tested and compared in different scenarios where their different
behaviours can be evaluated. First, in Section 4.6.1, a two robot scenario is considered
where a robot have multiple access to the same critical section. Second a long critical
section, as a warehouse aisle, is considered for two robots in case of a platooning and
a head-to-head scenarios (Section 4.6.2). Scenarios of three robots are then proposed
in a generic scenario (Section 4.6.3) and in a classical one point of intersection scenario
where deadlocks are possible (Section 4.6.4). Finally a comparison of the approaches is
performed in a more generic scenario with four robots and four critical sections (Sec-
tion 4.6.5).

In the figures reported below each robot is numbered and higher priority robot has
a lower associated number. Moreover, when a dependency between robots is taken
into account, a grey arrow from the lower priority robot to the higher priority one is
reported. Recalling the different methods compared in this section, in the Centralized
case dependency are always detected if critical sections between pair of robots occurs.
In the Filtered Critical Points approach dependency is considered whenever the lower
priority robot is sufficiently close to the closest critical point of critical sections. In the
Filtered Precedence Constraints approach the dependency is considered whenever both
robots interested in the closest critical section are sufficiently close to the beginning of
the critical section. Finally, in the Distributed approach dependency are considered only
if robots interested in a critical section are sufficiently closed.

4.6.1 Coordination of two robots

Referring to Fig. 16, consider a scenario with two robots with a single critical section
that the highest priority robot has to traverse twice along its path. In the current ILIAD
implementation the lower priority robot has to wait until the highest priority one traverses
it twice even if it could traverse it in between the two crossings. In this scenario, the Filtered
Precedence Constraints and the Filtered Critical Points approaches do not show differences
with respect to the Centralized one except for when the dependency is detected. On the
other hand, with the Decentralized approach, after once the highest priority robot has
traversed the critical section the robots update the critical section and the lower priority
robot may move toward its final destination, since no other robot is in the communication
radius and hence no section has to be shared with other robots. Indeed, as it can be
seen in figure 16 the robot at lower priority can move toward its goal while the one at
highest priority has still to traverse the initial critical section for the second time. Such
behaviour explains Table 1 where the time to reach the final destination is reported for
each approach and each robot. As expected the first three approaches produce equivalent
time for both robots while in the Decentralized approach the lowest priority robot has an
improvement of around 30%.

32

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Figure 16: Coordination for two robots and a single critical section

Method tR 1 tR 2 Number of Collisions

Centralized 23.04 27.30 0
Filtered Critical Points 23.07 27.26 0

Filtered Precedence Constraints 23.01 27.14 0
Distributed 23.06 18.41 0

Table 1: Traveling times and number of collisions for the case of two robots and a single
critical section

4.6.2 Coordination in case of long critical section

Long critical sections are not unusual in logistics applications due to the presence of aisle
in warehouses. In such cases it is common to have two robots that need to traverse the
aisle along the same direction and in opposite directions. We have performed simulations
in both platooning (see Fig. 17) and head-to-head (see Fig. 18) situations to evaluate the
different approaches. Also in this case there is one single critical section and the critical
points are close to the robots in both the platooning and the head-to-head scenarios.
Hence, the Centralized, the Filtered Critical Points and the Filtered Precedence Constraints
approaches have the same behavior while differences lay in the time at which dependency
occurs.

33

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

It is worth noting that in the platooning scenario, the Distributed approach allows
for a correct coordination and a behavior similar to the other cases is obtained even
though from Table 2 shorter time is required by the lowest priority robot to reach its final
destination. Indeed, in this case, based on the value of the communication radius the
robots are able to cover the aisle closer to each other (see Fig. 17). On the other hand, in
the head-to-head scenario limitations of a fully distributed approach is shown for long
critical sections. In fact, due to the dimension of the communication radius, both the
robots enter the critical section without coordination (no dependency is detected) leading
to a collision.

Figure 17: Coordination in case of long critical section - Same Direction

Method tR 1 tR 2 Number of Collisions

Centralized 11.46 13.41 0
Filtered Critical Points 11.43 13.28 0

Filtered Precedence Constraints 11.43 13.23 0
Distributed 11.49 13.10 0

Table 2: Traveling times and number of collisions for the case of two robots and long
critical section - Same Direction

Figure 18: Coordination in case of long critical section - Opposite Direction

Method tR 1 tR 2 Number of Collisions

Centralized 11.43 18.24 0
Filtered Critical Points 11.41 18.41 0

Filtered Precedence Constraints 11.44 18.34 0
Distributed - - 1

Table 3: Traveling times and number of collisions for the case of two robots and long
critical section - Opposite Direction

34

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

4.6.3 Coordination of three robots

Let us now consider a scenario with three robots and two different critical sections. Refer-
ring to Fig. 19 there are three robots where R 2’s path first intersects R 1’s path and then
intersects R 3’s one. In the Centralized approach dependency are computed immediately
also if R 2 and R 3 are far from each other and R 2 is far from the critical sections, this lead
R 3 to wait until R 2 passes. The Filtered Critical Points, as also in other cases, changes
only in the time of dependency detection. Indeed, dependency of R 3 from R 2 is detected
at the beginning since R 3 is close to its critical point while R 2 dependency form R 1 is
detected only when R 2 comes closer to the first critical section. In both approaches R 3
has to wait for R 2 to pass. In the Filtered Precedence Constraints approach no dependency
is detected at the beginning and the dependency of R 3 from R 2 never occurs and hence
R 3 does not have to wait for the higher priority robot to pass and the time to reach the
destination is drastically reduced (almost 50%, see Table 4). In this particular scenario the
Distributed approaches have a similar behaviour with respect to the Filtered Precedence
Constraints one.

Figure 19: Coordination for Three Robots

35

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Method tR 1 tR 2 tR 3 Number of Collisions

Centralized 13.46 15.04 19.03 0
Filtered Critical Points 13.46 15.03 19.02 0

Filtered Precedence Constraints 13.44 15.01 10.01 0
Distributed 13.46 15.00 10.01 0

Table 4: Traveling times and number of collisions for the case of three robots navigating

4.6.4 Deadlocks

A different scenario with three robots and one critical section is now considered to evaluate
deadlocks. Referring to Fig. 20 there are three robots that want to reach a point along a
straight path generating a critical section common to all three agents. In case precedences
are not correctly defined a deadlock scenario may occur. Indeed, suppose robot R 1
has lower priority than R 3 (and as above R 3 lower than R 2 and R 2 lower that R 1) no
coordination is possible with the Centralized and the Filtered Critical Points approaches
since robot get stacked before the critical section. On the contrary, even small asymmetries
in the scenario allow the Filtered Precedence Constraints and the Distributed approaches
to avoid the deadlock and coordinate the robot toward their final destination.

Figure 20: Scenario inducing possible deadlocks

Method tR 1 tR 2 tR 3 Number of Collisions

Centralized - - - -
Filtered Critical Points - - - -

Filtered Precedence Constraints 11.12 11.22 10.71 0
Distributed 11.12 11.24 10.69 0

Table 5: Traveling times and number of collisions for the case of three robots coordinating
with deadlock-inducing heuristics

4.6.5 Coordination of four robots

Finally a scenario with four robots and four critical sections is considered in Fig. 21. Also
in this scenario it is possible to appreciate how the Filtered Precedence Constraints and
the Distributed approaches allow a more convenient coordination for the lower priority

36

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

robot that saves almost 50% of the time (see Table 6) with respect to the Centralized and
the Filtered Critical Points approaches.

Figure 21: Coordination for Four Robots

Method tR 1 tR 2 tR 3 tR 4 Number of Collisions

Centralized 14.39 13.18 15.37 20.13 0
Filtered Critical Points 14.34 13.35 15.43 20.04 0

Filtered Precedence Constraints 14.48 13.55 15.40 11.65 0
Distributed 14.38 13.78 15.49 11.52 0

Table 6: Traveling times and number of collisions for the case of four robots.

4.7 Comments
We have proposed different possible approaches that are characterised by modifications
of increasing level of distribution, compared to the centralized ILIAD coordinator. Ap-
proaches have been compared in different scenarios that show their potentiality and
limits. First an approach based on the worst-case stopping length for critical point com-
putation has been proposed (Filtered Critical Points) that does not offer advantages from
the point of view of scalability since the centralized system is still required to compute
all the precedence constraints. This can hence be seen as a first attempt to define con-
trol laws for a safe coordination based on local information and not taking into account
all the available information to the central unit. Then the second approach computes
precedence constraints based only closest (hence local) critical points Filtered Precedence

37

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

Constraints, and finally the fully distributed approach (Distributed) has been proposed
that coordinates only robots close to each other.

From the comparison we can deduce that the Filtered Precedence Constraints performs
better with respect to the other approaches since it improves the time of travel of low
priority robots (as also the Distributed one) and solves possible deadlocks. The approach
is based on the possibility that robots at large distances but interested in the same resource
can exchange information, and hence coordinate, as in the case of the head-to-head aisle
crossing. However, this requires a communication system (or local coordinator) mounted
along the resource that allows the information exchange between agents requiring access
to the resource that may not communicate with a direct vechile-to-vehicle communication
system. With such local coordinators associated to the aisles, the Filtered Precedence
Constraints is able to coordinate robots in such head-to-head conflicts that the Distributed
approach cannot handle.

Concluding, a fully distributed approach may not be able to solve conflicts in all
possible scenarios while a hierarchical approach such as the one required by the Filtered
Precedence Constraints is a good balance between centralized and distributed levels of the
ILIAD coordinator; both in terms of performance, and conflicts and deadlocks resolution.

References
[1] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. “A Survey and Analysis of Multi-

Robot Coordination”. In: International Journal of Advanced Robotic Systems 10.12
(2013), p. 399. DOI: 10.5772/57313.

[2] A. Bicchi, A. Fagiolini, and L. Pallottino. “Towards a Society of Robots”. In: IEEE
Robotics Automation Magazine 17.4 (2010), pp. 26–36.

[3] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. “An overview of recent
progress in the study of distributed multi-agent coordination”. In: IEEE Transactions
on Industrial Informatics 9.1 (2013), pp. 427–438. ISSN: 15513203. DOI: 10.1109/TII.
2012.2219061. arXiv: 1207.3231.

[4] Lynne E Parker. “Path planning and motion coordination in multiple mobile robot
teams”. In: Encyclopedia of complexity and system science (2009), pp. 5783–5800.

[5] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. “A survey and analysis of multi-
robot coordination”. In: International Journal of Advanced Robotic Systems 10 (2013).

[6] Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

[7] Stefan Schemmer, Edgar Nett, and Michael Mock. “Reliable real-time cooperation
of mobile autonomous systems”. In: Reliable Distributed Systems, 2001. Proceedings.
20th IEEE Symposium on. IEEE. 2001, pp. 238–246.

[8] Markus Jäger and Bernhard Nebel. “Decentralized collision avoidance, deadlock
detection, and deadlock resolution for multiple mobile robots”. In: Intelligent Robots
and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on. Vol. 3.
IEEE. 2001, pp. 1213–1219.

[9] Wee Lit Koh and Suiping Zhou. “An extensible collision avoidance model for real-
istic self-driven autonomous agents”. In: Distributed Simulation and Real-Time
Applications, 2007. DS-RT 2007. 11th IEEE International Symposium. IEEE. 2007,
pp. 7–14.

[10] S. Manca, A. Fagiolini, and L. Pallottino. “Decentralized coordination system for
multiple agvs in a structured environment”. In: IFAC Proc. Volumes 44.1 (2011),
pp. 6005–6010.

38

http://dx.doi.org/10.5772/57313
http://dx.doi.org/10.1109/TII.2012.2219061
http://dx.doi.org/10.1109/TII.2012.2219061
http://arxiv.org/abs/1207.3231

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

[11] Li Wang, Aaron D. Ames, and Magnus Egerstedt. “Safety barrier certificates for
collisions-free multirobot systems”. In: IEEE Transactions on Robotics 33.3 (2017),
pp. 661–674. ISSN: 15523098. DOI: 10.1109/TRO.2017.2659727.

[12] Aaron D. Ames, Xiangru Xu, Jessy W. Grizzle, and Paulo Tabuada. “Control Barrier
Function Based Quadratic Programs for Safety Critical Systems”. In: IEEE Trans-
actions on Automatic Control 62.8 (2017), pp. 3861–3876. ISSN: 00189286. DOI:
10.1109/TAC.2016.2638961. arXiv: 1609.06408.

[13] Xiangru Xu, Paulo Tabuada, Jessy W. Grizzle, and Aaron D. Ames. “Robustness
of Control Barrier Functions for Safety Critical Control”. In: IFAC-PapersOnLine
48.27 (2015), pp. 54–61. ISSN: 24058963. DOI: 10.1016/j.ifacol.2015.11.152. arXiv:
1612.01554.

[14] Benjamin Morris, Matthew J. Powell, and Aaron D. Ames. “Sufficient conditions for
the lipschitz continuity of QP-based multi-objective control of humanoid robots”.
In: Proceedings of the IEEE Conference on Decision and Control (2013), pp. 2920–
2926. ISSN: 01912216. DOI: 10.1109/CDC.2013.6760327.

[15] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004. ISBN: 9780521833783. DOI: 10.1037/a0025001. arXiv: 1310.1707.

[16] Daniel Pickem, Paul Glotfelter, Li Wang, Mark Mote, Aaron Ames, Eric Feron, and
Magnus Egerstedt. “The Robotarium: A remotely accessible swarm robotics research
testbed”. In: Proceedings - IEEE International Conference on Robotics and Automa-
tion (2017), pp. 1699–1706. ISSN: 10504729. DOI: 10.1109/ICRA.2017.7989200. arXiv:
1609.04730.

[17] Li Wang, Aaron Ames, and Magnus Egerstedt. “Safety barrier certificates for hetero-
geneous multi-robot systems”. In: Proceedings of the American Control Conference.
Vol. 2016-July. 2016, pp. 5213–5218. ISBN: 9781467386821. DOI: 10.1109/ACC.2016.
7526486.

[18] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. “A framework for worst-case
and stochastic safety verification using barrier certificates”. In: IEEE Transactions
on Automatic Control 52.8 (2007), pp. 1415–1428. ISSN: 00189286. DOI: 10.1109/
TAC.2007.902736. arXiv: 1309.7825 [astro-ph.CO].

[19] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. “ACS-PRM: Adaptive cross sam-
pling based probabilistic roadmap for multi-robot motion planning”. In: Intelligent
Autonomous Systems 12. Springer, 2013, pp. 843–851.

[20] Patrick Beeson, Nicholas K Jong, and Benjamin Kuipers. “Towards autonomous
topological place detection using the extended voronoi graph”. In: Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference
on. IEEE. 2005, pp. 4373–4379.

[21] Jingjin Yu and Steven M LaValle. “Structure and Intractability of Optimal Multi-
Robot Path Planning on Graphs.” In: AAAI. 2013.

[22] Pavel Surynek. “SOLVING ABSTRACT COOPERATIVE PATH-FINDING IN DENSELY
POPULATED ENVIRONMENTS”. In: Computational Intelligence 30.2 (2014), pp. 402–
450.

[23] Liron Cohen, Tansel Uras, and Sven Koenig. “Feasibility study: using highways for
bounded-suboptimal multi-agent path finding”. In: Eighth Annual Symposium on
Combinatorial Search. 2015.

[24] Jingjin Yu and Steven M LaValle. “Planning optimal paths for multiple robots on
graphs”. In: Robotics and Automation (ICRA), 2013 IEEE International Conference
on. IEEE. 2013, pp. 3612–3617.

39

http://dx.doi.org/10.1109/TRO.2017.2659727
http://dx.doi.org/10.1109/TAC.2016.2638961
http://arxiv.org/abs/1609.06408
http://dx.doi.org/10.1016/j.ifacol.2015.11.152
http://arxiv.org/abs/1612.01554
http://dx.doi.org/10.1109/CDC.2013.6760327
http://dx.doi.org/10.1037/a0025001
http://arxiv.org/abs/1310.1707
http://dx.doi.org/10.1109/ICRA.2017.7989200
http://arxiv.org/abs/1609.04730
http://dx.doi.org/10.1109/ACC.2016.7526486
http://dx.doi.org/10.1109/ACC.2016.7526486
http://dx.doi.org/10.1109/TAC.2007.902736
http://dx.doi.org/10.1109/TAC.2007.902736
http://arxiv.org/abs/1309.7825

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

[25] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. “Conflict-based
search for optimal multi-agent pathfinding”. In: Artificial Intelligence 219 (2015),
pp. 40–66.

[26] Ulrich Schwesinger, Roland Siegwart, and Paul Furgale. “Fast collision detection
through bounding volume hierarchies in workspace-time space for sampling-based
motion planners”. In: Robotics and Automation (ICRA), 2015 IEEE International
Conference on. IEEE. 2015, pp. 63–68.

[27] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal mo-
tion planning”. In: The International Journal of Robotics Research 30.7 (2011), pp. 846–
894.

[28] Glenn Wagner, Minsu Kang, and Howie Choset. “Probabilistic path planning for
multiple robots with subdimensional expansion”. In: Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE. 2012, pp. 2886–2892.

[29] Ryan Luna and Kostas E Bekris. “Network-guided multi-robot path planning in
discrete representations”. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE. 2010, pp. 4596–4602.

[30] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart. “Reciprocal collision
avoidance for multiple car-like robots”. In: 2012 IEEE International Conference on
Robotics and Automation. IEEE. 2012, pp. 360–366.

[31] Yusuke Ikemoto, Yasuhisa Hasegawa, Toshio Fukuda, and Kazuhiko Matsuda. “Zip-
ping, weaving: control of vehicle group behavior in non-signalized intersection”.
In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on. Vol. 5. IEEE. 2004, pp. 4387–4391.

[32] Mirko Ferrati and Lucia Pallottino. “A time expanded network based algorithm for
safe and efficient distributed multi-agent coordination”. In: Decision and Control
(CDC), 2013 IEEE 52nd Annual Conference on. IEEE. 2013, pp. 2805–2810.

[33] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. “Fast march-
ing tree: A fast marching sampling-based method for optimal motion planning
in many dimensions”. In: The International Journal of Robotics Research (2015),
p. 0278364915577958.

[34] Farzana Islam, Jauwairia Nasir, Usman Malik, Yasar Ayaz, and Osman Hasan. “Rrt*-
smart: Rapid convergence implementation of rrt* towards optimal solution”. In:
Mechatronics and Automation (ICMA), 2012 International Conference on. IEEE. 2012,
pp. 1651–1656.

[35] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. “Informed
RRT*: Optimal sampling-based path planning focused via direct sampling of an
admissible ellipsoidal heuristic”. In: arXiv preprint arXiv:1404.2334 (2014).

[36] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. “Batch in-
formed trees (BIT*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs”. In: Robotics and Automation (ICRA),
2015 IEEE International Conference on. IEEE. 2015, pp. 3067–3074.

[37] Edward G Coffman, Melanie Elphick, and Arie Shoshani. “System deadlocks”. In:
ACM Computing Surveys (CSUR) 3.2 (1971), pp. 67–78.

[38] F. Pecora, H. Andreasson, M. Mansouri, and V. Petkov. “A Loosely-Coupled Ap-
proach for Multi-Robot Coordination, Motion Planning and Control”. In: Proc. 28th
Int. Conf. Autom. Planning & Scheduling. 2018.

40

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.6

[39] N. Smolic-Rocak, S. Bogdan, Z. Kovacic, and T. Petrovic. “Time windows based
dynamic routing in multi-AGV systems”. In: IEEE Trans. Autom. Sci. Eng. 7.1 (2010),
pp. 151–155.

[40] J. Peng and S. Akella. “Coordinating multiple robots with kinodynamic constraints
along specified paths”. In: Int. J. Robot. Research 24.4 (2005), pp. 295–310.

[41] F. Pecora, M. Cirillo, and D. Dimitrov. “On mission-dependent coordination of multi-
ple vehicles under spatial and temporal constraints”. In: Proc. IEEE/RSJ Int. Conf. In-
telligent Robots & Syst. 2012, pp. 5262–5269.

[42] M. Čáp, J. Gregoire, and E. Frazzoli. “Provably safe and deadlock-free execution of
multi-robot plans under delaying disturbances”. In: Proc. IEEE/RSJ Int. Conf. Intel-
ligent Robots & Syst. 2016, pp. 5113–5118.

[43] M. P. Fanti, A. M. Mangini, G. Pedroncelli, and W. Ukovich. “A decentralized control
strategy for the coordination of AGV systems”. In: Control Eng. Practice 70 (2018),
pp. 86–97.

[44] I. Draganjac, D. Miklić, Z. Kovačić, G. Vasiljević, and S. Bogdan. “Decentralized
control of multi-AGV systems in autonomous warehousing applications”. In: IEEE
Trans. Autom. Sci. Eng. 13.4 (2016), pp. 1433–1447.

[45] K. E Bekris, D. K Grady, M. Moll, and L. E Kavraki. “Safe distributed motion coordi-
nation for second-order systems with different planning cycles”. In: Int. J. Robot. Re-
search 31.2 (2012), pp. 129–150.

[46] D. Bareiss and J. Van den Berg. “Generalized reciprocal collision avoidance”. In:
Int. J. Robot. Research 34.12 (2015), pp. 1501–1514.

[47] M. Kamel, J. Alonso-Mora, R. Siegwart, and J. Nieto. “Robust collision avoidance
for multiple micro aerial vehicles using nonlinear model predictive control”. In:
Proc. IEEE/RSJ Int. Conf. Intelligent Robots & Syst. 2017, pp. 236–243.

41

	Introduction
	Deconfliction for mixed Human-Robot scenarios
	Introduction
	Background
	Notation
	Barrier Functions
	System Model
	Decentralized Safety Barrier Certificates
	Deadlock Detection

	Robot–Robot Interaction
	Quasi-deadlock Resolution
	Direction Bias Estimation
	Experimental Results

	Human–Robot Interaction
	Experimental Results

	Conclusions

	Distributed coordination for industrial vehicles
	Introduction
	Problem Description
	The Multi–Robot Path Planning Approach
	Trajectory computation
	Negotiation Protocol

	Algorithm Properties
	Experiments and Results
	Conclusions

	Distributing the ILIAD fleet coordinator
	Introduction
	Notation and preliminaries
	Coordination distribution - Critical points computation
	Coordination distribution - Precedence constraints computation
	Coordination distribution - Complete Distribution
	Simulations
	Coordination of two robots
	Coordination in case of long critical section
	Coordination of three robots
	Deadlocks
	Coordination of four robots

	Comments

