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Abstract— Wrench-based quality metrics play an important
role in many applications such as grasp planning or grasp
success prediction. In this work, we study the following dis-
crepancy which is frequently overlooked in practice: the quality
metrics are commonly computed under the assumption of
sum-magnitude bounded contact forces, but the corresponding
grasps are executed by a fully actuated device where the contact
forces are limited independently. By means of experiments
carried out in simulation and on real hardware, we show
that in this setting the values of these metrics are severely
underestimated. This can lead to erroneous conclusions regard-
ing the actual capabilities of the grasps under consideration.
Our findings highlight the importance of matching the physical
properties of the task and the grasping device with the chosen
quality metrics.

I. INTRODUCTION

Measuring the “goodness” of a grasp is a necessary
step in autonomous robotic grasp planning and execution
pipelines. To this end, many grasp quality metrics have
been proposed over the years (see [1] for a recent survey).
Due to their expressiveness and relatively straightforward
computation, wrench-based measures are popular in practice.
These metrics are derived from the Grasp Wrench Space
(GWS) which denotes the set of wrenches (i. e., concatenated
force/moment vectors) that can be applied to the object
through a given grasp. Computing the GWS and/or related
quality metrics entails posing physically meaningful limits
on the contact forces that the grasping device can exert. In
their seminal work [2], Ferrari and Canny suggested to

i) either assume independent bounds on the maximum
magnitude of the contact normal forces,

ii) or assume a bound on their sum-magnitude.
In practice, the contact forces applied by fully actuated

robotic grasping systems are generally bounded indepen-
dently – either by design (e. g., due to actuator limitations) or
to avoid damage to hardware and/or the environment. These
independent bounds can be enforced using contact force
sensors and corresponding control schemes, or by directly
limiting hand joint efforts. On the other hand, limiting the
contact forces sum-magnitude can be seen as a bound being
imposed by a power source shared among all joint actuators
of the considered grasping device. Due to computational
convenience, this assumption frequently underlies the quality
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Sweden. Email: yasemin.bekiroglu@se.abb.com.
�M. A. Roa is with the Institute of Robotics and Mecha-

tronics, German Aerospace Center (DLR); 82234 Weßling, Germany.
Email: maximo.roa@dlr.de.

Fig. 1. Platform: The grasps for the experiments in Section IV-B were
collected with the depicted three-fingered Schunk Dexterous Hand (SDH)
mounted on an industrial KUKA arm. Tactile sensing is enabled by sensor
arrays on the two pads of each finger, an exemplary tactile snapshot after
grasp acquisition is depicted in the bottom right corner. These arrays
comprise 6 x 14 taxels on proximal phalanges and 6 x 13 taxels on distal
phalanges. The hand’s 7 DoF are controlled via 7 motors that allow
independent joint torque control.

metrics used in grasp planners [3], [4], [5], in synthesis
algorithms based on prototype grasps [6], [7], [8] as well
as in grasp success prediction systems [9].

However, for the fully actuated hands we consider in this
work, it is usually more adequate to consider independent
finger force limitations rather than their sum magnitude for
grasp quality evaluation [10]. Also, it is important to consider
realistic contact force/moment magnitudes opposed to simply
assuming them to be unitary as it is common practice. One
popular grasp quality metric’s sensitivity to pose errors has
been investigated in [4]. However, to our knowledge, the
impact of the contact bounds assumptions on wrench-based
quality metrics has not been studied yet.

The contributions of this work can be summarized as
follows. Considering a grasping device with independently
enforced contact force limitations we

• experimentally show that the values of wrench-based
quality metrics computed according to the commonly
made assumption ii) are severely underestimated;

• analyze the practical impact of this underestimation in
a grasp success prediction setting by means of a large
set of grasps executed by the platform shown in Fig. 1.



II. BACKGROUND

The GWS1, and therefore the quality metrics derived from
it, capture the capability of a grasp to counterbalance external
disturbance forces and moments. While often used inter-
changeably, it is worth noting that equilibrium is necessary
but not sufficient for grasp stability and thus grasp success.
Indeed equilibrium grasps, and thus their important sub-class
of force-closure grasps [11], may be stable or unstable. As
pointed out by Bicchi and Kumar [12], any notion of stability
(e. g., in the Lyapunov sense) needs to regard the grasp as
a dynamic system and describe its behavior when perturbed
from equilibrium. However, analyzing dynamic stability is
difficult in practice as it requires to include local contact
curvature, mechanical compliance, hand control laws (a com-
pliant controller which allows hand-relative object movement
results in a change of GWS) as well as the magnitude
and arrangement of the applied contact forces [13], [14].
Nevertheless, our previous work [15] showed that realistic
contact force modeling, involving tactile feedback and joint
effort limits, allows wrench-based reasoning to predict grasp
success surprisingly well and on-par with recent approaches
based on supervised learning [9], [16], [17].

As discussed in more detail below, the reason why wrench-
based quality metrics are often computed according to as-
sumption ii) in Section I lies in the fact that for many
applications constructing the GWS using the usually more
realistic assumption i) is only feasible for a small number
of contacts or crude approximations of contact friction [3].
In this work, we study in depth the consequences of using
metrics computed according to assumption ii) to assess
the quality of grasps to be executed by a fully actuated
device with independently limited contact forces. Note that
assumption i) is meaningless for a fully underactuated hand
(only a single actuator driving all DoF), like a parallel jaw
gripper. Metrics for such devices should indeed be computed
with a sum-magnitude bound assumption. For a detailed
study of the influence of underactuation on the grasp quality
measure computation we refer the reader to [18].

A. Grasp Contact Modeling

A grasp is described as i = 1, . . . , n soft contacts that
form contact areas Ci ⊂ R3 on the target object surface.
Each pressure-weighted contact center pi ∈ R3 is associated
with an inward-pointing surface unit normal ni ∈ R3. Con-
sidering a local contact frame with origin at pi and z-axis
pointing along ni, we denote a generalized contact friction
force f = [fx, fy, fz, τz]

T . Here, fx, y and fz respectively
indicate tangential and normal contact force components,
while τz stands for the frictional moment about the contact
normal. As proposed by Howe and Cutkosky [19], we formu-
late an ellipsoid limiting the set of frictional forces/moments
that can be transmitted by a deformable finger contact onto

1Since the identity- and inverse elements of addition axioms do not
hold in general, the Grasp Wrench Space is a set but not a vector space.
Nevertheless, we adhere to the naming convention made in the literature.

Fig. 2. Discretized limit surface: Depicted are two views of the friction
ellipsoid which, for the experiments reported in Section IV, we approximate
by a polytope with 14 vertices. The vertices correspond to the apices and
equidistant samples drawn from the circular base of the ellipsoid in (1).

a flat surface with friction coefficient µ ∈ R+

Fi =
{
f
∣∣f2x + f2y + (µfzτz/τ

∗
i )

2 ≤ (µfz)
2, fz = g∗i

}
. (1)

Formulation (1) depends on the maximum normal force
g∗i ∈ R+ and the maximum frictional moment τ∗i ∈ R+ that
the soft contact can apply under this normal force. The apices
±τ∗i of the friction ellipsoid correspond to pure torsional
load. Once the grasp is loaded, a deformable fingertip will
allow some object motion. However, in response the pressure
distribution will change and thus limit that motion. This
factuality can be modeled by appropriately augmenting the
set of exertable forces and moments. Here, we build upon the
approach in [20] and apply the generalized frictional forces
in (1) over the whole contact surface area. Correspondingly,
we express the set of wrenches a contact can exert as

Wi =
{
w ∈ R6

∣∣w = G(c)f , c ∈ Ci, f ∈ Fi
}
, (2)

where the matrix G(c) ∈ R6×4 maps generalized forces to
wrenches expressed in an object coordinate frame [21]. Let
us discretize Wi in (2) by a total of li samples and collect
them in the column-matrix

W i = [wi,1, . . . ,wi,li ]. (3)

The discretization in (3) corresponds to drawing samples
from the friction ellipsoids (see Fig. 2) associated with each
taxel center ci(xi, yi) having non-zero tactile readings.

As mentioned before, to formulate the set of wrenches
that a grasp can apply, it is necessary to assume bounds
on the contact normal forces. As shown in [2], posing
independent (uniform) bounds can be expressed by using a
L∞ metric in the norm definition of the vector formed by
the n individual contact normal force components. Similarly,
the contact normal force sum magnitude can be limited by
assuming a L1 metric. Correspondingly, the discrete GWS
ca be found by either forming the convex hull over the
Minkowski sum of the n contact wrench sets in (3)

GWSL∞ = conv

(
n⊕
i=1

{wi,1, . . . ,wi,li}

)
, (4)

or via the convex hull over the union of contact wrenches

GWSL1
= conv

(
n⋃
i=1

{wi,1, . . . ,wi,li}

)
. (5)

Note, that GWSL∞ is a superset of GWSL1
[2].



Fig. 3. Computing maximum moment τ∗i : In the case of pure torsional
load, the frictional force acting at a taxel center c(xi, yi) is at most
µg∗i
a
ĝi(xi, yi). Multiplying with the distance to pressure center pi yields

the corresponding moment contributions which are summed up to give the
overall moment τ∗ in (7).

B. Contact Parametrization

For the real-world grasp success prediction experiments
in Section IV-B, we exploit given hand joint torque limits
and tactile feedback after grasp acquisition to obtain realistic
estimates of the maximum contact forces/moments in (1).
As discussed in [15], this entails approximating the contact
surfaces Ci by projecting the corresponding taxel grids from
the curved finger pads onto planes tangential to the pressure-
weighted centers pi. Then, the exertable contact forces and
moments (which differ between contacts in general) are
obtained and used to compute the contact wrench set in (2).

To this end, we denote the hand joint configuration as
q ∈ Rk+ and the vector containing the maximum joint torques
as τ̄ ∈ Rk+. Assuming negligible external loads such as
gravity or inertial forces, the joint torques can be expressed
as the product of the total contact force and the transpose of
the hand jacobian J i(q) ∈ R3×k formed with respect to pi.
This relation allows to obtain the maximum normal force at
the ith contact by solving the Linear Program (LP)

g∗i ∈ arg max
gi∈R+

gi, (6)

subject to − τ̄ ≤ J i(q)Tnigi ≤ τ̄ .

According to [19], the maximum moment τ∗i can be es-
timated by integrating the frictional moment contributions
made by the local tangential forces acting at individual taxel
centers ci(xi, yi). To this end, let a =

∑
Ci ĝi(xi, yi) be the

sum of raw tactile readings over contact area Ci and l(xi, yi)
be the euclidean distance between pressure center and a taxel
center. This allows to write the searched for moment as

τ∗i =
µg∗i
a

∑
Ci

ĝi(xi, yi)l(xi, yi). (7)

The corresponding quantities are illustrated in Fig. 3. Equa-
tion (7) implies that the measured readings ĝi(xi, yi) cor-
respond to the maximal possible normal force magnitude
g∗i , which is not the necessarily the case. Nevertheless, τ∗i
is conservatively approximated by (7) because the contact
surface resulting from g∗i will be larger or equal than Ci.

III. WRENCH-BASED GRASP QUALITY METRICS

At bottom, grasp success depends on whether the hand
is able to exert wrenches suitable to counterbalance external
disturbances. Therefore, as pointed out by Borst et al. [22],
a good quality measure is a scalar describing how well the
grasp can resist external disturbance wrenches, i. e., how

Fig. 4. Task wrench set scaling: To facilitate understanding, the task-
related quality criterion proposed in [24] is illustrated in a hypothetical
2d wrench space. The metric q∗ is the largest scaling factor of the task
wrenches tj , such that all scaled wrenches t̄j lie inside the GWS, i. e.,
t̄j = q∗tj , j = 1, . . . , 3. (Left) The grasp corresponding to the depicted
GWS is able to exert all task wrenches (q∗ ≥ [1). (Right) As the grasp can
not counterbalance all disturbances, not all task wrenches are contained in
the GWS (q∗ < 1).

suitable it is to accomplish the task at hand. To investigate
the influence of the chosen grasp contact force bounds,
we consider the three wrench-based metrics outlined below.
They are computed using the maximum normal contact
forces/moments according to (6) and (7) respectively.

A. Largest-Minimum Resisted Wrench

To qualify the subset of force-closure grasps, if nothing
about the task is known, a popular metric was proposed
by Kirkpatrick et al. [23]. It is defined as the magnitude
of the largest perturbation wrench that can be resisted in any
direction or formally

ε = min
w∈δGWS

‖w‖2,

where δGWS denotes the boundary of the GWS according to
either (4) or (5). Note that εL∞ ≥ εL1

[2]. Geometrically, this
criterion represents the radius of the largest origin-centered
ball in the wrench space.

B. Grasp Wrench Space Volume

The metric VGWS is given by the volume of the GWS
according to either (4) or (5). This measure is independent of
the reference system used to compute moments, but does not
indicate potential weaknesses of the grasp in certain wrench
directions [1].

C. Task Wrench Set Scaling Factor

It has been recognized that a meaningful task description
should involve the wrenches which a grasp needs to exert in
order to counter the disturbance forces/moments occurring
during task execution [25], [22], [6], [26]. In this line
of thought, Haschke et al. [24] suggested to evaluate the
containment of a set of task wrenches in the GWS. This
entails to describe the task as a set formed by the mirror
image of expected disturbance wrenches that need to be
resisted

T =
{
tj ∈ R6 | j = 1, . . . ,m

}
. (8)

While it might be difficult to formulate the task wrench set
in (8) for general tasks, one option is to model it by means
of demonstrations [27]. The corresponding quality metric
constitutes the maximum task wrench set scaling factor q∗



Fig. 5. Test objects: The four objects used in the evaluation and
their respective masses and friction coefficients. Given in brackets is the
respective number of real-world grasps used for the success prediction
experiments in Section IV-B. From left: Box (134 grasps), Oval Bottle (170
grasps), Spray Bottle (142 grasps) and Cylindrical Bottle (138 grasps).

such that the GWS according to either (4) or (5) contains
the task set in (8) as illustrated in Fig. 4. Therefore, q∗ ≥ 1
constitutes the decision boundary at which we expect a grasp
to be successful, since it should be able to counterbalance
all expected disturbance wrenches. Opposed to the similar
Q distance criterion by Zhu and Wang [25], this criterion
does not require the task wrench set to contain the origin.
Also, it does not necessitate the force-closure property and is
defined for non-prehensile grasps. Computation of q∗ in [24]
requires, for each wrench in (8), the solution of a deter-
minant maximization problem with linear matrix inequality
constraints. In [15] we proposed an efficient computation of
q∗ for independently bounded grasp contact forces as the
solution of a Linear Program (LP) for which highly efficient
solvers exist. The formulation expresses each of the scaled
task wrenches in (8) as convex combinations of the discrete
grasp contact wrenches in (3) summed over all contacts

q∗L∞ ∈ arg max
qL∞∈R+, λi,j∈R

li
+

qL∞ , (9)

subject to
n∑
i=1

W iλi,j = qL∞tj , j = 1, . . . ,m,

‖λi,j‖1 = 1, i = 1, . . . , n, j = 1, . . . ,m.

To obtain the analogous metric under the assumption of a
sum-magnitude bound on the grasp contact forces, let us
collect the n grasp contact wrench matrices in (3) in the
column matrix W =

[
W 1 · · · W n

]
. This allows to

formulate the LP

q∗L1
∈ arg max
qL1
∈R+, λj∈R

∑n
i=1

li
+

qL1
, (10)

subject to
Wλj = qL1

tj , j = 1, . . . ,m,

‖λj‖1 = 1, j = 1, . . . ,m.

Note that, opposed to the ε and VGWS metrics discussed
before, neither the formulation in (9) nor in (10) requires
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Fig. 6. Simulation results for q∗: The obtained task wrench set scaling fac-
tors with contact normal forces respectively assumed to be sum-magnitude
or independently bounded (outliers are clipped at q∗ = 3).

TABLE I
SIMULATION RESULTS OF THE EXPERIMENTS IN SECTION IV-A

q∗ VGWS [×10−3] ε [×10−3] tq∗ [ms] tGWS [s]

L∞ 1.64± 0.8 10.59± 10.0 13.97± 9.5 0.33± 0.1 9.04± 1.1

L1 0.72± 0.4 0.11± 0.1 6.04± 4.0 0.38± 0.1 0.06± 0.0

the actual construction of the GWS.

IV. EXPERIMENTAL EVALUATION

The concepts described in Sections II and III were imple-
mented in Matlab and the following results were generated
on a standard PC with 6 GB RAM and an Intel i7 − 2600
CPU. An off-the-shelf solver2 was used to solve the LP’s
in (6), (9) and (10). For evaluation purposes, we used the
4 test objects depicted in Fig. 5 and their corresponding
discretized mesh representations.

A. Evaluation in Simulation

For a first set of experiments, we assumed unit contact
normal forces and generated 250 hard-finger grasps (i. e.,
the moment about the contact normal τ∗i = 0 in (1) and the
contact surfaces Ci in (2) only contained a single point) with
3 contact points on the discretized model of each test object.
Every test grasp was associated with a separate, randomly
generated task wrench with magnitude between 0 and 1.
The grasps where generated randomly, but grasps with a
quality criterion q∗L∞ ≤ 1 according to (9) were discarded –
i. e., every grasp was able to counterbalance its associated
disturbance wrench under the assumption of independent
contact force bounds. Out of the 1000 grasps, 419 happened
to be force-closure (41.9 %). While respectively assuming
independent as well as sum-magnitude bounded contact
normal forces, we constructed the GWS and the quality
measures described in Sections III-B and III-C for all grasps.
The ε measures according to Section III-A were computed
only for the subset of force-closure grasps.

The mean and 1-STD values of the results are summarized
in Tab. I. Figure 6 separately depicts the obtained task
wrench set scaling measures according to (9) and (10)

2http://www.gurobi.com/

http://www.gurobi.com/
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Fig. 7. Real-world results for q∗: (a) the distribution of the metric computed under the assumption of independently bounded contact forces according
to (9); (b) results for the assumption of sum magnitude bounded contact forces according to (10).

respectively. Both the εL∞ and q∗L∞ metrics are roughly
130 % larger than their counterparts computed under the
sum-magnitude bound assumption, while the VGWS metrics
differ by two orders of magnitude. For the common case of
grasping devices with independently limited contact forces,
the obtained results highlight the fact that metrics computed
using a sum-magnitude bound severely underestimate the
actual quality values. Furthermore, by construction, all test
grasps were able to counterbalance the given task wrench
(i. e., q∗L∞ ≥ 1). Nevertheless, according to the q∗L1

metrics,
86.7 % of the grasps are incorrectly predicted as failures
(i. e., q∗L1

< 1). The mean computation times for construct-
ing the GWS are two orders of magnitude higher when
considering independent contact force bounds (9.04 s vs.
60 ms). Interestingly however, the mean computation times
for q∗L∞ and q∗L1

are comparable at around 0.35 ms.

B. Grasp Success Prediction in Practice

We conducted experiments using the hand shown in Fig. 1
to test the q∗L∞ and q∗L1

metrics regarding their ability to
predict ground-truth grasp success rates measured from real-
world experiments. We collected a data set comprising 584
precision grasps on the test objects shown in Fig. 5. Half
of these grasps remained stable while lifting the grasped
object, whereas the other half failed to prevent object slip-
page and/or rotation. To register an object to the robot
reference frame, we tracked the pose of a corresponding
textured CAD model in a monocular video stream using the
system in [28]. Tracking object movement for the complete
duration of the grasp and using previous frames is more
robust than performing pose estimation at the end of the
movement only. We use tactile feedback obtained after grasp
acquisition to parametrize the contact model as discussed in
Section II-B. The lifting task was modeled with a wrench
set in (8) corresponding to the gravity force distributed in
a radius of 6.7 mm around the object’s center of mass to
account for perception uncertainties (see [15] for a sensitivity
analysis regarding the task parametrization). For a more
detailed description of the experimental setting and the used
parameters we refer the reader to [15].

We respectively computed the task wrench set scaling
factors according to (9) and (10) for all grasps. Figure 7

illustrates the distribution of the obtained metrics. Consistent
with the simulation results reported in the previous section,
the obtained factors q∗L∞ are approximately twice as large
as the corresponding q∗L1

values. Therefore, assuming sum
magnitude bound contact forces results in an underestimation
of the actual grasp quality as highlighted by the classification
accuracy depicted in Fig. 8. While the overall accuracies are
relatively close, it is evident that using the q∗L1

metric for
classification results in disproportionally low true positive
rates (as low as 4.5 % in case of the Box object). The key
insight is that, due to the fact that GWSL1

⊆ GWSL∞ , using
the sum-magnitude bound assumption will result in overly
conservative success prediction. In our experiments, the q∗L∞
metric yielded 25 % false positives over all trials opposed
to only 2 % for the q∗L1

metric. Nevertheless, by simply
shifting the decision boundary, success prediction with the
q∗L∞ metric can be made as conservative as desired (see [15]).

Some misclassifications remain even under the more re-
alistic L∞ norm assumption on the contact force bounds in
agreement with our initial observations in [15]. We attribute
this to inaccuracies in the contact modeling and the fact that
wrench-based reasoning is blind to mechanical compliance,
as well as to unmodeled controller dynamics. A compliant
controller and/or object allows for hand-relative object mo-
tion when the grasp is loaded during task execution. This can
change the set of exertable contact wrenches in (2), as well as
the task wrench set in (8) (e. g., due to a hand-relative change
of the weight vector coordinates) and the hand-configuration
dependent maximum contact normal force and moment in (6)
and (7) respectively. Furthermore, during the experiments we
could observe that hand-controller induced fingertip motion
was frequently responsible for unsuccessful grasps caused by
slippage if the contacts occurred near the fingertip borders.

V. CONCLUSIONS

In this paper we study how the assumptions made on
grasp contact force bounds affect three well-known wrench-
based grasp quality metrics. We investigate the two cases of
sum-magnitude bounded contact forces (according to a L1

norm) or independently limited forces (according to a L∞
norm). Our findings are based on simulations and real-world
experiments in a grasp success prediction scenario. We show
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Fig. 8. Real-world grasp prediction results: (a) The bar graph illustrates the prediction rates when classifying with a decision boundary of q∗L∞ ≥ 1,
overall accuracy is 75 % (cf. [15]). (b) prediction rates when using q∗L1

≥ 1 as decision boundary, overall accuracy is 63 %.

that, for precision grasps collected with a three-fingered fully
actuated hand, the sum-magnitude bound assumption yields
metrics that are between a factor of two and two order of
magnitudes smaller than their counterparts computed under
independent force limits. Also, the L1 norm metric fails on
predicting grasp success even for grasps that are constructed
as force-closure grasps.

Our work therefore highlights the importance of matching
the physical properties of the grasping device with the under-
lying assumptions made during grasp quality assessment. In
practice, there is often a mismatch since the contact forces
exerted by fully actuated grasping devices are limited in-
dependently. However, for applications where computational
efficiency is key, wrench-based metrics are often computed
under a sum-magnitude force bound assumption. This is
to avoid the computation of the full Grasp Wrench Space
in H−representation which is expensive when assuming
independent force limits. Instead, we suggest to compute the
corresponding metrics incrementally [10], via ray-shooting,
or to employ metrics which altogether avoid the GWS
computation as discussed in Section III-C.
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[7] M. A. Roa and R. Suárez, “Computation of independent contact
regions for grasping 3-d objects,” T-RO, vol. 25, no. 4, pp. 839–850,
2009.

[8] R. Krug, D. Dimitrov, K. Charusta, and B. Iliev, “On the efficient
computation of independent contact regions for force closure grasps,”
in Proc. IEEE/RSJ IROS, 2010, pp. 586–591.

[9] Y. Bekiroglu, J. Laaksonen, J. A. Jørgensen, V. Kyrki, and D. Kragic,
“Assessing grasp stability based on learning and haptic data,” T-RO,
vol. 27, no. 3, pp. 616–629, 2011.

[10] C. Borst, M. Fischer, and G. Hirzinger, “A fast and robust grasp
planner for arbitrary 3d objects,” in Proc. IEEE ICRA, vol. 3, 1999,
pp. 1890–1896.

[11] A. Bicchi, “On the closure properties of robotic grasping,” IJRR,
vol. 14, no. 4, pp. 319–334, 1995.

[12] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,”
in Proc. IEEE ICRA, 2000, pp. 348–353.

[13] C.-H. Xiong, Y.-F. Li, H. Ding, and Y.-L. Xiong, “On the dynamic
stability of grasping,” IJRR, vol. 18, no. 9, pp. 951–958, 1999.

[14] A. Shapiro, E. Rimon, and A. Ohev-Zion, “On the mechanics of
natural compliance in frictional contacts and its effect on grasp
stiffness and stability,” IJRR, vol. 32, no. 4, pp. 425–445, 2013.

[15] R. Krug, A. J. Lilienthal, D. Kragic, and Y. Bekiroglu, “Analytic grasp
success prediction with tactile feedback,” in Proc. IEEE ICRA, 2016,
pp. 165–171.

[16] H. Dang and P. K. Allen, “Stable grasping under pose uncertainty
using tactile feedback,” AURO, vol. 36, no. 4, pp. 309–330, 2014.

[17] A. K. Goins, R. Carpenter, W.-K. Wong, and R. Balasubramanian,
“Implementation of a gaussian process-based machine learning grasp
predictor,” AURO, pp. 1–13, 2015.

[18] M. Pozzi, A. M. Sundaram, M. Malvezzi, D. Pratichizzo, and M. A.
Roa, “Grasp quality evaluation in underactuated robotic hands,” in
Proc. IEEE/RSJ IROS, 2016, pp. 1946–1953.

[19] R. D. Howe and M. R. Cutkosky, “Practical force-motion models for
sliding manipulation,” IJRR, vol. 15, no. 6, pp. 557–572, 1996.

[20] K. Charusta, R. Krug, D. Dimitrov, and B. Iliev, “Independent contact
regions based on a patch contact model,” in Proc. IEEE ICRA, 2012,
pp. 4162–4169.

[21] R. M. Murray, Z. Li, and S. S. Sastry, A mathematical introduction to
robotic manipulation. CRC press, 1994.

[22] C. Borst, M. Fischer, and G. Hirzinger, “Grasp planning: How to
choose a suitable task wrench space,” in Proc. IEEE ICRA, vol. 1,
2004, pp. 319–325.

[23] D. Kirkpatrick, B. Mishra, and C.-K. Yap, “Quantitative Steinitz’s
theorems with applications to multifingered grasping,” Discrete &
Computational Geometry, vol. 7, no. 1, pp. 295–318, 1992.

[24] R. Haschke, J. J. Steil, I. Steuwer, and H. Ritter, “Task-oriented quality
measures for dextrous grasping,” in Proc. IEEE CIRA, 2005, pp. 689–
694.

[25] X. Zhu and J. Wang, “Synthesis of force-closure grasps on 3-d objects
based on the Q distance,” T-RO, vol. 19, no. 4, pp. 669–679, 2003.

[26] H. Kruger, E. Rimon, and A. F. van der Stappen, “Local force closure,”
in Proc. IEEE ICRA, 2012, pp. 4176–4182.

[27] Y. Lin and Y. Sun, “Grasp planning to maximize task coverage,” IJRR,
vol. 34, no. 9, pp. 1195–1210, 2015.

[28] T. Mörwald, J. Prankl, A. Richtsfeld, M. Zillich, and M. Vincze,
“BLORT – the blocks world robotic vision toolbox,” in IEEE ICRA –
Workshop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation, 2010.


	Introduction
	Background
	Grasp Contact Modeling
	Contact Parametrization

	Wrench-Based Grasp Quality Metrics
	Largest-Minimum Resisted Wrench
	Grasp Wrench Space Volume
	Task Wrench Set Scaling Factor

	Experimental Evaluation
	Evaluation in Simulation
	Grasp Success Prediction in Practice

	Conclusions
	References

