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FreMEn: Frequency Map Enhancement for
Long-Term Mobile Robot Autonomy in
Changing Environments

Tomas Krajnik, Jaime P. Fentanes, Jodo M. Santos, and Tom Duckett

Abstract—We present a new approach to long-term mobile
robot mapping in dynamic indoor environments. Unlike traditional
world models that are tailored to represent static scenes, our ap-
proach explicitly models environmental dynamics. We assume that
some of the hidden processes that influence the dynamic environ-
ment states are periodic and model the uncertainty of the estimated
state variables by their frequency spectra. The spectral model can
represent arbitrary timescales of environment dynamics with low
memory requirements. Transformation of the spectral model to
the time domain allows for the prediction of the future environ-
ment states, which improves the robot’s long-term performance in
changing environments. Experiments performed over time periods
of months to years demonstrate that the approach can efficiently
represent large numbers of observations and reliably predict fu-
ture environment states. The experiments indicate that the model’s
predictive capabilities improve mobile robot localization and nav-
igation in changing environments.

Index Terms—Localization, long-term autonomy, mapping.

I. INTRODUCTION

DVANCES in the field of mobile robotics are gradually
A enabling long-term deployment of autonomous robots in
human environments. As these environments change over time,
the robots have to deal with the fact that their world knowledge
is incomplete and uncertain. Although probabilistic mapping
methods [1] have demonstrated the ability to represent incom-
plete knowledge about the environment, they generally assume
that the corresponding uncertainty is caused by inherent sensor
noise rather than by natural processes that cause the environment
to change over time. Thus, traditional mapping methods treat
measurements of dynamic environment states as outliers [2].
This undermines the ability of the mapping methods to reflect
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Fig. 1. Frequency-enhanced model of a single image feature visibility. The
observations of image feature visibility (red) are processed by the FreMEn
method that extracts the time-dependent probability of the feature being visible
(green). This allows us to reconstruct and predict the feature’s visibility for a
given time (blue).

the environment dynamics and provide support for long-term
mobile robot autonomy. Recent works have demonstrated that
exploiting the outlying measurements allows us to characterize
some environment changes, which improves robot localization
in changing environments [3]-[6].

In our approach, we assume that some of the mid- to long-term
processes that exhibit themselves through environment changes
are periodic. These processes can be both natural, e.g., seasonal
foliage changes, or artificial, e.g., human activities character-
ized by regular routines. Regardless of the primary cause of
these processes, we hypothesize that the regularity of the en-
vironment changes can be exploited by robots to build more
robust representations of their surroundings. We propose to rep-
resent the probability of the elementary environment states by
combination of harmonic functions whose amplitudes and peri-
odicities relate to the influences and frequencies of the hidden
processes that cause the environment variations. This allows for
efficient representation of the spatiotemporal dynamics as well
as prediction of future environment states. To obtain the parame-
ters of the harmonic functions, we propose to treat the long-term
observations of the environment states as signals, which can be
analyzed in the frequency domain.

An advantage of our approach is its universal applicability—
it can introduce dynamics to any stationary environment model
that represents the world as a set of independent components. In-
troduction of the dynamics is achieved simply by representing
the uncertainty of the elementary states as probabilistic func-
tions of time instead of constants that are updated only when
the given state is observed by a robot. The approach, which
was originally introduced in [7], was successfully applied to
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landmark maps to improve localization [4] and to topological
maps to improve the robotic search [8] and navigation [46]. The
application of the method to occupancy grids not only reduces
memory requirements [9], but also enables lifelong spatiotem-
poral exploration [10], [47] of changing environments. In this
paper, we summarize and extend the previous results by a thor-
ough examination of the method’s ability to efficiently represent
environment changes over long time periods, predict the future
environment states, and use these predictions to improve the
robustness of robot localization and navigation. While the main
aim of our method is to deal with periodic changes, we also
show that its combination with a persistence model allows us to
learn and deal with nonperiodic dynamics as well.

II. RELATED WORK

While the mapping of stationary environments has been
widely studied [11] and generating large-scale stationary envi-
ronment models has been in the spotlight of robotics research for
along time, mapping methods that explicitly model the environ-
ment dynamics gained importance only after robots attained the
ability of autonomously operating for longer time periods [44].

The first approaches to address the problem of dynamic
environments were object-centric. These methods identify
moving objects and remove them from the environment rep-
resentations [12], [13] or use them as moving landmarks [14],
[15] for self-localization. But not all dynamic objects actually
move at the moment of mapping, which means that their
identification requires long-term observations. To tackle
this issue, Ambrus er al. [16] proposed to process several
3-D point clouds of the same environment obtained over a
period of several weeks to identify and separate the movable
objects and refine the static environment structure at the same
time. While object-centric representations can handle some
problems of dynamic mapping, they still assume that most of
the environment is static, which makes them unsuitable for
scenarios where the environment varies significantly.

Considering this aspect, other authors propose approaches
that assume the map to never be complete and perform mapping
in a continuous manner, adding new features to the map every
time the robot observes its environment. In these approaches,
managing map size is crucial [17]-[20].

Alternatively, some authors propose systems that learn a fixed
set of possible states for the dynamic objects, e.g., corresponding
to open and closed doors [21], [22], which can limit the map
size, but this approach is limited in the real scenarios, where the
number of states is unpredictable.

Other approaches do not attempt to explicitly identify mov-
able objects, but rely on less abstract environment representa-
tions. For example, Biber and Duckett [17] and Arbuckle et al.
[23] represent the environment dynamics by multiple temporal
models with different timescales where the best map for lo-
calization is chosen by its consistency with current readings.
Dayoub et al. [24] and Rosen et al. [25] each present a feature
persistence system based on temporal stability in sparse visual
maps that can identify environmental features which are more
likely to be stable. Yguel et al. [26] propose to model occupancy

grid maps in the wavelet space in order to optimize the amount
of information that has to be processed for path planning.

Churchill and Newman [3] propose to integrate similar obser-
vations at the same spatial locations into “experiences” which
are then associated with a given place. They show that associ-
ating each location with multiple “experiences” improves au-
tonomous vehicle localization. Tipaldi et al. [5] represent the
states of the environment components (cells of an occupancy
grid) with a hidden Markov model and show that their repre-
sentation improves localization robustness. Kucner et al. [27]
learn conditional probabilities of neighboring cells in an occu-
pancy grid to model typical motion patterns in dynamic envi-
ronments. Another method can learn appearance changes based
on a cross-seasonal dataset and use the learned model to predict
the environment appearance [6] showing that state prediction
can be useful for long-term place recognition in changing envi-
ronments. Finally, Krajnik ez al. [7] represent the environment
dynamics in the spectral domain and apply this approach to im-
age features to improve the localization [4] and to occupancy
grids to reduce memory requirements [9].

While most of the aforementioned methods are aimed specif-
ically at the problem of lifelong localization, our approach
was shown to be applicable in other scenarios as well [28].
In this paper, we extend the results and experimental analysis
presented in [4], [7], and [9]. The efficiency of spatiotempo-
ral representation, which was only briefly mentioned in [9], is
now thoroughly investigated on a FreMEn 4D (3D+time) occu-
pancy grid, which represents almost 2 million observations of
a small office over 112 days. Compared to the work presented
in [4], which provides only a coarse evaluation compared to a
naive localization method, the experiments in this paper demon-
strate how the localization robustness depends on the number
of predicted visual landmarks, compare its performance to the
experience-based approach [3], and present additional evalu-
ation on outdoor datasets. This paper also demonstrates that
integration of the method in the ROS navigation stack improves
both the accuracy of robot localization and the efficiency of
navigation.

III. SPECTRAL REPRESENTATION FOR SPATIOTEMPORAL
ENVIRONMENT MODELS

Many environment models used in mobile robotics consist
of independent components that can be in two distinct states.
For example, the cells of an occupancy grid are occupied or
free, edges of a topological map are traversable or not, doors
are open or closed, rooms are vacant or occupied, landmarks
are visible or occluded, etc. The states of the real world can-
not be observed directly, but through sensors that are affected
by noise. Thus, the state of each world model component is
uncertain, which is typically represented by the probability of
a particular component being in a given state, e.g., the uncer-
tainty of occupancy of the jth cell is typically represented by
p; = P(s; = occupied). This allows us to counter the effect of
noisy measurements by employing statistical methods, such as
Bayesian filtering [1]. However, the mathematical foundations
described in [1] assume a static world, i.e., the probabilities of
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the world components are assumed to be constant. While this
still allows us to update the environment model if a change has
been observed for long enough, the old states are simply “for-
gotten” over time and the system does not learn from the change
observed.

We propose to represent the uncertainty of the environment
states not as probabilities p;, but as probabilistic functions of
time p;(t). Assuming that the variations of the environment
are caused by a number of unknown processes, some of which
exhibit periodic patterns, the p; (t) can be represented by a com-
bination of harmonic functions that relate to these periodic pro-
cesses. To identify the parameters of these harmonic functions,
we propose to use spectral analysis methods, namely the Fourier
transform [29].

A. Fourier Transform

The Fourier Transform is a well-established mathematical
tool widely used in the field of statistical signal processing. In a
typical case, it transforms a function of time f(¢) into a function
of frequency F(w) = [~ f(t) e 7“!dt. The function F(w) is
commonly referred to as the frequency spectrum of f(¢). The
Fourier transform is invertible, and therefore, one can recover the
function f(¢) from its spectrum F(w), i.e., f(t) = F'(F(w)).
If one wants to analyze or alter the periodic properties of a
process characterized by a function f(t), it is reasonable to
calculate its spectrum F'(w), perform the analysis or alteration in
the frequency domain, and then transform the altered spectrum
F'(w) back to the temporal domain. Such a process is referred
to as spectral analysis.

Typically, F(w) is a complex-valued function, whose abso-
lute values and arguments correspond to the amplitudes and
phase shifts of the frequency components w. Given that f(¢)
is a real periodic discrete function, the spectrum F(w) can be
represented by a finite set of complex numbers.

B. Proposed Representation

Although the approach can be applied to most state-of-the-art
representations, we will explain it with an occupancy grid. To
keep this explanation simple, we assume that the occupancy of
the individual cells is independent of each other and explain the
approach on a single cell. So let us assume that at a given time ¢,
a single cell of an occupancy grid is either occupied or free. Let
us represent the state as a binary function of time s(¢) € {0,1},
where s(t) = 0 corresponds to the cell being free at time ¢ and
vice versa.

The main idea behind the proposed model is to treat the values
of the function s(t) as real numbers and calculate the Frequency
spectrum of the sequence s(t) by means of a (Discrete) Fourier
transform as

S(w) = F(s(t)). (1)

The resulting frequency spectrum S(w) is a discrete complex
function whose absolute values |S(w)| correspond to the influ-
ences of periodic processes on s(t). In other words, each local
maximum of |S(w)]| indicates that the function s(¢) might be in-
fluenced by a hidden process whose period is T' = 27 /w. Since
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we do not want to represent the state s(¢) directly, but as a com-
bination of [ periodic processes, we select the [ most prominent
(i.e., of highest absolute value) coefficients of the spectrum S (w)
and store them along with their frequencies w; in a set P(w).
The coefficients stored in the set P are then used to recover a
function p(¢) by means of the inverse Fourier transform

p(t) = <«(F 7 (P(w))) ()

where ¢ denotes a function that ensures that p(t) € [0, 1].
For our purposes, we choose a simple saturation function
¢(x) = min(max(x,0), 1), which achieved better results than
other normalization schemes in our experiments.

Now, let us assume that

P(s(t) = 1) = p(t)
P(s(t) =0)=1—p(t). 3

The ¢ function ensures that both 1 — p(¢) and p(¢) are always
positive, i.e.,

P(s(t)) 2 0 @)

for all possible states s(t). The cell is always either free or
occupied, i.e., the state s(t) is always either 0 or 1, meaning
that

P({s(t) =0} U{s(t) =1}) = 1. Q)
Finally, the sum of all P(s(t)) for all s(¢) € {0,1} is

P({s(t) = 1}) + P({s(t) = 0}) = 1 = p(t) + p(t) = 1. (6)

Since P(s(t)) satisfies (4)—(6), which are Kolmogorov’s ax-
ioms, we can assume that P(s(t)) is a probability. Thus, the
function p(t) recovered from the frequency spectrum of s(t) by
(2) represents the probability that the cell is occupied at time t.

By thresholding the probability p(¢), we can calculate an
estimate s'(t) of the original state s(¢). However, the original
observation of s(t) can differ from the probabilistic estimate
§'(t). In the case that the given application has to preserve all
past observations correctly, the differences between s'(¢) and
s(t) are stored in an outlier set O.

Thus, our model of the state consists of two finite sets P and
O.Theset P consists of [ triples abs(P; ), arg(P;), and w;, which
describe the amplitudes, phase shifts, and frequencies of the
model spectrum. Each such triple is related to the importance,
time offset, and periodicity of one particular periodic process
influencing the state s(t). We will refer to the number of modeled
processes ! (i.e., to the number of triples in P) as the “order”
of the spectral model. The set O represents a set of k£ time
intervals, during which the state s(¢) did not match the state s (t)
calculated from p(¢). To achieve low memory requirements, the
set O is A-encoded, i.e., it is implemented as a sequence of
values, indicating the starts and ends of time intervals when the
predicted and observed state did not match, i.e., s'(t) # s(t).
Thus, each such interval is represented by its limits [to, t2541)-

Fig. 2 provides a graphic representation of the model building
process and a commented video is available at [30]. The process
starts with the measured state s(t) (red line, left box), which
is transformed into the frequency domain S(w) (right top, red).
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Fig. 2.  Example of the measured state and its spectral model. The left part

shows the time series of the measured state s(t), probability estimate p(t),
predicted state s'(¢), and outlier set O. The upper right part shows the absolute
values of the frequency spectrum of s(¢) and indicates the spectral coefficients,
which are included in the model, i.e., in the set P. The spectrum is symmetric
and the spectral coefficient with frequency O corresponds to mean probability
of s(t) = 1. Thus, the model encodes two periodic nodes—its order [ is 2.

The most relevant spectral components P (w) (right top, green)
are then selected and transformed back to the time domain as
p(t) (green line, left box). The probability p(t) is then thresh-
olded to obtain s'(¢) (left, blue line) and the difference is stored
in the outlier set O (left box, violet line).

To be able to build, maintain, and use this representation, we
define four operations: reconstruction of the measured state s(t),
addition of a new measurement, model update, and prediction
of the future state with a given confidence level.

1) Reconstruction of the Measured State: The aforemen-
tioned representation allows us to retrieve the past cell state
s(t) as

s(t) = (F 7 (P(w)) 2 0.5) @ (t € O) ()

where @ is an XOR operation. The idea behind this equation
is to reconstruct the probability p(¢) from the spectrum P, set
§'(t) to 1if p(t) exceeds 0.5 and finally apply the XOR operator
to negate s'(t) if ¢ belongs to the set of outliers O.

2) Addition of a New Measurement: Whenever a real state
s™(t) is measured, we calculate s(¢) by means of (7) and if it
differs from s™ (t), the current time ¢ is added to the represen-
tation of the set O:

s () # (F Y PWw)) >05)@(t€0) - O=0Ut.

®)
Since (8) takes into account the current contents of the outlier
set O, the time ¢ is added to O only when §'(¢) starts and
stops matching s(¢), which results in A-encoding of the set O.
Nevertheless, p(t) does not predict s(t) with perfect accuracy
and the set O is likely to grow as measurements are added. After
some time, the outlier set O itself might contain information
about dynamics that were previously unobserved and is thus not
included in the set P. To take into account the new information,
our method offers an efficient way to update the entire spectral
model.

3) Model Update: To update the spectral model, we recon-
struct s(¢) including the newly added measurements by (7) and
calculate its spectrum S(w). Again, we select the [ coefficients
with highest absolute values of the spectrum S(w), store them
in P(w) and reconstruct the outlier set O using (8). In a typi-
cal situation, the updated spectrum P would reflect s(¢) more
accurately, causing reduction of the set O. The spectral model
order [ can be changed prior to the update step without any
loss of information. Thus, we can change the model order and
recalculate it whenever required. In our experiments, model
update was typically performed on a daily basis as discussed
in Section IV-B.

4) Estimation and Prediction of Future States: Note, that (7)
can calculate s(t) for any time ¢ and that the threshold value of
0.5 can be set arbitrarily. In fact, a threshold ¢ such that p(t) > ¢
represents a confidence level of the grid cell being occupied at
time ¢. Therefore, we can use (7) for future prediction of s(t)
with a given confidence level c. In the case of prediction, the
outlier set O is not included in the calculation and the predicted
state might not match the real future state, so we denote the
prediction as §'(t, ¢). To simplify notation, we also define s'(t)
as §'(t,0.5). Therefore, (¢, ¢) and s'(¢) can be calculated as

s'(t,e) = F H(P(w)) > c. ©)

An example of the second-order spectral model which represents
a quasi-periodic function is provided in Fig. 2.

5) Estimation and Prediction for a Single Time Instant: In
many cases (such as in the scenarios described in Sections VII
and VIII), one does not need to recover or predict environment
states over a long time interval, but for a single time instant. Here,
it is impractical to use (9) or (2), because these use the inverse
Fast Fourier transform, which generates an entire sequence of
probabilities. Instead, one can exploit the sparsity of the spectral
model P(w) and calculate p(t) simply as

n

p(t) = ap + Z ajcos(wjt + ¢;)
=1

(10)

where w;, ¢;, and «; represent the frequencies, time shifts, and
amplitudes of the spectral components stored in the set P(w).
The parameter oy, which corresponds to wy = 0 is the mean
of s(t).

C. Nonuniform Sampling Scheme

Typically, the Fourier transform is applied not to continu-
ous functions, but to discrete sequences of data measured on a
regular basis. The assumption of equally spaced samples s(t)
allows us to employ the fast Fourier transform (FFT) algorithm,
which calculates the frequency spectrum S(w) in a very efficient
manner.

However, the FFT-based model update requires recovery of
the entire sequence of the observed states, which becomes com-
putationally expensive over time. Additionally, the FFT relies on
the assumption that the observations of the environment states
can be performed frequently and on a regular basis, which is
hard to satisfy even in laboratory settings. The requirement of
regular observations also means that the robot’s activity has to
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be separated into a learning phase, when it frequently visits in-
dividual locations to build its dynamic environment model, and
a deployment phase when it uses its model to perform the tasks
requested. This division means that while the robot can create a
dynamic model which is more suitable for long-term operation,
it cannot be updated and thus cannot adapt to variations that
were not present during the learning phase. Thus, the predictive
capability of the method will become less and less reliable over
time, which will negatively affect the efficiency of robot oper-
ation in long-term scenarios. To allow the robot to cope with
the changing dynamics, we introduce a generalized method that
can build and update the spatiotemporal model from sporadic
irregular observations in an incremental manner.

This version of the method maintains a sparse frequency spec-
trum, which is a set C of complex numbers ;. for each modeled
state. These correspond to the set {2 of modeled periodicities
wy, that might be present in the environment. Each time a state
s(t) is observed at time ¢, the aforementioned representation is
updated as

1
Ry (nyo +s(t))

1 o
T T (nye + (s(t) —v0)e 7™ ) Y € Q

n+—n-+1

an

where n represents the number of observations. The proposed
update step is analogous to incremental averaging—the absolute
values of || correspond to the average influence of a periodic
process (with a frequency of wy) on the values of s(t). To
perform predictions, we select the [ components with the highest
absolute value of 7 from the set C, store them in the set P(w),
calculate o; = |v;|, ¢; = arg(y;) and predict p(t) using (10).

The choice of set €2, which determines the periods of the
potential cyclic processes, depends on the memory size that
can be allocated for the model and the longest period that is
going to be modeled. In the indoor navigation experiment de-
scribed in Section VIII, €2 consisted of 168 components cov-
ering periodicities from one week to 1 h. In the outdoor case
Section VII-B, €2 consisted of 1000 components covering peri-
ods from one year to 8 h. The discussion about the optimal choice
of set 2 along with other details of the nonuniform sampling
scheme is provided in [10]. In the case of uniform sampling, the
spectrums generated by (11) and FFT are identical. However,
while the set of modeled periodicities of the FFT-based method
scales naturally with the duration of the data collection, the set
of periods €2 captured by the nonuniform scheme is fixed.

D. Modeling Persistence

The aforementioned representation is primarily aimed at
modeling the environment changes from a long-term perspec-
tive. Thus, the predictions of future states are based on the
observed periods of the changes in the past. While this is useful
for long-term forecasts, prediction of near future states should
take into account not only the states’ periodicity, but also their
persistence. For example, if a given visual feature was observed
10 s ago, it is quite likely that it will be still observable even
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though it is not usual to observe it at this time of day or week.
To enable the deployment of the proposed method on continu-
ously operating mobile robots, the ability to perform short-term
predictions is also important. Thus, we extended the FreMEn
representation with a persistence model, which acts as short-
term memory that represents the expectation that the given state
did not change since the last observation if the observation was
performed recently. This is achieved by extending the update
scheme of (11) by

(o Js st
n+1 t—1

s(ti) — s(t)

t et 12)

where s(t;) represents the last observation at time ¢; and 7
represents the modeled state persistence, i.e., the mean time
between the state’s changes. To predict the value of state s(¢)
for a future time ¢, we calculate

P =s(t)e’™ +p(t) (1-¢)

where p(t) is calculated by means of (10). Note that for

the predictions which closely follow the last observation, i.e.,
tp—t

13)

[t —#;| < T, the expression e is close to 1, which means
that the expected occupancy would be the same as the one re-
cently observed. Using (13) to predict the more distant future,
ie., [t —t;| > 7, causes the expression etl%t to be close to 0,
which suppresses the effect of the latest observation on p/(t) and
emphasizes p(t), which represents the behavior of the predicted
state from a long-term perspective. The experiments presented
in Section VIII show that the addition of the persistence model
to the FreMEn representation allows us to deal with nonperiodic
changes as well.

IV. PERFORMANCE EVALUATION

In the rest of this paper, we examine the tractability of using
our approach, the Frequency Map Enhancement (FreMEn), as a
core component of spatiotemporal models for mobile robotics.
In particular, we investigate the following questions:

1) How many parameters of the spectrum typically have to

be stored to represent and predict the environment state?

2) How efficiently can it represent long-term observations?

3) What is the accuracy of its predictions?

4) How can the approach benefit long-term autonomy of

mobile robots?

To answer these questions, we analyzed several types of envi-
ronment models gathered by a mobile robot which was continu-
ously operating for several months in a human-populated indoor
environment. To quantitatively evaluate the performance of the
FreMEn, we use four different criteria relevant to mobile robot
mapping. The prediction and estimation errors ¢, and ¢, relate
to the faithfulness of the FreMEn, i.e., its ability to correctly
estimate and predict the environment states for a given time pe-
riod. The compression ratio relates to the memory efficiency of
the FreMEn representation, i.e., the memory needed to represent
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the long-term observations of the environment. The update time
relates to the computational complexity of the FreMEn.

A. Prediction and Estimation Error

Knowing the coefficients P;(w;) of the spectrum P allows
us to calculate an estimate s'(¢) of the original state s(t) by
(9). A natural concern is the accuracy of reconstruction of s'(¢),
because it will affect the prediction capabilities of the spectral
model and the size of the outlier set O. One can expect that
increasing the spectral model order (i.e., including more coeffi-
cients in P) would enable more precise reconstruction of s'(t)
from the spectral model P alone. However, as the number of
parameters grows, the model becomes more adjusted to the spe-
cific time series of the observations s(t), which decreases its
ability to predict the environment state in the future.

To evaluate the quality of the spectral model, we define the
estimation error €(t,, ;) as the ratio of the correctly estimated
signal s'(t) on a given time interval ¢ € [t,, ] to the length of
the entire interval

1
tb - tu

G(t(l,tb) =

/|s’(t) — s(t)|dt. (14)

t

The estimation error can be also calculated from the intersection
of the intervals in the outlier set O and (¢,,1;) as

(s, ) N O]
|t ta)

Since the outlier set O is A-encoded, the calculation of (15) can
be performed very efficiently.

Typically, the error would be calculated for the entire series
of observations, i.e., from time O to the time of the latest obser-
vation 7. We call this error the estimation error of the spectral
model and denote it as €, = €(0, 7).

Suppose that the sequence s(t) includes observations made
from O until 7 and that the spectral model P(w) had been cal-
culated using only observations made between 0 and 7/, where
7' < 7. Then, calculation of s'(t) for t € (7, 7] by (9) is actu-
ally a prediction. Thus, the estimation error (7', ) relates to
the ability of the spectral model to predict future states from
past observations. We denote the error €(7/, 7) as the prediction
error ¢,. Note that the aforementioned situation happens every
time the model is updated: the value of 7/ corresponds to the
time of the last update, while the outlier set already contains
observations that have been obtained after 7'. Since calculation
of €. and ¢, by (15) is computationally efficient, the proposed
algorithm can use it to decide whether a model update is needed
as well as the optimal order of the spectral model. This can
be employed to adapt the model order based on the observed
dynamics rather than using a fixed model order.

Although the calculation of both errors is similar, they repre-
sent different properties of the FreMEn model. The estimation
error €, relates to the ability of the spectral model to recover
past observations and ¢, represents the ability to predict future
states. While e, decreases with the model order, the dependence
of ¢, on the model order is more complex.

€(ty,ty) = (15)

Note also that (14) relates only to the reconstruction of the
states s(¢) from the spectral model P before the outlier set is
taken into account. The application of the outlier set O allows
us to recover the sequence s(t) in an exact way.

B. Choosing the Model Order

As mentioned before, the dependence of the prediction er-
ror €, on the model order [ is not straightforward. Choosing
too low a value [ causes overgeneralization, while choosing too
high a value of [ causes overfitting of the FreMEn model. To
select the proper value of the model order [/, we evaluate the
model’s predictive capability for different values of [, choose
the order !" with the lowest prediction error €, and then per-
form the model update with the value !’. In a typical scenario
of robot deployment in our project [31], updates of the FreMEn
models are performed at midnight every day when the robot
replenishes its batteries at its charging station. Before updating,
the performance of the FreMEn models with different orders [
is evaluated by comparing their predictions to the observations
gathered since the last update (i.e., since midnight the previ-
ous day). Then, the models are updated using the order which
achieved the lowest prediction error. A typical value for an op-
timal model order !’ is 2 or 3 and the typical time to establish
the optimal order and update the spatiotemporal models used in
our robot deployments is less than a minute.

C. Compression Ratio

The compression ratio indicates the efficiency of the model in
representing the spatiotemporal dynamics of the environment.
Rather than evaluating the compression ratio from a theoretical
point of view, we adopt a more practical approach and base our
calculations on the actual size of the file that contains the spectral
model. Assuming that a file of size z[bits] contains a FreMEn
model of an environment with n states and m observations, and
that a traditional model would use one bit per observation, the
compression ratio is simply

mn

r=—n.
z

(16)

In some scenarios, maintaining an entire outlier set O might be
infeasible due to memory constraints, and the past observations
s(t) are represented solely by the set P. While this results in
lossy compression with quality corresponding to the estimation
error €., the memory size of this reduced representation is inde-
pendent of the number of measurements and is determined by
the number of modeled states n and the model order [, which
can be selected a priori.

D. Update Time

The computational complexity of the proposed method is
given by the complexity of the fast Fourier transform algorithm,
which is O(m log m), where m is the length of the processed
sequence. This indicates that the time ¢ needed to build, update,
or reconstruct a spectral model with n states and m observations
by (1) and (7) is t ~ mnlog(m). Thus, the update time of the
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Fig.3. Week-long state model of a single cell of an occupancy grid. While the
traditional static model simply assumes that the probability of the cell occupancy
is ~25%, the frequency-enhanced model captures the cell’s dynamics. Note the
model improvement as more spectral components are included.

FFT-based model increases with the number of past observa-
tions.

However, the computational complexity of the incremental
calculation scheme performed by (11) depends only on the num-
ber of new observations m/’, the number of independent states n,
and the number of maintained spectral components k, and there-
fore, does not depend on the number of past observations. On
the other hand, it requires to maintain a larger number of spec-
tral components and is less memory efficient than the FFT-based
model.

Since we are concerned with the practical applicability of our
approach rather than with theoretical bounds of computational
complexity, we measured the real time required to calculate and
update the spectral models in our evaluations.

V. SINGLE-STATE DYNAMIC MODEL

To experimentally verify the feasibility of the proposed ap-
proach, we first gathered a week-long dataset containing a single
state.

This dataset was gathered by a RGB-D camera monitoring
a small university office from a fixed location. Its range mea-
surements were used to establish the occupancy of a single
20 x 20 x 20 cm cell located in the middle of the room en-
trance. This cell was occupied when the door was closed and
when people passed through the door, otherwise it was free.
The office had an “open door” policy, i.e., the door remained
open whenever the office was occupied. Therefore, the mea-
sured state s(t) corresponded strongly to the presence of people
inside the office. Every time someone went through the door,
the monitored cell was briefly occupied and the room was con-
sidered empty, which introduced noise on the measured state
s(t). The measurements were taken continuously for one week
(July 23-29, 2013) at a rate of 30 Hz, so the state observation
consists of 18 million values. For the purpose of this evaluation,
we subsampled the values by 15, which means that the state
s(t) is measured twice per second, so that s(¢) consists of more
than a million values. After this week, two additional single-day
datasets (July 31 and August 5 2013) were gathered.
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Fig. 5. Influence of the number of spectral components (model order /) on the
model’s compression ratio and errors of estimation and prediction.

To evaluate the proposed method’s capability to represent
the temporal dynamics of the observed state, we built several
spectral models of the training dataset. Fig. 3 shows that the
spectral model captures the state dynamics, which results in a
more faithful representation of the given state. The first row
of Fig. 3 shows that the traditional probabilistic model would
simply assume that the door is open with 25% probability.
Modeling the state with FreMEn of order 1, i.e., considering
only one periodic process results in a model that suggests that
the door is likely to be open during the afternoon rather than
at night—see the second row of Fig. 3. Adding three other
spectral components results in a model that captures the weekly
periodicities as well—the probability of the door being open
(see the last row of Fig. 3) during weekends is lower than during
the working days. This result suggests that the method’s ability
to model the dynamics of the measured state increases with the
number of model parameters included.

The dependence of the estimation and prediction errors on
the number of components of the spectral model is shown in
Fig. 5. To estimate the dependence of the model estimation
and prediction errors on the number of model parameters, we
built a spectral model of the one-week-long training dataset.
The accuracy of estimation €, was calculated as the difference
between the original and reconstructed signal by (14). Moreover,
we calculated the accuracies of prediction €, and ¢, for two
days of the following week, see Fig. 4.

The results in Fig. 4 indicate that the static model (i.e., Fre-
MEn order 0) achieves an estimation error of 25%-35%. The
results also indicate that while the estimation error ¢, decreases
monotonically with the model order, the prediction error is not
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(a) (b)

Fig. 6. Fine-grained 3-D occupancy grids of the “Office” dataset. (a) Empty
office 3-D grid. (b) Occupied office 3-D grid.

necessarily monotonic. Rather, the local minima of the predic-
tion errors suggest that for the purpose of predictions, one should
use spectral models of orders around 2 or 3 to prevent overfitting.
The overfitting effect is more prominent with the second testing
set, which might be caused by the longer prediction horizon.

The test indicates that the spectral model can represent mil-
lions of measurements with only a few complex numbers. Fig. 5
shows that the spectral model without the outlier set O achieves
compression ratios in the order of 1 : 1000 while losing less
than 5% of information. The size of the A-encoded outlier set
was about 360 values representing 180 time intervals where
the spectral model did not match the measured sequence, which
corresponds to a lossless compression ratio of ~1:100. The time
needed to build the spectral representation on an i7 processor
was 3.7 ms, which illustrates the efficiency of the chosen Fast
Fourier transform implementation [32].

Our method can be also used to detect anomalies, i.e., sit-
uations where a local state of the world deviates significantly
from the spectral world model of the robot. Since our model
can predict the state s(¢) with a given confidence value by (9),
we can assume that a measurement s™ (¢) is anomalous with
confidence level ¢ if s™ (t) < s(t,c) or if ™ (t) > s(t,1 — ¢).
Fig. 4 shows that FreMEn-based anomaly detection with confi-
dence level 99% correctly detected a situation when the room
was accessed by an unexpected visitor shortly after midnight.

VI. LARGE SPATIOTEMPORAL REPRESENTATION

To evaluate the ability of the proposed method to represent
the long-term dynamics of three-dimensional environments, we
collected two million occupancy grids of a University office over
the course of 112 days. Similarly to the previous experiment,
the dataset was collected by a stationary RGB-D camera that
captured and stored a depth image every 5 s. These range mea-
surements were integrated into a FreMEn occupancy grid [9],
where the occupancy of each cell was modeled by the proposed
method. Fine-grained occupancy grids captured by the RGB-D
camera are shown in Fig. 6 (for the purpose of visualization,
the resolution of the grids shown is higher than those in the
dataset). Each day, the spectral model of the entire grid was
updated and the resulting representations were saved in sepa-
rate files. To evaluate the efficiency of the resulting 4-D rep-
resentations, we measured the compression ratios, estimation
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Fig. 8. Estimation errors and compression ratios of the FreMEn spatiotempo-
ral occupancy grids.

precisions, and times needed to calculate the update. The com-
pression ratios were calculated simply by comparing the size of
the saved files to the theoretical size of a traditional model by
(16), where the number of modeled states n, i.e., the number of
cells in the grid was ~213 000 and 17 200 observations per day
were considered. This means that storing all the observed states
would require ~500 MB per day and a naive representation of
the entire dataset would require around 50 GB of storage space.
The estimation error of the entire model was calculated as an
average of estimation errors of the individual cells that changed
at least once—calculating the average estimation error for all
cells would result in small numbers, because most of the cells
represent space that is always empty. Finally, the update time
was obtained by the direct measurement of the time needed to
update the spectral models of all the grid cells. These experi-
ments were performed on an i7-4500U processor with 16 GB
of RAM.

Five types of spectral models were calculated. The first, “loss-
less” model maintains not only the spectral representation, but
also an outlier set O of each cell, and can recover all the mea-
surements accurately. The other, “lossy—order 1-5”” models did
not use the outlier set and maintained 1 to 5 spectral compo-
nents of the dynamic cells. The dependencies of the sizes of
the “lossy” models on the length of the dataset represented are
shown in Fig. 7. One can see that after some initial growth,
the storage requirements of the models stabilize at the order of
megabytes. The growth of the “lossy” models is caused by the
fact that longer data collection means that more cells change
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Fig. 9.

Frequency-enhanced feature map [4] for visual localization: The observations of image feature visibility (center,red) are transferred to the spectral domain

(left). The most prominent components of the model (left, green) constitute an analytic expression (center, bottom) that represents the probability of the feature
being visible at a given time (green). This is used to predict the feature visibility at a time when the robot performs self-localization (blue).

their states at least once, which causes the method to extend
their temporal models.

Given that the naive representation of the dataset grows by
500 MB per day, the compression rates of the “lossy” models
actually grow in time (see Fig. 8) and are in orders of 10 000.
The “lossless” representation grows linearly with time at a rate
of 2 MB per day achieving compression rates of 1:250. Fig. 7
also shows that the time needed to update the model, which rep-
resents 4 x 10'! cell observations is reasonably short—creation
of a 16-week-long spatiotemporal model takes less than 1 h. Us-
ing the nonuniform incremental Fourier Transform results in an
update time that exhibits a similar trend to the “lossy” model
sizes. This is caused by the fact that the number of cells for
which the transform has to be calculated increases over time,
i.e., the same effect that causes the growth of the “lossy” mod-
els. Finally, the estimation errors of the spatiotemporal models
with different orders are presented in Fig. 8, which shows that
as the model includes more spectral components, its estima-
tion error and compression rates drop. Compared to the “Static”
model, which fails to correctly estimate approximately 6% of
the states, the “lossy” FreMEn estimates fail in 3% to 4% cases.
This means that using the FreMEn method reduces the amount
of incorrectly estimated states by 30%—50%. Using the lossless
method results in faithful (0% error) state reconstruction at the
expense of a lower (1:250) compression rate.

VII. FREMEN FOR MOBILE ROBOT LOCALIZATION

The results of the previous experiments demonstrate that
through explicit modeling of the environment dynamics, our
method can efficiently represent the evolution of indoor envi-
ronments over time. Moreover, we have shown that the method
can predict future environment states. In this experiment, we
evaluate the usefulness of these predictions for mobile robot
localization in indoor and outdoor environments. The consid-
ered scenario is vision-based localization. Given a topological
map, where each node is associated with a set of image features
visible at that particular location, the robot has to decide on its
current location based on its camera image. The difficulty is
that the appearance of the locations (i.e., visibility of the image
features) varies over time. This problem has been tackled by

Fig. 10. Example images of the indoor training dataset. Shows the appearance
of six monitored locations on November 2013.

attempting to identify the most stable [24] or most useful [33]
features, or by remembering several appearance models for the
same location [3]. Other approaches [6], [25] attempted to infer
the environment appearance for the particular time(s) by mod-
eling the persistence [25] or systematic appearance change of
visual features [6]. In this experiment, we predict the visibility
of the individual image features at a given time by FreMEn, see
Fig. 9 and video at http:/fremen.uk.

A. Indoor Localization

The environment considered is a large open-plan office of
the Lincoln Centre for Autonomous Systems, where an au-
tonomous robot captured RGB-D images of eight designated
areas every 10 min. During a week-long data collection session
in November 2013, the robot visited each of the eight locations
144 times per day, collecting a training dataset that contains
more than 8000 images. To document the appearance change
over one year, we provide images from the three testing datasets
in Fig. 11. The three testing datasets were collected one week
(November 2013), three months (February 2014), and one year
(December 2014) after the training dataset collection. Each of
these datasets was gathered for 24 h and contains over 1000
images. Representative examples of the images of the training
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(b)

Fig. 11.  Example images of the indoor testing datasets. Shows the evolution
of one of the monitored places over the course of one year. (a) November 2013.
(b) February 2014. (c) December 2014.

dataset are shown in Fig. 10. The gathered images were pro-
cessed by the BRIEF algorithm [34], which was evaluated as
one of the best performing image feature extractors in outdoor
scenarios of long-term localization [35], [36], and our tests con-
firmed its good performance in indoor scenarios as well. The
features of the training dataset belonging to the same locations
were matched and, thus, we obtained their visibility over time,
which was then processed by our method. To choose the or-
der of the FreMEn models, we adopted the scheme described in
Section IV-B, i.e., to select the correct order [, the FreMEn mod-
els were trained initially on the first six days of the training data
and their predictive capability was evaluated on the last training
day. Next, the models were trained using the entire 7-day-long
dataset. Thus, we obtained a dynamic appearance-based model
of each topological location that can predict which features are
likely to be visible at a particular time, see Figs. 1 and 9.

To test if these predictions actually improve robot localiza-
tion, the following procedure was performed for each of the
~3000 images in the testing datasets. First, the method estab-
lished the time ¢. when the testing image was captured. Then,
the dynamic map created during training was used to calculate
the probability of each feature’s visibility at time .. Next, the
n most likely visible features at each location were selected,
which resulted in eight sets denoted as F;, each containing n
image features. Finally, the features of the testing image were
extracted and matched to the sets F;. If the set with the high-
est number of matches corresponded to the real location of the
robot, localization was considered successful, otherwise it was
considered a failure.

To compare the proposed algorithm with other localization
methods, we implemented a simple version of the experience-
based approach developed by the Churchill and Newman [3].
During training, this method attempts to determine the robot
location based on the camera input, and if it fails, the current
appearance (aka experience) is added to the set of “experiences”
that are associated with the given location. Thus, each location
is associated with several experiences which are matched to the
currently perceived sensory data. While the method introduces a
certain computational overhead caused by the fact that there are
more experiences than actual locations, this overhead is com-
pensated by the method’s robustness to significant appearance
changes. This computational overhead was reduced in [37] by
inferring the most probable appearances that the robot will expe-
rience around a given location. Since we use a slightly different
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Fig. 12.  Localization error rates for different indoor testing datasets, methods,

and feature numbers. The first three graphs show the dependence of the error
on the number of features used for localization. The fourth graph compares
the localization errors of the different methods and datasets assuming that the
number of features used is 50.

setup and scenario than the one considered in [3], we had to
introduce a slightly different version of the experience-based
localization. In our case, an experience consists of the robot
position and image coordinates and descriptors of the detected
visual features, and we did not use the optimizations introduced
in [37].

We also attempted to reduce the aforementioned computa-
tional overhead by combining the experience-based approach
with FreMEn—the FreMEn was used to calculate the proba-
bility of a given experience for a given time, so we could use
only the relevant experiences for localization. In the following
evaluation, this frequency-enhanced experience method will be
coined as “FreEx.” Processing of our training dataset by the
experience-based method generated over 170 different experi-
ences tied to eight different locations.

The dependence of the average localization error for each
indoor testing dataset on the number of features n used for
localization is shown in Fig. 12. The results indicate that the
localization robustness of the FreMEn is only marginally better
compared to the experience-based method and they both outper-
form the “static” approach that relies on the most stable image
features. However, while the FreMEn approach improves the
robustness by predicting the appearance of the eight locations,
the experience-based method requires that the current camera
image is matched to all of the 170 experiences, which is com-
putationally more expensive. This is partially mitigated by the
FreEx approach, which typically localizes the robot based on
100 experiences, which are selected from the 170 learned ones
based on the current time.

While the results show that explicit representation of environ-
ment change improves the localization robustness, the improve-
ment diminishes with map age. Since we can observe the same
effect for the FreMEn and experience-based methods, the effect
is probably not caused by change in the environment dynamics.
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Fig. 13.  Seasonal variations at location I of the Michigan dataset. (a) Winter
2012. (b) Summer 2012.

Rather, the environment is subject to unexpected and cumulative
changes, which affect its appearance in a way that is not possi-
ble to predict by the approaches evaluated. This issue severely
affected the FreEx approach, which failed to correctly predict
the relevant experiences to be used for visual localization. The
effect of map decay could possibly be mitigated by active re-
observation of locations that were not visited for a long time,
e.g., by means of lifelong exploration [10]. This problem also
leads to fascinating questions that regard forgetting of obsolete
observations and adaptation of the forgetting speed to the rate
of environmental change, although these questions are beyond
the scope of the work presented here.

B. Outdoor Localization

To evaluate the performance of the FreMEn for visual local-
ization in outdoor environments, we performed the same com-
parison on two datasets, which capture the seasonal changes of
ten different locations in two semiurban environments.

The images of the first five locations were obtained from the
North Campus long-term vision and lidar dataset (NCLT) which
was collected at University of Michigan to support research on
image features for dynamic lighting conditions [38]. The orig-
inal NCLT dataset [39] was gathered during 27 data-collection
sessions performed over 15 months and includes LIDAR, GPS,
and odometry data. For our evaluation, we selected five different
locations from the NCLT dataset and created the training dataset
from 12 images captured at each location at a different time. To
create the testing dataset, we randomly selected three images per
location from the set of images not used for training. Unlike the
two aforementioned datasets, the Michigan set was not gathered
on a regular basis and thus, we used the nonuniform version of
FreMEn introduced in Section III-C.

The second set of outdoor images was obtained from the
Stromovka dataset [40] that was collected in one of Prague’s
arboretums to support research on long-term teach-and-repeat
navigation [41]. The Stromovka dataset contains images that
were captured by a mobile robot every month from September
2009 until the end of 2010, and three additional image sets that
were collected during 2011 and 2012. Compared to the Michi-
gan dataset, the Stromovka one spans a longer time period and
contains more foliage and fewer buildings. Moreover, seasonal
weather variations in Prague are more extreme than in Ann Ar-
bor, see Figs. 13 and 14. Thus, the appearance variations of the
Stromovka dataset images are greater than the Michigan ones.

To perform the evaluation, we trained both methods using
the datasets gathered during the first 12 months. Then, we

IEEE TRANSACTIONS ON ROBOTICS, VOL. 33, NO. 4, AUGUST 2017

(a)

Fig. 14.  Seasonal variations at location I of the Stromovka dataset. (a) Winter
2010. (b) Summer 2010.
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Fig. 15. Localization error rates for the Stromovka and Michigan outdoor

datasets. Shows the dependence of the error rates on the methods and feature
numbers used.

calculated the localization error rates on the testing sets, which
were collected during the following months and years. The
dependence of the localization error for both outdoor datasets
on the number of features n is shown in Fig. 15. Similarly
to the indoor case, the localization error rates of the FreMEn
and experience-based methods were much lower compared
to the “static” method, which neglects the appearance change
and takes into account only the most stable features. However,
the FreMEn localization was computationally more efficient,
because it had to match the current camera image to five
predicted maps, while the experience-based approach used 15
and 21 different experiences in the Stromovka and Michigan
cases, respectively. For the case of outdoor datasets, we did
not have enough data to properly estimate the best-performing
model order /, so we set [ to a conservative value of 1.

The aforementioned localization experiments were per-
formed with a relatively low number of image features per
image, because the number of locations to distinguish is low.
In such cases, extracting a large number of image features will
cause the evaluated methods to exhibit a similar performance.
To demonstrate the advantages of our approach while utilizing
the full power of the feature extractors available would require
long-term data collection in much larger environments.

C. Predictive Capability

To evaluate the predictive capability of the FreMEn approach,
we calculated the average probability that a predicted feature
will actually be visible in the testing images and compared
this with a static approach. First, we calculated the ten most
stable features across the training sets and calculated how often
these are matched to the features extracted from the testing
images of the same location. This corresponds to the Static
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TABLE I
PROBABILITY OF FEATURE REOBSERVATION [% ]

Indoor Outdoor
Method Nov’'13  Feb’l3  Dec’l4  Strom  Mich
Static 39.5 25.7 243 38.1 30.8
FreMEn 55.2 31.2 26.8 47.5 40.8
Predicted FreMEn
map map
Patrol
Loc | map
(AMCL) SLAM

(amapping)
Registered
pose
Odomet
Laser scans.
Robot T Planning
—Speeds
{emd_vel)

(move_base)
Fig. 16. Navigation system overview. Proposed navigation stack on the left
and predicted and observed 2-D grids on the right.

method described in the previous sections. Then, we repeated
the procedure with the ten features, which were predicted by
FreMEn to be most likely visible at the given time. The results,
summarized in Table I indicate that the image features predicted
by the FreMEn method for a particular time are more likely to
be visible compared to the features that were most frequently
reobserved in the training sets.

VIII. FREMEN FOR MOBILE ROBOT NAVIGATION

The experiments presented previously were conducted in an
offline manner on prerecorded data. To use FreMEn online as
an integral component of a long-running autonomous system,
we developed a FreMEn occupancy grid which was integrated
in the ROS navigation stack [42]. This spatiotemporal grid uses
the nonuniform version of FreMEn with the recency model
proposed in Section III-D. During autonomous navigation, our
robots build temporally local maps and integrate them into the
global spatiotemporal grid. Through reobservation of the same
spatial locations, the spatiotemporal grid obtains information
about long-term environment dynamics and gains the ability
to predict the future environment states. This predictive ability
enables the generation of time-specific 2-D maps which can
be used by the robot’s localization and planning modules. The
integration of this predictive spatiotemporal model in the sys-
tem and a visualization of the map building process are shown in
Fig. 16. In this scenario, we evaluated the impact of the proposed
spatiotemporal representation on localization accuracy and effi-
ciency of path planning. To do this, we deployed a mobile robot
for several days at the Lincoln Centre for Autonomous Sys-
tems, having it regularly patrolling the office in a predetermined
path several times per hour, using the proposed modification
of the ROS navigation stack. The patrolled area contained a
1.5-m-wide corridor. On its sides, there are storage cupboards
that are used by research staff and closed at the end of their
working day. When a cupboard door is left open, the corridor

Average localization error

Maximal localization error

975

T T 1 o T 1 1 ] 30y T T T 1 1 T T 71
— 14 Static map , Static map
g Averaged map 1 25 Averaged map =
S 12 Predicted map Predicted map
5
= 8
g
g0
Té 4
= 2
ob—L ob—L 1 o1
1 23 45 6 789 1 23 45 6 7 89
Sensor range [m] Sensor range [m]
Fig. 17. Localization error for different ranges of the laser scanner and dif-

ferent types of the maps. Predicting a map for a particular time improves lo-
calization accuracy, although the improvement is only marginal for long-range
Sensors.

TABLE I
NAVIGATION STATISTICS

Environment Static Changing

Map Static  Average  Predicted
Average speed [%] 0.21 0.15 0.18
Recovery events [-] 1 21 12

appears to be wider and its center may be perceived as displaced
to one side.

To evaluate the accuracy of robot self-localization, we in-
stalled an independent localization infrastructure over the mon-
itored corridor [45]. To estimate the impact of the environment
change and sensor range on the localization precision, we pro-
cessed laser, odometry, and ground truth data from 20 differ-
ent passes of the robot and trimmed the laser data at different
lengths. We then performed standard ROS-based AMCL local-
ization on the “static,” “averaged,” and “predicted” 2-D maps
and compared the robot positions to the ground truth obtained
by the independent localization infrastructure.

The results shown in Fig. 17 indicate that use of the time-
specific, predicted maps improves the localization precision in a
significant way if the range of the laser rangefinder is lower than
the overall map size. However, a small difference in localization
precision can have a significant impact on the efficiency of the
robot navigation and quality of the constructed maps.

To evaluate the navigation efficiency, we processed navigation
statistics of 180 different patrol runs. The data from each patrol
run contains the robot’s average speed and the number of events
where normal navigation behavior failed and the robot had to
perform custom recovery behaviors in order to proceed with
its patrol. The gathered navigation statistics were divided into
three groups of 60 patrols each. The first group contained patrols
where the system was using a static map when no environment
changes were happening. The second group contained patrols
where the robot was using an “averaged” map, which slowly
adapts to the observed change. The third group contained patrols
where the robot was using a “predicted,” time-specific map
that took into account not only the periodicity, but also the
persistence of the observed changes.
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Table II indicates that in a static environment, the robot could
navigate efficiently even when using a static map, but as soon as
the environment began to change, the navigation efficiency was
affected in a negative way. However, the negative effect of the
changes was slightly lowered through the use of the proposed
dynamic map, which represents the environment changes in an
explicit way.

IX. CONCLUSION

We have presented a novel approach for spatiotemporal en-
vironment modeling in the context of mobile robotics. The
approach is based on an assumption that from mid- to long-
term perspectives, the environment is influenced by various
processes, some of these being periodical. We hypothesize that
certain regularities in the environment dynamics can be rep-
resented by the periodicity, amplitude, and time shift of these
underlying processes, and propose to identify these parameters
through spectral analysis based on the Fourier transform.

Knowledge of these processes allows us to represent the ele-
mentary states of the environment models by probabilistic func-
tions of time, which enables efficient representation of arbitrary
timescales, anomaly detection, and prediction of future states.
To evaluate the performance of the proposed method in real
long-term scenarios, we applied it to data gathered by mobile
robots over extended time periods of months and years.

The results indicate that the proposed method can represent
arbitrary timescales with constant (and low) memory require-
ments, achieving compression rates between 10° and 10° while
predicting the future states with error rates of less than 10%.
We have also demonstrated that our method’s prediction of the
environment appearance improved vision-based localization in
changing environments. Moreover, we demonstrated that inte-
grating the method in the ROS navigation stack improves the
efficiency of robot navigation.

In the future, we would like to extend the approach so that
it can take into account sensor noise and represent not only
binary, but also higher dimensional states, such as object posi-
tions. While the method itself does not exceed the performance
of other approaches for persistent localization in changing en-
vironments, such as [3], [5], [6], [43], its simplicity enables its
application to other scenarios related to long-term autonomy
and life-long learning. To provide an overview of the method’s
applications and to allow its use by other researchers, we have
released the method’s source code, examples of use, and datasets
at http://fremen.uk.
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