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A B S T R A C T

Safety, legibility and efficiency are essential for autonomous mobile robots that interact with humans. A key
factor in this respect is bi-directional communication of navigation intent, which we focus on in this article with
a particular view on industrial logistic applications. In the direction robot-to-human, we study how a robot can
communicate its navigation intent using Spatial Augmented Reality (SAR) such that humans can intuitively
understand the robot’s intention and feel safe in the vicinity of robots. We conducted experiments with an
autonomous forklift that projects various patterns on the shared floor space to convey its navigation intentions.
We analyzed trajectories and eye gaze patterns of humans while interacting with an autonomous forklift and
carried out stimulated recall interviews (SRI) in order to identify desirable features for projection of robot
intentions. In the direction human-to-robot, we argue that robots in human co-habited environments need
human-aware task and motion planning to support safety and efficiency, ideally responding to people’s motion
intentions as soon as they can be inferred from human cues. Eye gaze can convey information about intentions
beyond what can be inferred from the trajectory and head pose of a person. Hence, we propose eye-tracking
glasses as safety equipment in industrial environments shared by humans and robots. In this work, we investigate
the possibility of human-to-robot implicit intention transference solely from eye gaze data and evaluate how the
observed eye gaze patterns of the participants relate to their navigation decisions. We again analyzed trajectories
and eye gaze patterns of humans while interacting with an autonomous forklift for clues that could reveal
direction intent. Our analysis shows that people primarily gazed on that side of the robot they ultimately decided
to pass by. We discuss implications of these results and relate to a control approach that uses human gaze for
early obstacle avoidance.

1. Introduction

In their interaction, humans rely on implicit and explicit, verbal and
non-verbal cues to communicate [1,2]. These forms of human-human
communication are used for understanding each other, establishing
trust, predicting future actions and making corresponding decisions,
thus contributing to safe, legible and efficient interactions. Accordingly,
in human–robot interaction (HRI), it is desirable to have bi-directional
communication between humans and robots, especially to improve
safety in potentially dangerous industrial environments.

Safety consideration in HRI include two key underlying aspects:
general safety and perceived safety. General safety in HRI is hoped to be
achieved by following safety measures1 when designing robots to pre-
vent any physical injuries to humans. An example of such safety mea-
sures is that mobile robots need to maintain a safe distance and speed in
the vicinity of humans. In order to allow for safe, yet efficient inter-
actions, human intention prediction capabilities are essential for robots.
More elusive is the aspect of perceived safety, which in HRI is defined as
a human’s perception of the level of danger when interacting with a
robot, and the humans’ level of comfort during the interaction [3]. To
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improve perceived safety, in a scenario where a robot coexists in a
workspace with humans, it is desirable for the robot to communicate its
intentions in a clearly understandable manner. Improvement in per-
ceived safety is expected to increase the acceptability of robots as re-
liable co-workers.

In this work, our specific focus is on communication and recognition
of motion intentions. We consider the exemplary and highly relevant
use case of autonomous transport vehicles used in material handling
systems and flexible manufacturing systems. Automatic Guided
Vehicles (AGV) have been increasingly introduced over the last few
decades. Initially, they have been using pre-defined paths laid out on
the floor for navigation, which made it straightforward for human
workers to predict their future actions. The improved levels of au-
tonomy, developed over the last decade, allow AGVs to be more ver-
satile and efficient. This poses safety issues which were not present in
classical industrial plants [4] leading to two challenges with respect to
safety which are addressed in this work.

The first challenge is that freely moving behavior of robots can
appear unpredictable to humans leading to the disapproval of autono-
mous AGVs. Within a shared spatial environment, humans and robots
form a system whose activities include internal intention formulation,
intention communication, perception, intention recognition, actions,
and reactions [5]. One way to communicate motion intention explored
in this article is by using Spatial Augmented Reality (SAR) to project
trajectory intentions on shared floor space [6–10]. In comparison to our
previous work on SAR intention communication [6,7], we present in
this article experiments with a new experimental design that models
real-world situations in industrial warehouses. In these experiments, we
used upgraded SAR hardware (to improve legibility of the projected
intentions on the shared floor space) and eye-tracking glasses, and in-
vestigate a new communication pattern.

The second challenge addressed in this work is that robots should
interact with humans in a legible way and cooperatively navigate to
support safety and efficiency. Robots in human co-habited environ-
ments should be aware of people’s navigation intentions for, e.g.,
human-aware task and motion planning, and therefore require a means
to infer navigation intentions from observable human cues. In public
spaces, an airport, for example, a robot can typically deduce human
intentions only with its onboard sensors, e.g., by using RGB-D cameras
for trajectory and human head pose estimation [11]. In industrial en-
vironments, however, it is possible to issue regulations that require
human workers to wear special safety equipment, e.g., safety vests or,
as we suggest in this paper, safety eye-tracking glasses. Eye gaze can
convey information about intentions beyond trajectory and head pose
of a person [12]. Thus, we propose as novel safety equipment eye-
tracking glasses, which robots have access to for implicit human inten-
tion transference. Especially in safety-critical, co-habited workplaces,
e.g., warehouses or distribution centers with autonomous forklift
trucks, this could reduce the number of accidents and enable more ef-
ficient operation. In our study, we investigated the possibility to re-
cognize human navigation intent implicitly expressed through gaze
patterns. We set out with the hypothesis that navigational intent can be
identified at least to some extent and in some situations from gaze
patterns. We analyzed gaze patterns in relation to navigational deci-
sions during human–robot encounters and found that people primarily
gazed on that side of the robot they ultimately decided to pass by. We
discuss implications of these results and relate to a control approach
that uses human eye gaze for early obstacle avoidance. We introduced
the concept of using eye-tracking glasses for implicit intention re-
cognition in [13]. In this article we further explore this idea and present
an extended evaluation (see Section 4) of trajectories and gaze patterns
as well as stimulated recall interviews with the participants (SRI) [14].

In summary, the key contributions of our work are

1 Development and implementation of a Spatial Augmented Reality
(SAR) based intention communication system for mobile robots that

projects motion intentions on the shared floor space. We present and
use a substantial hardware upgrade to increase the visibility of
projected intentions, which was important for the study conducted
in the chosen more realistic experimental setup.

2 Experimental evaluation of the SAR intention communication
system; analysis of eye-tracking and trajectory data from hu-
man–robot interaction experiments in which the participants en-
countered a forklift truck in a realistic experimental setup.

3 Analysis of participants’ attention and trajectory selection during
their encounters with the forklift truck through stimulated recall
interviews - with gaze-overlaid videos as stimulus.

4 The proposition of a method for implicit intention transfer using
eye-tracking glasses that robots can access when interacting with a
person.

5 Evaluation of eye-tracking based implicit intention transfer for re-
cognition of directional navigation intent.

This paper is structured as follows: Section 2 gives an overview of
relevant literature related to intention communication, eye-tracking,
implicit intention recognition using eye-tracking, stimulated recall in-
terviews and their application in human–robot interaction. Section 3
describes the hardware and software setup of the SAR based intention
communication system, as well as eye-tracking and laser scanner based
people tracking, which was needed to analyze the observed trajectories.
Section 4 describes the design of the human–robot interaction experi-
ments in which human participants encountered a robot with which
they had to negotiate their trajectory. Section 5 describes an implicit
intention transference system based on eye-tracking and presents a
control approach for early obstacle avoidance using eye gaze in HRI. In
Section 6, results from the experiments pertaining to intention com-
munication and implicit navigation intention recognition are presented
and discussed. Section 7 concludes the paper and briefly outlines di-
rections for future work.

2. Related work

2.1. Intention communication

The importance of how people position themselves in social en-
counters has been studied decades ago by Hall [15]. Hall coined the
term proxemics to describe physical and psychological distancing be-
tween two humans. During a simple task such as walking, humans
communicate their motion intentions using different types of cues such
as gazes, gestures and by adapting their trajectories according to
communicated patterns of motion [16]. It is desirable that robots which
operate in environments shared with humans conform to human ex-
pectations such that common human interaction patterns do not have to
be adapted drastically. Safe and seamless modes of human–robot in-
teraction, which allow humans and robots to occupy the same area,
makes many tasks amenable to automation, including collaborative
assembly and material handling [17]. Along a similar line, Vitor
et al. [18] explored the IEEE ontology for robotics and automation for
heterogeneous agent interaction (ORA) [19] through a use case sce-
nario involving HRI. They emphasized the importance of sharing spatial
information in HRI and suggested that, in order to achieve a given goal
involving HRI, humans and robots should effectively communicate and
share their knowledge about the world.

Turnwald et al. [20] focused on understanding the underlying
principles of human-human encounters and showed that humans are
not only reacting to the current situation but constantly predicting the
trajectories of other humans to plan their trajectories. Thus, it can be
expected that being able to predict the trajectory of a robot plays a key
role for humans in planning their trajectory. Takayama et al. [10] claim
that a robot showing its intention reassures humans of their inter-
pretations of robot behavior, thus making the robot more appealing and
approachable. This property of a robot is called legibility, which was
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defined by Dautenhahn et al. [21] and Alami et al. [22] as the ability of
a robot to make its actions and behavior understandable and pre-
dictable to humans.

In the context of improving the predictability and legibility of a
mobile robot, several researchers outline the benefits of revealing the
intentions of the robot. Kruse et al. [23] and Lichtenthaler et al. [24]
investigated the importance of legibility particularly pertaining to na-
vigation behavior in a mobile robot. Lichtenthaler et al. [24] defined
the mobile robot’s behavior as legible if a human can infer the next
actions, goals, and intentions of the robot with high accuracy and
confidence and the robot behavior fulfills the expectations of the
human interaction partner. Mangold et al. [25] estimated that humans
receive about 85–90% of the information through their visual system
and considering this, it is an obvious choice to convey a robot’s tra-
jectory intentions in a visual way.

May et al. [26] investigated pass-by situations where a human and a
robot navigate through a corridor trying to circumvent each other
within given spatial constraints. Similar to this work, the robot in-
dicated its navigation intent. However, instead of SAR, head orientation
and visual light indicators (like “blinkers” used in automobiles) were
used. May et al. [26] evaluated perceived comfort and ambiguity of the
signal with a five-point Likert-scale and the minimum distance to the
robot during the interaction. One of the limitations of their work is the
small size of the number of participants ( =N 10). However, the results
show a significant improvement in perceived comfort and larger
minimum distances maintained by participants when the robot in-
dicated its navigation intent.

Based on the theory of joint attention in HRI, using head orientation
to communicate navigation intent of a robot provides a natural way of
communicating to humans. However, such a communication modality
is restricted to robots with anthropomorphic features, which are absent
in industrial vehicles such as AGVs, forklifts, etc. Visual light indicators
are a familiar mode of communicating navigation intent to humans
which is already used in industrial vehicles. However, this modality has
a limitation in terms of expressing detailed navigation information such
as future trajectory and context-dependent information. For mobile
robots intended to cohabit and collaborate with humans in industrial
scenarios, being able to express detailed information in an intuitive
manner may be very important, especially considering growing au-
tonomous capabilities. Hence, we propose SAR as a suitable commu-
nication modality for mobile robots in industrial logistics scenarios. By
using SAR, a mobile robot can communicate detailed navigation in-
formation such as its future trajectory, safe and unsafe regions or
context-dependent information such as ongoing tasks, warning mes-
sages, etc. Coovert et al. [8], Matsumaru et al. [9], Leutart et al. [27],
Lee et al. [28], Park et al. [29] and also we in our prior work [6,7] used
SAR to reveal a robot’s future intentions with encouraging results. In
the experiments from our prior work, participants encountered a robot
in two conditions, one with SAR projection ON and one with SAR pro-
jection OFF. The response of participants was compared on a seven-point
Likert scale for five key attributes: communication, reliability, pre-
dictability, transparency, situation awareness. An average rise of 59%
on Likert scale ratings was identified for the SAR projections ON con-
dition [6]. We also found that the ability of the robot to communicate
its future trajectory intentions has contributed to increased trust to-
wards the robot [7]. Participants chose to veer-off from their path
earlier in an encounter with the robot, when the robot communicated
its future trajectory intentions on the shared floor space, implying that
humans planned their path well in advance leading to safer trajectories.

Regarding the hardware setup, the work of Coovert et al. [8] and
Matsumaru et al. [9] is similar to ours. They also used a projector
mounted on the mobile robot to display the mobile robot’s future mo-
tion intention on the floor and conducted experiments with human
subjects. However, in their experiments, humans did not interact with
the robot directly during the experiment. Instead, the participants were
asked as bystanders whether they would have interpreted the projected

intentions correctly. Key conclusions were that conveying intentions
using arrows was easily understood by humans without prior training,
made the robot appear more intelligible and gained human’s confidence
in the robot pertaining to its movements.

Watanabe et al. [30] used SAR for navigation intention commu-
nication of a robotic wheelchair and evaluated “human” and “hu-
man–robot group” interactions using Likert scale questionnaires and
trajectory analysis. Their experimental scenario consisted of a person
sitting on the robotic wheelchair as a passenger and the other person as
a walking pedestrian engaging in a straight encounter in a corridor
setting. Their results show that humans preferred having navigational
intention communication and presenting navigational intention lead to
smoother human trajectories. Very recently, Moondeep et al. [31] have
conducted a study similar to this and our earlier work [6,7] where
humans were asked to interact with a robot in various encounters. They
had used SAR in combination with an audio channel for navigation
intent communication. Their results indicate that using SAR had a more
positive impact on the participants perceived ratings when the angle of
encounter with the robot was becoming sharper. However, their ex-
periments were conducted in lab settings using a basic robot platform in
their experiments similar to the experiments conducted by Coovert
et al. [8] and Matsumaru et al. [9]. We have used an Automatic Guided
Vehicle built on a custom industrial forklift and conducted experiments
that reflect typical encounters in industrial environments and with
participants that were directly engaged in the interaction with the
robot. As mentioned in the discussion of the limitations of their
work [31], perceived feelings in such studies could be impacted by the
physical appearance and traits of the robot. Compared to [31], the
participants in our study were more diverse and had an equal gender
ratio. A further important difference in our work, when compared to
related works [8,9,26,30,31] is the evaluation method that uses eye-
tracking data along with stimulated recall interviews to get a deeper
insight into human behavior during HRI [14,32].

So far, SAR based intention communication systems were primarily
evaluated using Likert scale questionnaires. As May et al. [26], Wata-
nabe et al. [30] and Moondeep et al. [31], we additionally analyzed the
trajectories of the participants in our prior work [6,7]. In this article, we
use a more realistic experimental setup, collected substantially more
experimental data, and improved the evaluation by additionally ana-
lyzing eye-tracking data and carrying out stimulated recall inter-
views [14].

2.2. Eye-tracking

Eye-tracking is a sensor technology to measure where the eyes of a
human are focused on. It is used in an increasing number of application
areas [33], primarily since it comes with the promise that it gives access
to mental processes. This belief is expressed in the eye-mind hypoth-
esis [34], which posits that eye gaze is tightly linked to attention and
cognitive processes. The eye-mind hypothesis [35] particularly refers to
fixations (periods in which the gaze point remains within a small area
over a prolonged period of 200 ms up to seconds [33]) and states that
there is no relevant delay between what is fixated and what is being
processed cognitively. Although this assumption has to be used with
care [36,37], it is often applied in the interpretation of eye-tracking
data.

The most relevant works pertaining to our application of using eye-
tracking in HRI research, particularly in human and mobile robot en-
counters, have been carried out by Baldauf et al. [38], Patla and
Vickers [39], and Hayhoe et al. [40] who studied the relationship be-
tween spatial attention of humans and how they planned their future
movements. The main conclusion in [38–40] is that the attentional
resources of a human are concurrently deployed to multiple locations
which are relevant for the following actions. Baldauf et al. [38] also
showed that “more attentional resources are allocated to regions im-
mediately following the movement goal, and to those parts that require
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more precise motor control”. We also observed this in our experimental
data and discuss this interesting point further in Section 6.1.3.

Directly related to the way we use eye-tracking for evaluation is the
work by Patla and Vickers [39] who conducted experiments with par-
ticipants approaching and stepping over obstacles of varying height
while wearing eye-tracking glasses. They analyzed the spatiotemporal
gaze patterns and observed that the participants did not fixate on the
obstacles as they were stepping over but did plan in advance as they
were approaching an obstacle. Hayhoe [40] studied look-ahead fixa-
tions, which are fixations that lead to action several seconds later. They
also found that the human vision system acts proactively in gathering
information ahead of time for future movements. Thus, a mobile robot
projecting its future trajectory intentions as described in Section 3.3 is
expected to accommodate the proactive nature of the human visual
system by supplying information in advance.

2.3. Implicit intention recognition using eye-tracking

It was demonstrated that eye gaze is linked, in time and location, to
momentary task requirements, e.g., [39,41–43]. Patla and Vi-
kers [39,42] report that people fixate points on which they will step
approximately one second before reaching them (footprint fixation).
These findings support our hypothesis that navigational intent can be
inferred from gaze patterns.

A first key step in human-to-robot implicit navigation intent trans-
ference is the recognition of navigation intent. Huang et al. [44], Ad-
moni et al. [45], Li and Zhang [46] and Castellanos et al. [47] address
the similar problem of recognizing human intent in a collaborative
manipulation setting in which a robot arm could respond to recognized
intentions. Another recent work by Li and Zhang [48] also investigates
inference of intentions from gaze data to command a mobile service
robot. In comparison to [44–48], our work considers a scenario where
both human and robot are mobile. In this article, we study human
navigational behavior in a human–robot interaction scenario and in-
vestigate the corresponding gaze patterns.

2.4. Stimulated recall interviews

In our previous work [6,7], we analyzed human motion trajectories
to determine how a mobile robot projecting its intentions influences
human behavior. However, the participants’ reasons behind the ob-
served behavior could not be inferred unambiguously in this way. Sti-
mulated recall interviews (SRI) with gaze-overlaid videos as stimulus
are a way to get a deeper insight into the underlying processes [14,32].
In our SRIs, the participants are shown the gaze-overlaid video of their
encounters with the robot and they are then asked to describe and
explain their thoughts in the situation shown.

Hansen [49] points out that gaze-overlaid videos appear to be a
stronger stimulus for SRIs than “normal” videos: In his study, Hansen
conducted retrospective interviews and observed a significant increase
in comments from the participants when gaze-overlaid recordings were
used as compared to a normal video-recording. Hansen also points out
that the participants rather recall their actual thoughts than “(re-)in-
vent” them when watching the video.

Based on the understanding that SRIs with gaze videos are an ap-
propriate method to obtain a deep understanding of underlying mental
processes, we use SRIs in this article in order to gain insight in (1)
participants’ understanding of the projected patterns; (2) how the dif-
ferent projected patterns (“arrow”, “blinking arrow”, “line”, and
“nothing”) influenced the participants’ perception of the robot’s inten-
tions, and (3) how the different projected patterns influenced the par-
ticipants’ decision making when meeting and passing by the robot.

3. Intention communication from robot to human

For intention communication from the robot to a human, we

developed a Spatial Augmented Reality (SAR) based intention com-
munication system on a mobile robot that can convey the robot’s mo-
tion intentions by projecting patterns on the shared floor space. Our
previous work [6,7] indicated that this form of intention communica-
tion can improve comfort levels and perceived safety in human–robot
encounters and can lead to humans choosing safer paths around the
robot. In comparison to [6,7] the SAR based intention communication
system was upgraded and new projection patterns were considered. The
hardware and software setup of this system is described in the following
sub-sections.

3.1. Robotic platform

The robotic platform we use is built based on a manually operated
forklift which is equipped with motorized forks and a drive wheel (see
Fig. 1). The forklift has subsequently been retrofitted with a steering
mechanism and a commercial AGV control system. The latter is used to
interface the original drive mechanism, as well as the steering servo. To
assure safe operation, the vehicle is equipped with two SICK S300 safety
laser scanners2 respectively facing in forward and backward directions.
The laser scanners are also used to track people when they interact with
the robot. The speed of the robot during the interactions described in
this work was set to 0.6 m/s.

3.2. Spatial augmented reality system

Ideally, the coverage of the projected floor space should enclose the
area around the vehicle and be sufficiently large to allow displaying the
intention of the vehicle over a time horizon of at least 3 s. It is, how-
ever, hard to realize full coverage of the whole 360 ∘ around the robot.
So, we selected the most important cone in the forward direction, which
is sufficient as the robot drives only forward in our experiments and the
projected area was always between the person and the robot during the
encounters.

In the experiments performed in this work, we used a short throw
projector, Optoma X320UST, with 4000 ANSI lumens. This is an up-
grade from our earlier setup [6] where we used a standard projector

Fig. 1. The platform used for our experiments: A standard short throw projector
(Optoma X320UST) (1) is mounted on a retrofitted Linde CitiTruck AGV (3).
The projector is used to project the intention of the vehicle on the ground plane
in front of the truck. Two SICK S300 scanners are mounted in front (2) and back
to ensure safety for participants and for tracking the participant motion during
the experiment. Label (4) represents the fiducial markers placed on the robot
for eye-tracking data analysis.

2 http://www.sick.com/ .
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Optoma ML 750 with 700 ANSI lumens. In both cases, the projector was
mounted pointing in the direction of the forks as shown in Fig. 1. The
motivation behind this upgrade was to increase the visibility of pro-
jected intentions in brightly lit environments like warehouses and also
to increase the FOV so that the projected patterns are larger and clearly
visible from a distance.

The projector is connected to an onboard computer which renders
images using an available pose estimate of the vehicle’s location to-
gether with information regarding the current mission. The navigation
system is detailed in [50] and is briefly described below. During the
experiments, the robot followed paths which are generated by using a
two-step approach which combines a lattice-based motion planner and
a smoothing operation. These paths are pre-computed and not modified
during the trials. The path generated by the lattice-based motion
planner is used as the initial path in an optimization framework, which
subsequently minimizes the amount of turning and driving. The
smoothed path is then used to generate a trajectory (in which con-
straints on maximum accelerations and velocities are fulfilled). The
trajectory describes the vehicle state =s x y( , , , ), consisting of the
vehicle pose (x, y, θ) and steering angle ϕ. The control variables u
comprise forward velocity and change in steering angle =u v( , ) as the
forklift base is equipped with a combined steer and drive wheel. The
generated trajectory is finally tracked by a model predictive controller
(MPC).

3.2.1. Calibration of the spatial augmented reality system
The projected images are rendered with the GLUT framework, using

the reference frame provided by the navigation system. This allows us
to render the image to be projected by updating the pose of a virtual
camera (in the GLUT framework) using the localization estimate of the
AGV along with extrinsic calibration parameters (i. e., the pose of the
projector/virtual camera expressed in an AGV-fixed coordinate frame).

The calibration approach is summarized below, for further details
we refer the interested reader to [6]. There are two main components
involved in drawing the pattern on the floor. First, the procedure to
render the image, which is dependent on the location and the para-
meters (e. g. focal length) of the virtual camera. Second, the used pro-
jector also contains a set of parameters, such as the focal length of the
projector, which needs to be estimated. Therefore, the pattern gener-
ated on the floor will depend on two sets of parameters, one set from
the virtual camera (used to render the image in the GLUT framework)
and one set from the projector.

Rather than estimating all parameters separately we perform a ca-
libration step which involves determining only 7 parameters – 6 con-
taining the pose of the virtual camera (x, y, z, roll, pitch, yaw) and a
scale parameter s that is used to tune the aspect ratio of the projected
image. Note that we assume that the projector only has very small
distortions in the projected image (i.e., we assume that a straight line
will be projected as a straight line) and that no distortion parameters
need to be estimated.

To perform the calibration, an evenly spaced 2D grid with a fixed
size of 0.15 × 0.15 m is used. This grid is then projected onto the floor
using the known origin of the common reference frame and the cali-
bration parameters. A grid was selected since it facilitates to manually
measure lengths on the floor, to check that there is no distortion in the
projected area, for example, to verify that all lines are parallel. The
calibration procedure requires to adjust the roll and pitch parameter so
that the grid angles are orthogonal and lines are parallel, to adjust the
scale parameter s so that the cells are square, to adjust the height z so
that the size of the cells is correct, and to adjust x, y so as to align the
origin with the point between the two fixed wheels at the forks (the
origin of the AGV reference frame). The calibrated projector should
then replicate the 2D grid pattern on the floor without any distortions
(i.e., properly aligned, with the correct size, orthogonal angles and
parallel lines).

3.3. Communicated intentions

During the experiments, every participant encountered the robot 4
times, each time with a different pattern being projected on the shared
floor space. The four chosen patterns, shown in Fig. 2, were:

(A) Line (indicating the path the robot intended for the next 5 s)
(B) Arrow (indicating the current driving direction of the robot)
(C) Blinking Arrow (Arrow mentioned in (B) blinking with 1 Hz)
(D) Nothing (baseline condition)
Patterns A, B, and C were selected since it can be assumed that they

can convey the future trajectory of the mobile robot in an intuitive
manner. They are not intended to replicate the way in which people
communicate their intentions, but rather to explore the additional
possibilities a robot has. Pattern A represents an equivalent to the
projection already used in our previous experiments [6], which depicts
the future trajectory over a time horizon of 5 s while patterns B and C
communicate less detailed information using an arrow pointing along
the instantaneous movement direction.

An arrow was chosen for several reasons. Bertamini et al. [51]
provide evidence that angles attract attention and work by Bar and
Neta [52] suggests that the human brain can detect sharp features very
fast since they signal potential danger. Larson et al. [53] showed that a
triangle with a downward-pointing vertex is recognized more rapidly
than the identical shape with an upward-pointing vertex. Also, Matsui
et al. [54] used arrows to indicate the intention of their robot and
concluded that their system was found intelligible by humans. Fur-
thermore, people are used to arrows indicating directions in everyday
life. Accordingly, we believe that using an arrow to communicate the
future path of a robot is a good choice. In order to observe the baseline
behavior when encountering a robot, the last condition D is Nothing at
all. During the experiments, the order of the patterns in which the
participants encountered the robot was varied in a balanced Latin
square pattern to avoid learning effects.

4. Experimental evaluation

Significant improvements have been made in this work regarding
the evaluation method and experimental design compared to our pre-
vious work [6,7]. We propose an extended evaluation method for
evaluating HRI scenarios using trajectory data, eye-tracking data along
with SRIs (see Fig. 3).

Fig. 2. AGV communicating its future trajectory intentions. Four patterns were
defined to be used in the experiments - 1. Line (Right), 2. Arrow (Left), 3.
Blinking Arrow (Arrow that blinks at 1 Hz) and 4. Nothing.
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4.1. Eye-tracking data

For acquiring eye gaze data we used a mobile eye-tracking headset
from Pupil labs [55]. It is equipped with a high-speed world camera
with a resolution of 1920 × 1080, recording at a frame rate of 30 fps
and two infrared spectrum eye cameras with a resolution of
640 × 480, operating at a frame rate of 120 fps. Scene capturing was
done using the open source software Pupil Capture. Categorization and
analysis were done using the open source software Pupil Player [55].
Fiducial markers were attached to the robot in different places in order
to define the areas of interest, thus, enabling an automatic categoriza-
tion of the detected eye gaze fixations.

4.1.1. Eye-tracker calibration
Considering the mobile nature of the experiment, manual marker

calibration [55] was used. In this calibration method, a printed marker
is held at different positions in the field of view of the participant who is
asked to focus on the center of the marker. With this calibration
method, it was possible to calibrate on greater distances than with
screen-based calibration and also to cover a greater field of view. In our
calibration, the participant stood approximately 2 m away from the
marker, which was moved and held at 12 different positions (4 hor-
izontal rows with 3 positions per row). The accuracy of the calibration
was tested by asking participants to focus on the center of the marker
and observing the tracked gaze position on the computer screen.

4.1.2. Areas of interest
During the experiment, we are primarily interested in finding out

how the participant’s attention was distributed, especially when it was
on the robot or on the projection. Hence, two areas of interest – AOI-R
(for robot) and AOI-P (for projection) – were defined as shown in Fig. 4.

Fiducial markers attached to the robot allow tracking these surfaces and
extracting the corresponding fixation data. Fixations were extracted
using the Pupil Player software following the recommendation
of Blignaut [56] to use threshold values suggested by Holmqvist et al.
[33]: a minimum duration of 150 ms and a minimum dispersion of 1∘.

4.2. Trajectory data

A SICK S300 laser scanner was mounted on the AGV as shown in
Fig. 1. It recorded data that allowed to extract the trajectory data of the
participant with respect to the trajectory of the robot during the ex-
periments.

4.3. Design of stimulated recall interviews

To study how the participants’ understand the projected patterns
and how they make decisions (Section 2.3) we conducted SRIs. For this
purpose, we used gaze-overlaid videos produced with the Pupil Player
software [55].

The gaze-overlaid video was then jointly viewed by the participant
and the experimenter as shown in Fig. 5. An example video from the
experiments can be viewed at https://youtu.be/Mh9wGPkGNCM.

Initially, the experimenter explained how to identify the gaze point
in the gaze-overlaid video. After this explanation, the participants were
asked to comment on their eye gaze movements while perusing the
video. The experimenter also asked questions during the SRI, addres-
sing the participants’ understanding of the projected patterns and their
interpretations of the robot intentions, as well as their decision making.
The questions are described in detail below.

4.3.1. Questions concerning the understanding of the projected patterns
The experimenter asked the participants (1) if they could clearly see

the projected patterns and (2) how they interpreted it. These questions
were repeated for every projected pattern. The experimenter further
asked (3) whether the participants found the patterns necessary or in
any sense disturbing.

To determine how the participants interacted with the projected
patterns, the experimenter asked (4) how the participants were per-
ceiving the patterns, whether (5) they felt a tendency to not step on the
projected pattern, (6) why they were looking at the robot or the pro-
jection or elsewhere, and (7) the participants’ perception of the robots’
behavior, in particular, whether they experienced a different behavior
in each trial and (in case they did) why.

4.3.2. Questions about the participants’ decision making
The second set of questions relates to the participants’ navigation

behavior. The experimenter asked (8) in which way certain fixations
(which were selected depending on the situation by the experimenter)
were relevant for planning their trajectory, (9) the participants’ strategy
in encountering the robot, and (10) whether the participants

Fig. 3. Outline of the experimental evaluation.

Fig. 4. The defined Areas of Interest - AOI-R (“R” for robot) and AOI-P (“P” for
projection) as they are being tracked using the fiducial markers attached to the
robot. Fiducial marker detections and fixation can also be seen in the figure.

Fig. 5. Stimulated recall interview in process. The participant and the experi-
menter can be seen discussing a fixation. (A written informed consent has been
taken from the participant before using this image. This image is published with
permission from the copyright holder).
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experienced the projected patterns as providing useful information for
planning their path and making decisions.

4.3.3. Analysis of the stimulated recall interviews
All SRIs were recorded using a video camera (with the consent of

the participants). The recordings were then systematically analyzed as
follows.

Step-1 – Summarizing the information: All video recordings were
watched and summarized. This was not merely converting the audio to
text format, but also looking at the respective video frames to note the
observations in order to get a complete picture for further analysis.

Step-2 – Classifying into categories: The information collected in Step-
1 was categorized in a second step based on the two categories men-
tioned above (understanding of the projected patterns, and decision
making). Additionally, on a more general level, we analyzed whether
the participants had an overall, general strategy (spanning all patterns),
or favored a specific pattern.

4.4. Experimental design

The setup of our experiments is shown in Fig. 6. This setup was
chosen since it necessitates tight encounter situations between the
human and the robot that reflect typical encounters in industrial en-
vironments. We define an encounter as a sequence in which a human and
a robot are getting closer to each other in space while the human can perceive
the robot. This means that the human’s behavior can be influenced by
the robot during an encounter. In our experiments, the robot was
moving with a constant speed of 0.6 m/s.

Every participant was asked to move as shown in Fig. 6. Each ex-
periment was divided into four trials with each trial corresponding to a
unique projection pattern. The order of patterns was randomized to
counterbalance learning effects. Each trial consisted of three tasks and
each task included an encounter between the participant and the robot.
The robot was always following a predefined path. The robot’s path was
designed so that it was necessary for the human to veer-off from the
shortest path to the right or left in order to pass the robot and reach the
given destination. This corresponds to typical real-life encounters in
industrial environments. A video visualizing the predefined paths tra-
versed by the robot can be found at https://youtu.be/je0mROu6PdQ.

The distances at which the robot was first perceived by the human
were approximately 8 m, 14 m and 11 m for Task 1, Task 2 and Task 3,
respectively. During the experiments, an emergency brake was acti-
vated that would stop the robot if a participant came too close (less than

0.3 m). This situation did not happen in our experiments, however.
The experimental procedure in detail was as follows: First, the

participants were greeted and introduced to the experiment. They were
then asked to fill out a general questionnaire and sign the consent form.
Next, the inactive robot without projection was shown to familiarize the
participants with the platform. This was done to make the first trial
more comparable to the following trials. The experimenter then ex-
plained what the participant was supposed to do and what the robot
will do during the tasks and walked them through the experimental
environment, see Fig. 6. The participants were informed about safety
considerations during their encounters with the robot.

After the participant confirmed that he/she understood, the eye-
tracking glasses were set up. This typically included adjusting the eye
cameras such that the pupil was robustly detected. Furthermore, the
eye tracker needed to be calibrated as explained in Section 4.1.1.

The actual experiment then started by activating the recording of
the eye-tracking data. The participants started walking to their first
destination on a verbal signal from the experimenter. In the same way,
the remaining tasks and trials were initiated by a verbal signal.

After all trials, the Stimulated Recall Interview was conducted. The
whole experiment took approximately 55–75 min, of which the in-
troduction and setup took about 20–30 min, the actual trial took
20–30 min and the interview about 15 min.

An ethics approval was not required for our study as per institu-
tional guidelines and the Swedish Ethical Review Act (SFS number:
2003:460). Written informed consent was obtained from all partici-
pants. Due to the relatively low weight of the robots used in this study
and the safety precautions taken, there was no risk to harm participants
in the experiments.

5. Implicit intention transference from human to robot

Robots that operate in human co-habited environments such as
airports [11] need human-aware task and motion planning. As in [11]
detection and tracking of humans is often done by using RGB-D cameras
and laser range scanners mounted on the robot. The RGB-D cameras are
also used to identify human intentions through head pose estima-
tion [11]. We believe that eye gaze can convey information about
human intentions beyond trajectory and head pose of a person. Espe-
cially in safety-critical workplaces, such as warehouses or distribution
centers, for example, an employer could require the workers to wear
eye-tracking glasses - similar to the requirement to wear safety vests
nowadays - to improve safety and enable smoother and more efficient

Fig. 6. Experimental design: During the experiment, the participants (denoted by Hi) were asked to move from Hi to Ri and the small forklift robot (denoted by Ri)
moved from Ri to Hi. This is shown in the basement layout plan and the table on the top-right panel.
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operation of human and robot workers.
Safe and efficient human–robot interaction in industrial settings will

benefit from robots that are able to respond to expressions of human
motion intentions as soon as they can be inferred from human eye gaze.
In this article, we investigate the applicability of the idea of Implicit
Intention Transference through eye-tracking glasses in the case of a
specific human navigational behavior (deciding whether to veer-off to
the left or the right) in a specific scenario. We see this as a first step that
contributes towards the future development of eye gaze intent pre-
dictors that can be integrated into task and motion planners used in
robots. Based on our results regarding the detection of the intended
veer-off direction, we propose in Section 5.2 a control approach that
uses implicit intention transference. The concept of a system, that
combines the two main contributions of this work, Implicit Intention
Transference and SAR intention projection on the shared floor space, is
shown in Fig. 7. We like to note, however, that an evaluation of the
entire closed loop system visualized in Fig. 7 is out of the scope of this
article.

5.1. Recognition of human navigation intent

In the experiments described in the Section 4.4, each participant
had 12 encounters with the robot, corresponding to 12 decisions
whether to pass the robot to the left or the right. During the encounters,
the robot projected its navigational intent on the shared floor space
using four different patterns: Line, Arrow, Blinking Arrow, and Nothing.
We are primarily interested in finding how the gaze patterns of the
participants were distributed on the left and right side of the robot in
relation to their implicit navigation decisions. Hence, two areas of in-
terest: AOI-left and AOI-right were defined as shown in Fig. 8. The
dimensions of AOI-left and AOI-right were chosen after manually
checking the gaze-overlaid videos so that the defined AOIs captured
most of the relevant gaze points around the robot at the encountered
distances. We investigate the distribution of gaze points rather than
fixations [57] to avoid issues with fixation detectors [33].

5.2. Control approach for early obstacle avoidance using eye gaze

The principle of bilateral communication and interaction [5] in
Fig. 9 describes human–robot interaction when the intentions of a
human co-worker to move towards a certain goal are recognized by a
robot. Human and robot are driven by their individual goals from which
desired trajectories x Hd (estimated from human’s gaze) and xRd (ob-
tained from the robot’s internal and external sensors) and possible in-
tersections are computed. x Hd and xRd include both positions and or-
ientations. For robots, it may also be possible to use motion or task

primitives as reported for articulated robots in [58,59]. Actions and
reactions in this scheme act to achieve desired states x t( )H id and x t( )R id
in the shared environment. The interaction of the two agents leads to
observable states xH(ti) and xR(ti) at time ti. Let the human intention
become apparent at the beginning or at an early part of the trajectory

= …x t k m( | 1, , )H k . The variable m is the time horizon that is available to
the robot to recognize the human intention. Trajectory information is
communicated to the robot with a delay TdH . Then the robot starts the
intention recognition and begins to plan/compute a reaction x t( )R id .
The intention to react is realized as a part of the trajectory of the robot

= …x t k j n( | , , )R k where n j( ) is the corresponding time horizon during
which the human tries to recognize the robot’s motion intention.

We assume that the robot can measure its own position and or-
ientation as well as the position of the human. The robot further has a
view on the scenario by an onboard camera (scene camera). The in-
tended goal of the human is determined with the eye-tracking device
and the scene camera. The eye-tracking device sends significant para-
meters (focal length of the camera, camera geometry, fixations or gaze
points) the robot, which calculates the orientation angle towards the
current goal of the human. The required robot actions are then planned
and performed using the information about x t( )H id and x t( )R id . Crucial
information is the intersection point of two planned trajectories which
can be straightforwardly computed geometrically [60]. This can be seen
in Fig. 10 which shows the relationship between the intersection point
(crossing), the positions/orientations of the robot and human and the
distances and angles related to the coordinate systems of the human
and the robot. This computation helps the robot to plan trajectories
early enough to avoid collisions with humans.

6. Results and discussion

Altogether 27 experiments were conducted with one participant
each. Of these, 22 experiments were completed successfully. The rest of
them had to be discarded due to technical failures during the experi-
ments. Of the successful 22 experiments, the participants had a 1:1
gender ratio with a mean age of 28.45 years and a standard deviation of
6.47 years. Three of the participants had previous experience with ro-
bots though not with the same robot used in our experiments. The
participants had diverse backgrounds pertaining to their country of
origin, study, and work. Two of the participants had a background in
computer science. The rest of the participants had backgrounds in
chemistry, biology, mathematics, social sciences, film production,
nursing, and economics. Four of the participants were left-handed.
Every participant has done 4 trials in varying order, with 3 tasks in each
trial as shown in Fig. 6. The following sub-sections present and discuss,

Fig. 7. Concept of a system with implicit intention transference and SAR in-
tention projection. Implicit intention transference and SAR intention projection
are evaluated in this article but not the entire closed-loop system shown.

Fig. 8. Robot platform used for the experiments and the pre-defined areas of
interest (AOI): AOI-left (Orange) and AOI-right (Green). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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first, the results pertaining to intention communication from robot to
human – i.e., the evaluation of eye-tracking and trajectory data as well
as SRIs (Section 6.1), and, second, the results about implicit navigation
intention recognition (Section 6.2).

6.1. Intention communication from robot-to-human

6.1.1. Analysis of eye-tracking data
We analyzed eye gaze data to study to how human attention was

distributed between the robot (AOI-R) and the area in which the in-
tention was projected (AOI-P), conditioned on the type of projected
pattern. Fixations from all trials including all participants were ex-
tracted and a boxplot of the number of fixations on each AOI with

respect to the projected pattern and for all conditions is presented in
Fig. 11. Please note that in the case of no intention projection
(“Nothing”), the projection area of interest AOI-P is the same area as in
the other conditions, i.e. where a projection would have been. For the
definition of AOI-P see Section 4.1.2 and Fig. 4.

To identify which projection pattern had the most significant effect
on human attention, percentage of fixations on AOI-P with respect to
each projected pattern was compared by carrying out one-way analysis
of variance (ANOVA) test. To identify which two groups had a statis-
tically significant difference, we conducted post-hoc Tukey’s honest
significant difference (HSD) test. In order to test for possible effects of
the order in which trials were carried out, we also ran an ANOVA test
after grouping the data by trial number. The results are presented and
discussed below.

Influence of projection pattern on the number of fixations on
AOI-P: The ANOVA result, = =F p(3, 84) 2.94, 0.038, indicates that the
projected pattern had a significant effect on the number of fixations on
AOI-P. The post-hoc test showed a significant difference between the
projection patterns “Blink” and “Nothing”. A possible explanation can
be found in the SRIs (see Section 6.1.3) where participants said that the
“Blink” pattern immediately caught their attention and they looked at the
pattern every time the arrow appeared. The participants also mentioned
that they felt they did not have to look repeatedly at other projections, which
were intuitive and allowed to grasp the information immediately. This can
possibly explain why there is no significant difference between “Line”,
“Arrow”, and “Blink” with respect to the number of fixations on AOI-P.

Projection vs. no-projection condition: To identify how the pro-
jection of any of the patterns used in this study influenced the number
of fixations on AOI-P compared to the condition no-projection
(“Nothing”), we carried out a t-test, comparing the average number of
fixations on AOI-P for patterns A, B, C to the average number of fixa-
tions on AOI-P for pattern D. This test rejects the null hypothesis with

=p 0.0092, indicating that projecting intentions in any form (pattern A,
B or C) attracted fixations.

Influence of projection pattern on the number of fixations on
AOI-R: The ANOVA result for the number of fixations on AOI-R,

= =F p(3, 84) 2.33, 0.0805, indicates that the projected pattern did not
have a significant effect on the number of fixations on the robot (AOI-
R). This could imply that the projections were not found to be dis-
tracting.

Influence of trial order on the number of fixations on AOI-P and
AOI-R: The ANOVA tests grouped by trial number indicate that the

Fig. 9. Human–robot interaction block scheme that includes mutual intention recognition with a certain time delay.

Fig. 10. Human–robot scenario.
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order of the trials did not have a significant effect, neither for the
number of fixations on AOI-P ( = =F p(3, 84) 0.76, 0.522) nor for the
number of fixations on AOI-R ( = =F p(3, 84) 0.88, 0.637). This sug-
gests that the participants did not experience a significant learning ef-
fect over subsequent trials in our experiments.

6.1.2. Analysis of trajectory data
A key parameter that we use in our trajectory analysis is veer-off

distance, defined as the distance between the robot and the point at which
the participant starts to deflect from their original trajectory while ap-
proaching the robot in order to pass it, see Fig. 12. With this oper-
ationalization, we try to capture the distance at which the human
makes a decision to pass the robot to the left or the right. The veer-off
distances have been extracted from the laser scanner data using stan-
dard ROS tools. A boxplot of the veer-off distances with respect to the
projected pattern is presented in Fig. 13. To determine how the pro-
jected pattern influenced the veer-off distances, we carried out statis-
tical tests as described below.

Influence of projection pattern on veer-off distance: We carried
out another one-way ANOVA test to determine how the projected
patterns influenced the veer-off distances of the participants. The result,

= =F p e(3, 84) 25.9, 5.84 12, indicates that the projected pattern, in
fact, had a significant effect on the veer-off distance. As described
above, we then used Tukey’s honest significant difference test post-hoc
to determine, which patterns had led to this significant effect. We found

that there is a significant difference between the projection patterns
“Arrow” and “Nothing”, “Blink” and “Nothing”, and “Line” and
“Nothing”. The mean and standard deviations of the veer-off distances
for each condition were: Line: 2.65 m ± 0.23 m; Arrow:
2.87 m ± 0.38 m; Blinking Arrow: 2.62 m ± 0.37 m; Nothing:
2.01 m ± 0.34 m, see Fig. 13.

Influence of trial number on veer-off distance: A further one-way
ANOVA test with grouping by trial order indicates,

= =F p(3, 84) 1.72, 0.1697, that the order of the trials had no sig-
nificant effect on the veer-off distances. This again suggests that the
participants did not experience a significant learning effect in sub-
sequent trials in our experiments.

Projection vs. no-projection condition: To find out how any of
the projections used in this study influenced the veer-off distance
compared to the condition no-projection (“Nothing”), we conducted a t-
test as above, i.e. comparing the average veer-off distance for patterns
A, B and C with pattern D. Here, the null hypothesis was rejected with

=p e4.6134 09, indicating that projecting intentions led humans to
veer-off at significantly larger distances. The veer-off distances for the
projection group were 2.72 m ± 0.28 m, compared to
2.01 m ± 0.34 m if no projection was used (pattern D).

Our results imply that the projection of intentions (as it was realized
in our work) has a significant influence on how humans plan their
trajectory around the robot. This is further supported by the results of
the SRIs (see Section 6.1.3), where participants mentioned that they
perceived the projected patterns as a part of the robot and did not want to
walk over it.

6.1.3. Analysis of the stimulated recall interviews (SRIs)
We analyzed the Stimulated recall interviews of the 22 participants

for which we could record gaze data over the full time of the experi-
ment with a deductive approach. In the following, we first outline
general findings (Section 6.1.3.1), spanning all projected patterns. After
this, we elaborate on each pattern respectively. The following results
emerged from the participants’ reports on their evaluations about the
robot during SRI. We describe our conclusions about the participants’
understanding of the projected patterns, their interpretations of the
robot’s intention, and their decision making.

6.1.3.1. SRIs: General insights. The most commonly expressed strategy
of the participants in their encounters with the robot was to choose the
direction depending on how big the available clearance space was.
Some participants chose to wait and let the robot go first. Others took a
proactive approach to avoid the robot. In the SRI, the participants
explained that they established a link between robot and projection in
the first few seconds and that they observed the motion of the robot to
fully understand the connection between projected pattern and the

Fig. 11. Boxplot of the number of fixations on the robot (AOI-R) and projection (AOI-P) with respect to the projected pattern and for all conditions (in the dotted
box).

Fig. 12. Definition of veer-off distance as the distance between the point X at
which the participant starts to deflect from their approaching trajectory and the
location Y of the robot at that point in time.
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robot’s motion. Most participants reported that they understood the
pattern intuitively. Once a communication link was established, it
appeared to be obvious that the robot would follow the motion
intention projected. The projected intention increased the
participants’ confidence in the robot and allowed them to make
navigation decisions quickly. The SRIs are summarized in more detail
below.

Detailed SRI results: understanding and experience of the
projected patterns: All participants reported that they intuitively un-
derstood the projected intentions. None of them reported that the
projections were disturbing. The participants perceived the projections
as part of the robot and said that encounters were easier than without a
projection. 18 participants reported that the intention projection was
necessary for such encounters with the robot, three reported that it was
not necessary, and one participant reported that it was not necessary
given the slow speed of the robot (0.6 m/s). At the same time, a par-
ticipant said, that intention projection could be very useful for robots
moving at higher speeds. All except from five participants tried to avoid
stepping on the projected patterns. The five exceptions reported that
they stepped on the projection on purpose to see what happens.

Three participants mentioned that from a distance they focused
mostly on the projection in order to plan their path. Once they were
close to the robot, however, they focused more on the robot itself to
make sure they were staying away from it. Similar observations were
found in previous studies [38]. Eighteen participants reported that the
projected intention was helpful in making their decision about how to
encounter the robot. Two participants reported that the projection was
useful but did not feel the need for it as the robot was perceived to be
obvious enough. Two participants did not see a need for intention
projection at all. Eight participants expressed that the projection was
especially useful during encounters in narrow spaces.

6.1.3.2. SRIs: Results with respect to the different projected
patterns. Below we summarize the results of the SRIs related to
projection patterns.

SRI results pertaining to the line pattern: Nine participants said
that “Line” was the best pattern in terms of intention transfer and that
they easily understood this pattern. They perceived the “Line” projec-
tion as part of the robot and emphasized that it does not claim as much
space as the pattern “Arrow”. Some of the participants reported that it

was appropriate even to walk over the “Line” pattern. However, some
participants also reported that the “Line” did not give them an appro-
priate sense of clearance information as it is thin compared to the size of
the robot.

SRI results pertaining to the arrow pattern: Eleven participants
reported that the “Arrow” pattern was immediately clear, obviously
linked to the robot and that they did not have to further reflect on the
role of the projected pattern. Some of them also reported that the
“Arrow” gave less information than the “Line”, but expressed they ex-
perienced this amount of information as just right for the given situa-
tions. Correspondingly, some participants reported that the pattern
“Line” gave more information than required. Most of the participants
reported that they preferred the “Arrow” over the “Blinking Arrow”
pattern as it was perceived to give information in a more consistent
manner. Some of the participants reported that it took less attention to
focus on the “Arrow” pattern compared to the “Blinking Arrow” pat-
tern, because of the effort to refocus on the reappearing arrow. Some of
the participants also reported that the size of the projected arrow
(which is designed to be almost as wide as the robot) gave them a good
idea of how much space the robot was going to occupy. On the other
hand, some of the participants reported that the “Arrow” pattern was
strongly claiming space around the robot, which was perceived as un-
pleasant in narrow cross sections. In this respect, the “Line” pattern was
preferred, as it was perceived to leave more space for the human.

SRI results pertaining to the blinking arrow pattern: The par-
ticipants of our experiment mentioned in the SRI that every time the
blinking arrow re-appeared, this absorbed their attention momentarily
and in some cases the eye-tracking data show that the attention was
switching between the robot and the projection synchronized with the
frequency of the blinking arrow. Accordingly, some of the participants
reported in the SRI that the blinking arrow required more attention in
comparison to the continuously projected arrow. Some participants
even reported that the blinking arrow was confusing and that they felt
they lost information when the arrow vanished. Along these lines, most
of the participants expressed that they experienced the blinking arrow
as best for catching attention. In the long run, however, the robot ap-
peared more reliable if the arrow was projected without interruptions.

SRI results when no pattern was projected: Two of the partici-
pants reported that they were not feeling confident without any pro-
jected pattern because it was unclear what the robot was going to do

Fig. 13. Boxplot of veer-off distances (in meters) with respect to the projected patterns.
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next. Especially in narrow passages, this led to uncertainty among the
participants. One of them even reported being scared in narrow spaces
when the robot was approaching. This corresponds to the trajectory
analysis in Section 6.1.2, which showed that the participants came
closer to the robot when no pattern was projected. Indeed, two parti-
cipants mentioned that they felt the robot came too close and that it was
following a strange path compared to the trials with a projection.

As a result of the SRIs, we tentatively conclude that projecting an
arrow to communicate the robot’s navigation intentions appears to be
the best choice among the selected patterns (for the given experimental
conditions). The information communicated by an arrow was in-
tuitively clear to the participants and was experienced as providing the
required information, thus, leading to a high level of perceived safety.
We also found that many of the participants perceived the projections
as a part of the robot, which encouraged them to choose safer trajec-
tories with the point of closest approximation during the encounter
further away than in the trials without a projection.

6.2. Implicit navigation intention recognition

In this section, we investigate how well the directional navigation
intention of the human participants can be inferred (implicitly) from
their tracked eye movements. During the encounters, we therefore ex-
tracted the number of gaze points on AOI-left and AOI-right (see Fig. 8)
and computed the relative percentages GazePtleft and GazePtright. We
considered all gaze points in the time span ranging approximately be-
tween 2 and 5 s during which the fiducial markers were visible and
could be tracked. We use 264 decisions (22 participants and 12 en-
counters) in our analysis. The decisions of the participants to go left or
right were identified manually from the recorded video and assigned to
categorical numbers: =decision 0 for left, =decision 1 for right. Gaze
support, denoting the percentage of gaze points on the AOI corre-
sponding to the decision taken, was then computed as follows:

= +Gazesupport GazePt decision GazePt decision. (1 ) .left right (1)

The distribution of gaze support is shown in Fig. 14 by two histograms,
one with 20 bins (dark red/green bars) and one with 2 bins (light red/
green bars). Overall, gaze support was in agreement with the navigation
decision in 72.3% of the encounters, i.e. people moved in 191 out of the
264 encounters to the side they were looking at more often before
passing the robot (they evaded the robot 106 times to the left and 85
times to the right). In 27.7% of the encounters gaze support was not in
agreement with the navigation decision, i.e. people decided to move to
the side they gazed at less frequently. Out of 73 such instances, people
passed by 43 times to the left and 30 times to the right.

Next, we evaluated the influence of the intention projection on the
observed gaze patterns. The robot used four different projection pat-
terns: Line, Arrow, Blinking Arrow, and Nothing. The leftmost four bar
pairs in Fig. 15, show the distribution of gaze support over all partici-
pants and all types of encounters, separately for each pattern. The
rightmost three bar pairs in Fig. 15 show gaze support for each type of
encounter: from left, frontal, and from right. The 2-bin histogram in
Fig. 14 is reproduced for comparison in Fig. 15 (labeled “All Cases”).
We observed most encounters with agreeing gaze support when a line
was projected to communicate the navigation intent of the robot.

To investigate whether gaze support differed significantly, we con-
ducted a two-sample Kolmogorov–Smirnov test (considering two types of
projection at a time and for six combinations in total). We did not find a
significant difference in gaze support at the significance level of 0.05.

Finally, we analyzed whether the type of encounter had a significant
influence on the observed gaze patterns and counted cases of agreeing and
non-agreeing gaze support for all participants, all projections but separately
for the different types of encounters. The corresponding results are shown in
the three rightmost bar pairs in Fig. 15. Again, we did not find a significant
difference at =p 0.05, indicating that neither the projection nor the type of
encounter had a distinct influence on the gaze support measure.

7. Conclusions and future work

This article addresses bi-directional intention communication be-
tween robots and humans with the goal to improve perceived and
general safety of humans when they encounter a robot. We study
communication and recognition of motion intentions inspired by the
use case of autonomous transport vehicles in material handling or
flexible manufacturing systems. To improve perceived safety, we de-
veloped a Spatial Augmented Reality (SAR) based intention commu-
nication system and mounted it on an AGV. To understand how SAR
intention communication from robot to human affects the navigation
behavior of humans, we then conducted experiments in which the AGV
and the participants had to negotiate different encounters in a realistic
scenario. We used eye-tracking glasses, a laser scanner to obtain human
trajectory data and stimulated recall interviews (SRI) to get detailed
insights into a total of 264 encounters.

By analyzing the recorded trajectories, we found that a mobile robot
projecting its intentions on the shared floor space encourages humans
to actively choose safer paths and reduces the shortest distance during
an encounter. The analysis of the SRIs (which used the gaze-overlaid
video as stimulus) revealed that the “Arrow” projection pattern was
preferred among the patterns tested and that the projections were often
perceived as part of the robot.

Our previous work [6,7] compared the human response to robot’s
using SAR intention projection to robots that did not use a projection.
On a Likert scale, the robot’s with intention projection got higher
ranked in key attributes such as communication, reliability, predict-
ability, transparency, and situation awareness. Complementary
to [6,7], this article presents an improved experimental setup, sub-
stantially more extensive experimental data, additional analyses of eye-
tracking data and stimulated recall interviews. This allowed us to ob-
tain statistically significant results and to understand better why hu-
mans respond differently to different projection patterns.

Access to gaze information constitutes a valuable source of in-
formation that could allow autonomous vehicles to take attention and
intentions of a human into account and thus improve general safety in
human–robot encounters. We describe a control approach that takes
this information into account and investigated the possibility of human-
to-robot implicit intention transference through recognition of naviga-
tion intentions solely from eye gaze data. Our results show that, in the
given scenario, a navigation intent predictor based on the simple rule,
“if people look more often to one side of the robot, they intend to go to
that side” would have predicted the correct navigation intention in
72.3% of the encounters. The result is encouraging and a springboard
for further research. More experiments in different scenarios are needed
to reach general conclusions (independent of our particular setting)
about differences with respect to the projection pattern of the robot or
the type of encounter. Finally, future research should address the
question at which distance to a robot navigation intent shows most
strongly in the gaze of humans.

Gaze is not the only modality from which navigation intent can be in-
ferred. Head and body pose and a person’s recent trajectory [5] also allow
inference of navigation intent. Future research should aim to find con-
fidence models for predictors based on different modalities with the goal to
derive more reliable joint predictors. Recent developments suggest the use
of wearable augmented reality (AR) equipment for increased efficiency and
faster on-demand production [61]. Integrating eye-tracking as suggested in
this work could help to use AR equipment also for establishing safe hu-
man–robot interactions, possibly with customized intent communication.
Correspondingly, future work should investigate the usage of smart glasses
with in-built augmented reality and eye-tracking such as the HoloLens 2.3

Finally, navigation intent prediction needs to be integrated into human-
aware motion planning.

3 https://www.microsoft.com/en-us/hololens .
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Fig. 14. Histograms showing the distribution of gaze support for all participants, all patterns, and all types of encounters. Red bars represent cases where people
predominantly looked on one side and still moved to the other side. Green bars represent encounters where gaze was predominantly on the side chosen. Dark bars
show a histogram with 20 bins. Light bars show another histogram of the same distribution with two bins. Accordingly, the height of the two light bars equals the
added height of the ten dark bars of the same color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 15. Percentage of encounters with non-agreeing (red) and agreeing (green) gaze support. From left to right: all participants and all types of encounters, separated
by robot-to-human projection pattern (Line, Arrow, Blinking Arrow, and Nothing). Fifth bar pair: all participants, all tasks, and all projections (corresponding to the
2-bin histogram in Fig. 14). Rightmost three bar pairs: all participants, all projections, separated by types of encounter. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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