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T
he diffusion of e-commerce has produced larger 
and larger volumes of varying  items to be handled 
in warehouses, with the effect that the need for 
picking automation is increasing. Conventionally, 
automation has been achieved through a custom 

plant designed for large-scale production of items having 
well-established characteristics that are expected to change 
slowly and to only a small degree over time. However, today 
the challenge is to realize a solution that is flexible enough to 
handle goods with different shapes, sizes, and physical 
properties and that require different grasping modes. To solve 
this problem, we first analyzed how humans perform picking 
and then synthesized their behavior according to four main 
tactics. These were then used as guidelines for the design, 
planning, and control of WRAPP-up, a dual-arm robot 
composed of two anthropomorphic manipulators: a Pisa/IIT 
SoftHand and a velvet tray (Figure 1). The system has been 
validated and evaluated through extensive experimental tests.

Overview 
E-commerce, i.e., buying and selling physical goods via ser-
vices over the Internet, has now reached its full development. 
Led by Amazon, which accounted for more than 50% of the 
growth of the entire e-commerce market, and by Alibaba, in 
2017 retail e-commerce sales amounted to more than US$2 
trillion with an annual growth rate greater than 25% [1]. The 
expansion of e-commerce is affecting the way warehouses 
work, especially the intralogistics, i.e., the internal flow of 
goods within a distribution center [2].

On one hand, the market growth has led to an increase in 
employment: data from the U.S. Census Bureau [3] indicate 
that, from 2015 to 2016 in the United States, there was an annu-
al growth rate of 28% in warehousing and storage employment 
(North American Industry Classification System, code 493) 
and that in 2016 the total workforce reached more than 
600,000. According to Data USA, the U.S. Census Bureau’s 
American Community Survey Public Use Microdata Sample 
one-year estimate data show that material movers hold the larg-
est share (20%) of jobs [4]. 

On the other hand, a strong effort has been devoted to 
maximize intralogistics efficiency by fully employing optimi-
zation techniques [5]: pushing the productivity of human 
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operators even if it may cause high workloads [6] and adopt-
ing automated solutions. Finally, e-commerce has impacted 
both business-to-consumer (B2C) and business-to-business 
(B2B) markets. The market size of B2B e-commerce is more 
than 10 times that of B2C [7], allowing businesses to present 
an unprecedented variety of products to customers. This has 
brought undeniable advantages in terms of sales [7], but it has 
also increased the flexibility requirements with which the 
intralogistics system must comply.

Order picking—the process of retrieving products from 
storage (or buffer areas) in response to a specific customer 
request—is responsible for 50–75% of the total cost for a con-
ventional warehouse [8]. Hence, order picking is considered 
one of the highest priority areas for improvement to maxi-
mize warehouse productivity. However, despite the crucial 
importance of picking operations, warehouses still mostly rely 
on human workers [9].

The major challenge preventing the full automation of 
picking is represented by the high variability among objects to 
be handled in terms of, e.g., their shapes or object configura-
tions and the presence of inaccessible or even absent surfaces 
and also of flexible or pierced surfaces. Regarding object 
shapes, cuboids constitute the vast majority of items stored in 
warehouses [10]. According to [11], among shipped packages, 
the shapes that occur most often are cuboids and, in a lower 
percentage, cylinders. Thus, strategies to manipulate cuboids 
and cylinders in different configurations account for a consid-
erably large part of the intralogistics processes for handling 
goods. 

Several components contribute to the realization of a flexi-
ble picking solution:

●● �a robot design able to execute the picking operations in a 
warehouse environment physically

●● a vision system able to detect objects and constraints
●● �a perception system able to identify desired and undesired 

contacts
●● �a planning method able to generate a trajectory accom-

plishing the task while satisfying the constraints and adapt 
that trajectory based on the perception outcomes

●● a control strategy able to track the desired trajectory.
The present article focuses on the realization of a flexible, 
autonomous picking solution, leaving for the future integra-
tion with the vision system. 

Some of the most challenging and common situations an 
autonomous pick-and-place  system might encounter include 

●● �reduced, collision-free end-effector poses due to other 
goods or containers

●● �a restricted portion of the external surface of the object 
being available for gripper contact due to other goods, 
especially when they are tightly packed together

●● �deformability of the object, meaning that the shape of the 
grasped object changes under external forces

●● �porosity of the object, which prevents the employment of 
simple and nimble suction grippers.
Despite great effort in the development of picking solu-

tions, as far as we know, no currently existing automatic 

solution is flexible enough to cope with such challenges, many 
of which may occur simultaneously. 

The main contributions of this article are the design, 
realization, and testing of WRAPP-up, a novel human-
inspired dual-arm robot for intralogistics. The develop-
ment of WRAPP-up relied upon observing the techniques 
adopted by human pickers at work in warehouses. Indeed, 
by observing expert operators, we identified four main 
maneuvers they commonly adopt; these are detailed in 
the section “Human Picking Skills.” Based on these find-
ings, we designed a dual-arm robot (see the section “The 
WRAPP-up Design” for more details) composed of two 
7-degrees of freedom (7-DoF) manipulators and two dif-
ferent end effectors: a) an adaptive end effector able to 
both grasp a large variety of objects and stably interact 
with different shapes and b) a tray with an actuated belt. 
Moreover, we encoded the observed human picking strat-
egies into parametric motion primitives adopted in the 
robot’s trajectory planning. Finally, an extensive experi-
mental validation was conducted. 

To the best of our knowledge, WRAPP-up is the first 
autonomous picking system able to approach the whole spec-
trum of intralogistic picking tasks: from bin picking to pallet 
picking.

Figure 1. The WRAPP-up: a dual-arm robot composed of two 
anthropomorphic 7-DoF manipulators, a Pisa/IIT SoftHand, and 
a velvet tray. WRAPP-up is illustrated picking a box that does not 
have a top surface. 
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Related Work
Picking tasks can be classified based on different parameters, 
one of the most important of which is the location from 
which the items should be grasped. On one hand, there is the 
bin-picking problem in which a single object must be grasped 
from among objects that have been placed in an ordered way 
(or not) in a box. Often the object’s size and weight are such 
that it can be handled with a one end effector. The problem of 
grasping a single object with an ad hoc end effector has been 
extensively studied from theoretical and experimental view-
points. However, bin picking still represents an open chal-
lenge, especially in unstructured environments. This is also 
testified to by competitions such as the Amazon Picking 
Challenge, aimed at enhancing warehouse automation in 
picking operations [12]. Interested readers are referred to 
[13] for a comprehensive review of robotic picking and to 
[14] and [15] for recent results.

On the other hand, there is the picking of items from 
among those located on a pallet. To automate this, task two 
main solutions can be adopted: a mobile manipulation 
approach in which the robot is provided with a mobile base or 
a grounded manipulation approach in which the pallet (or 
shelf) is brought to the manipulator by mobile devices [16].

Prominent examples of autonomous mobile manipulation 
platforms for logistics include: the Little Helper III [17], the 
DLR omniRob [18], and the Handle [19]. The first two robots 
are mainly devoted to picking objects from shelves. They con-
sist of a robot arm with a two-fingered parallel gripper 
mounted on a stable mobile base. The Handle has an unstable 
two-wheeled mobile base (which requires a more expensive 
control system but substantially reduces the robot’s footprint), 
is equipped with a vacuum gripper, and is devoted to box 
handling. Interested readers are referred to [20] for compre-
hensive literature reviews on the subject. Furthermore, Maga-
zino [21] and InVia Robotics [22] currently sell two products 
based on suction cups that are mainly devoted to box picking. 
Both these solutions exploit a picking strategy based on box 
sliding, which may not be suitable for boxes that are stacked 
one upon the other and, in general, are not free to slide. 
TORU, the robot by Magazino, is suitable for picking small 
boxes from shelves, especially shoe boxes. It has also been 
integrated with a different picking strategy, but always based 
on object sliding and additionally requiring the accessibility of 
the rear surface of the box [23].

A recent example of a grounded manipulation approach is 
the Dora Picker [24]. Its novelty relies on the soft and adaptive 
design of its end effector. Ground-based depalletizing robots 
available on the market, despite their different working prin-
ciples, share the drawback of being bulky and not easily relo-
catable [25]–[27]. Moreover, unlike WRAPP-up, they are 
usually suitable solely for pallet picking, while a different 
robot would be necessary for bin-picking. See, e.g., the exam-
ple of Swisslog [28], which proposes on its website two robot-
ic solutions, one for picking larger boxes, ACPaQ, and one for 
bin picking, ItemPiQ. Another key distinguishing aspect of 
WRAPP-up compared to the integrated solutions proposed 

by Swisslog is that WRAPP-up aims to incorporate in a 
unique platform for both picking and discharging.

The most flexible autonomous systems that may be used 
to accomplish picking tasks are currently provided with 
mechanical and vacuum end effectors. A wide overview of 
the most recent development in gripping devices can be 
found in [29]. Mechanical end effectors for prehensile tasks 
are certainly the most widespread and many of them fall into 
two neatly distinct categories: simple grippers [30], [31] and 
complex or anthropomorphic hands [32]–[34].

Among them, several devices exist that trade simplicity for 
flexibility. Examples include underactuated and soft grippers 
[35]–[37] and end effectors with active surfaces. An example 
of a versatile mechanical gripper is the Traction Gripper [38]. 
It has a shaped frame with counter-rotating belts that exploit 
friction forces to pull boxes toward the corners of the frame 
and hold them firmly in position. An evolution of this con-
cept is the Fraunhofer Roll-on Gripper [39], a hybrid between 
a lift and a gripper. In this solution, the belts further allow for 
manipulating (translating or rotating) the boxes once they are 
picked up by the gripper. A similar solution is exploited by 
Premium Robotics [25], whose grippers exhibit limitations 
when the grasped item is lodged in the object. 

Vacuum grippers are widely employed for grasping boxes 
by their top surface ([26] and [27]), e.g., [40]. The vacuum 
gripper by Wynright Robotics [41] is able, as are others [21], 
[22], to grasp boxes from the frontal side. The device relies on 
an array of vacuum cups to drag the box onto a support sur-
face of the gripper. Vacuum grippers have severe drawbacks 
when the surface of the object is not suitable to be grasped, 
e.g., due to the top surface not being present at all or not being 
robust enough to sustain the weight of the object.

Problem Definition
The task of interest in this article consists of picking sev-
eral different goods from single-item pallets, that is, pal-
lets composed of several units of an item. The input to the 
system is the sequence of goods to be picked and their 
location on the pallet, which may be provided by a vision 
system. The design of a robot for picking tasks depends 
on the size and the shape of the objects that must be 
manipulated as well as on the modes that can be profit-
ably used to grasp them. Picking tasks, the vast majority 
of which are currently executed by human operators, can 
be classified into two main categories: those that can be 
accomplished with one hand and those that must be 
accomplished with two hands. The problem of picking 
objects with a single end effector has been extensively 
treated in the literature and in previous articles of ours 
[42],  [15]. The present article focuses on the problem of 
picking objects that humans cannot pick with one hand. 
Notably, the solution proposed here will accomplish both 
categories of picking tasks. In the following, a list of items 
that represents 40% of the volume of a food warehouse is 
reported together with their main features. Note that the 
food and beverage segment is one of the market segments 
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most affected by the e-commerce revolution, which today 
allows customers to have their shopping bags delivered 
directly to their homes. In the next sections, we consider 
the functional requirements a picking system should satis-
fy in order to work in such a warehouse profitably. Finally, 
we describe the main challenges to be tackled in the 
design and realization of this device.

Objects
The complete list of objects to be picked, along with their size 
and weight, is reported in Figure 2. The objects can be 
grouped into two sets depending on their shape: boxes or cyl-
inders. For the boxes, the values for the length (L), height (H), 
and width (W) expressed in centimeters are reported, while 
for the cylinders, the values for the diameter (D) and height 
(H) are listed.

Functional Requirements
A list of functional requirements that a picking system should 
match is reported in Table 1. It is important to stress that these 
should not be taken as absolute values for every intralogistics 
company but, rather, for operators that manage a set of 
objects comparable to the one reported in Figure 2. These 
requirements are grouped into key performance areas and 
indicators. Their quantitative value should be considered as a 
target for the picking system.

Productivity performance indicators have been computed 
based on the fact that such a robot would be economically 
sustainable if it were able to perform three picking move-
ments every minute (corresponding to 180 picks per hour). 
Given that a Euro-pallet (80- × 120-cm base piled up to 1.5 m 
high) may contain up to 627 of the smallest or 115 of the larg-
est among the objects reported in Figure 2, the time needed to 
empty a pallet can be evaluated in 209 or 38 min, respectively. 
The average of these two values gives the productivity perfor-
mance indicator reported in Table 1. The picking success rate 
takes into account the grasping system without considering 
the vision system.

Challenges
The main challenges of the picking phase can be identified as 
follows:

●● �Boxes are often very close to each other, and the two oppo-
site sides, which are the most desirable for a reliable and 
robust grasp, are usually not easily accessible. Hence, to be 
properly handled, such boxes should first be moved to 
guarantee that two opposite faces are accessible and then 
picked.

●● �Some items do not have a top surface, or the top surface 
may not be suitable for grasping the object. These objects 
cannot be grasped with vacuum grippers.

●● �The bottom side of some objects is recessed under the 
upper side of the objects that they lie under—or, more gen-
erally, they cannot slide. This means that the objects can 
translate only along the vertical direction or rotate about a 
horizontal axis.

Human Picking Skills
There is no systematic method to synthesize all the require-
ments listed in the section “Problem Definition”; one of the 
reasons is that it would simultaneously involve the codesign 
of the robot’s structure, planning, and control. Hence, we 
observed skilled human operators at a food warehouse during 
the execution of manipulation tasks when picking the objects 
listed in Figure 2. That is, we recorded two human operators 
from a food warehouse while performing the picking action. 
Each picking action was repeated three times. These live 
observations and the analysis of the video recordings led to 
two lessons learned.
1)	�Bi-manual manipulation has a crucial role in picking 

operations since humans use both hands to manipulate 
and handle objects. In the majority of tasks, one hand is 
used to move the object, and the other hand is used as 
a support.

2)	�The strategies human operators use to pick items are 
classifiable into three main categories, as depending on 
object shape and form, as depicted in Figure 3: rotation 
about the horizontal axis, rotation about the vertical 
axis, and sliding. 

Rotation About the Horizontal Axis
In the case of thin boxes, i.e., H > W, H > L, and cylindrical 
objects or if the support surface of an object cannot slide, the 
operators use one hand to rotate the goods about a horizontal 
axis and to put the object on the supporting hand [see Figure 
3(a)–(d)].

Rotation About the Vertical Axis
For thick boxes (H < W, H < L) with no constraints at the 
base, the horizontal rotation is not convenient because of the 
less favorable lever arm; thus operators decide to rotate the 
boxes about a vertical axis to have access to the back surface 
of the object, as in Figure 3(d). This strategy can then evolve 
into two different picking continuations. In the first, the box 
is picked up by two opposite surfaces while the operator uses 
his/her hands like the jaws of a parallel gripping device. In 
the second, the box is first dragged toward the worker, acting 
on the back surface, and then supported by the other hand as 
the box sticks out from the pallet or underneath the layer of 
goods.  This helps apply two different grasping strategies: 1) 
grasping the object relying on contacts on two opposite sur-
faces (front and back) and 2) sliding the object relying on the 
contact on the back surface.

Sliding
For thick boxes with no constraints at the base, operators 
push or pull the objects until they reach the support hand at 
the boundary of the pallet, as in Figure 3(f). Picking strategies 
that human operators adopt highlight that pickers often natu-
rally choose different functions for each hand. One hand is 
mainly used to accomplish manipulation tasks: pushing an 
object in the sliding strategy and adapting to the shapes of the 
different objects in the other two strategies. The other hand is 
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often responsible for supporting the majority of the item’s 
weight and may be used to perform placing operations such 
as alignment and unloading.

The WRAPP-up Design
Inspired by the techniques adopted by warehouse workers, 
the envisioned solution is a dual-arm system. The system is 
composed of two lightweight robots arranged to perform 

9.1 kg/22 × 26 4.3 kg/20 × 25 3.2 kg/16 × 18 3 kg/20 × 13

3 kg/19 × 29 × 14 2.7 kg/40 × 7 × 30 2 kg/40 × 8 × 30 1.8 kg/15 × 13

9 kg/46 × 15 × 18 6 kg/40 × 10 × 26 5 kg/46 × 18 × 15 2.5 kg/38 × 18 × 14

2.5 kg/36 × 15 × 23 2 kg/38 × 23 × 20 1.9 kg/35 × 13 × 16 0.4 kg/40 × 18 × 25

Horizontal Rotation Horizontal Rotation Horizontal Rotation Horizontal Rotation

Horizontal Rotation Horizontal Rotation Horizontal Rotation Horizontal Rotation

Vertical Rotation/Sliding Vertical Rotation/Sliding Vertical Rotation/Sliding Vertical Rotation/Sliding

Vertical Rotation/Sliding Vertical Rotation/Sliding Vertical Rotation/Sliding Vertical Rotation/Sliding

Figure 2. The objects considered for picking tasks, with their weight (in kg), size (in cm), and related grasping strategies.
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pick-and-place tasks properly. The mounting bases of the 
arms are fixed at an established relative pose, as better 
described in the following. Two different end effectors, pro-
vided with six-axis force/torque sensors, are attached to the 
wrists of the robot arms. To perform the dexterous operation, 
one arm is featured with a Pisa/IIT SoftHand: a human-like, 
adaptive, robust artificial hand, the closure movement of 
which is easy to control since it is actuated by a single motor. 

Table 1. Picking task target performance.
Performance 
Area Performance Indicator Target Unit

Productivity 
Average time to empty a pallet 123 min

Picks per hour 180 #

Reliability First-attempt success rate 90 %

(a)

(b)

(c)

(d)

(e)

Figure 3. A human grasping different shaped objects with different strategies: (a) a box-shaped object, (b) and (c) cylinder-shaped 
objects, and (d) and (e) box-shaped objects.
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The second end effector is the velvet tray, which serves as a 
support tool. A brief description of the design of the two end 
effectors is provided at the end of this section.

In our preliminary experimental setup, each robotic arm 
was mounted on an independent movable gate, which allows 
for 3 DoF in a plane (two translations and a rotation), 
enabling configurable relative locations of the two arms [see 
Figure 4(c)]. With this test bench, we could easily test 
different relative positions of the arms in a store-like 
environment. The choice of the most suitable relative 
configuration of the arms is described in the next section, 
“Relative Pose of the Two Manipulators.” In a final use case, 
the dual-arm robot can be mounted on a fixed or mobile 
base, depending on the end-user requirements. For instance, 
the end user may employ a picker-to-goods strategy, thus 
requiring a mobile base for the picking station, or a goods-to-
picker strategy, in which the picking station is fixed and the 
objects are transferred there. At present, our robot is mounted 
on a fixed base, but it will be integrated onto an autonomous 
mobile robot in future studies. 

Relative Pose of the Two Manipulators
Once the overall structure of the robot, the end effectors, and 
the manipulation strategies have been defined, the robot 
design can be detailed. Particularly important is the location 
of the two arms with respect to each other and the pallet. A 
wrong relative location of the arms may prevent the correct 
execution of a strategy due to two main reasons: 1) one joint 
(or more) reaches the limit of its range of motion, or 2) a 
point of the desired trajectory is out of the reachable work-
space of the bimanual system.

To properly choose the relative location of the arms, a two-
step strategy has been adopted. First, a manipulability index 
for each arm was evaluated for a set of points to find a relative 
pose that provides an adequate superposition of the manipu-
lators’ dexterous workspaces. Then, a feasibility analysis, con-
ducted by simulating the kinematic execution of the robot 
trajectories (based on the strategies presented in the section 
“Translating Human Picking Skills Into Robot Motion Primi-
tives” for the objects listed in Figure 2), was performed to 
check that the relative pose found in the first step allowed the 
robot to operate at least over half of the pallet footprint. The 
feasibility phase took into account constraints due to joint 
limits and realistic external obstacles, e.g., floor and shelves. It 
is worth pointing out that, for the first step of the strategy, 
other metrics could have also been implemented, e.g., to 
include the direction of maximum force of the arms. Still, at 
this stage, we preferred to give priority to manipulability. 
Future study will be devoted to the evaluation of different 
metrics. Among the manipulability measures suitable to 
quantify the ability of a robot to execute a movement in an 
arbitrary direction of the Cartesian space, from a given pose 
q, we use the one presented in [43]:

	 ( ) ( ( ) ( ) ) ,detw q J q J q T= � (1)

that is, a measure of the volume of a 3D ellipsoid of 
which the semi-axis length is represented by the square 
roots of the singular values of the end effector’s Jacobian 
J(q). The eigenvector of J(q) corresponding to the larg-
est singular value represents the easiest direction of 
motion. Figure 4(a) is an example graphic result that 
illustrates the manipulability index w(q) [evaluated 
according to (1)] and the preferred directions of motion 
of the two robots.

Given a relative location of the arms, we evaluated the 
manipulability of the configuration using a scaled average 
manipulability for the two arms [44] and the volume of the 
shared workspace. The average manipulability of each arm 
was evaluated by averaging the manipulability index values at 
N uniformly sampled feasible configurations in the joint 
space. The maximum value manipulability index then scales 
this value according to

	 { ( )}

( )
.maxw w q N

w q
i

j i j

i j
j

N

1
=

=
r

/
� (2)

Then, we defined the manipulability index for the dual-arm 
system as

	 ,w w w
2D

1 2= +r r r � (3)

where w1r  and w2r  are the average manipulability indexes for 
the first and second arm, respectively. Thus, the configuration 
manipulability is then expressed as

	 | ,M V
V w

U

I
D I= r � (4)

where we defined with VU  the workspace of the dual-arm 
system (obtained by the union of the workspaces of the two 
manipulators), with VI  the volume of the shared work-
space, and with wD I;r  the average manipulability index for 
the dual-arm system [defined as in (3)] computed using 
only the configurations belonging to the intersection of the 
workspaces of the two manipulators. The poses with high 
manipulability are the ones that give large dexterous collab-
orative workspaces.

The solution provided by the manipulability analysis is a 
reasonable starting point. However, its selection does not take 
into account the tasks that the robot should execute. To evalu-
ate the quality of the selected configuration for our task, we 
simulated the execution of picking tasks using the strategies 
described in the section “Human Picking Skills” for different 
positions of the target object and registered the associated 
Cartesian error. To perform this analysis, we considered the 
object as placed on a 0.8- × 0.6- × 1.5-m pallet in front of the 
robotic platform so that it would lie within its reachable work-
space. This width corresponds to half of the width of a Euro-
pallet. We simulated the task for every pose an object could 
assume on this reference pallet (the possible poses are limited 
and depend on the shape and the dimensions of the object), 
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and we checked that, in the selected configuration, the robot 
was able to execute the task with a limited Cartesian error 
(under 1 cm of error).

To reduce the complexity of the search of the relative con-
figuration, we predefined a set of reasonable candidate poses, 
evaluated the manipulability for each of them, and evaluated 
the task performance for the most promising. Examples of the 
manipulability for three different candidate configurations are 
reported in Table 2, where the values were obtained using 

,N 20 000=  samples. It is worth noting that the first configu-
ration (the one we eventually selected) is the one with the 
higher manipulability. A detail of the manipulators’ base rela-
tive location is depicted in Figure 4(b).

Mechanical Design of the Manipulation End 
Effector
The manipulation end effector is the Pisa/IIT SoftHand [Fig-
ure 5(a)]. Its mechanical robustness and adaptability, together 
with the ease of control, make it particularly suitable for the 
type of use required to accomplish the picking task. For an in-
depth description of the hand, readers can refer to [45]. In 
Figure 5(a), the Pisa/IIT SoftHand 7  is attached to the wrist 
flange of the robotic arm 1  through a six-axis force/torque 
ATI-Mini45 sensor 2  and four rubber beams 6 . The ATI 
sensor detects changes in the state of the hand, such as contact 

with the objects to be manipulated in regular functioning but 
also undesired collisions, preventing the end effector from 
damaging the object being picked. The rubber beams are 
located between the end effector and the ATI sensor. They 
favor the slowdown of the external force loading rate in case 
of collision, increasing the time for a rapid emergency-stop 
response. A toothed flange 5  crimps together a plate 3  (fixed 
to the sensor) and another plate 4  (fixed to the hand side). 
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Figure 4. An analysis of the relative configuration of the manipulators, resulting relative configuration, and CAD model of the 
experimental setup. (a) An example of the manipulability analysis exhibiting the manipulability measure and preferred directions of 
motion. (b) The configuration of the two arms in the current setup: ,20 cmxT =  ,30 cmzT =  .( )15 45 60andR Lc c cT i i= = =i  (c) A 
CAD model of the experimental setup. 

Table 2. Manipulability analyses for different 
configurations of the two arms. 

xy

z

xy

z

x

y

z

Workspace volume  
[VU (m3)] 

5.91 7.13 6.43 

Shared workspace  
volume [VI (m3)]

2.60 1.38 1.23 

Intersection average  
manipulability ][wD I;r

0.43 0.46 0.47 

Manipulability [M] 0.19 0.09 0.09 
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Mechanical Design of the Support End Effector
The end effector that functions as a support for the goods to 
be manipulated is the velvet tray. Figure 5(b) shows a 3D model 
of the velvet tray. Its design and principle of operation are 
inspired by research we carried out about grippers with active 
surfaces [46]–[48]. The tray is equipped with an actuated belt to 
ease the loading maneuvers of the goods.  As shown in Figure 
5(c), it is attached to the flange wrist 1  of the KUKA arm 
through a flange 2 . Between the KUKA arm and the velvet tray, 
a six-axis force/torque ATI-Mini58 sensor 3  and rubber beams 
4  are interposed with the same aim as in the Pisa/IIT SoftHand. 
The elastic junction is here composed of 10 rubber beams 4  
arranged in a circle, which slow down the loading rate of the 
external forces in collision events. The belt 8  is coated with high-
grip polyurethane with a coefficient-of-static-friction polyure-
thane steel of 0.8, which allows an inclination of 38° with respect 
to a horizontal plane without a mass on the belt sliding down. 
This value of friction coefficient provides the worst-case for the 
torque of the motor, guaranteeing that the target mass of 2.5 kg 
can be held with the velvet tray inclined 38°. A Maxon motor 
DCX22 actuates the belt with gear-head GPX83 5 , which is able 
to move a mass of 2.5 kg with an inclination of 38° within the 
continuous functioning condition of the driver. The power 
transmission between the motor and the driver roll of the belt is 
due to gears 6 . The tension roller 7  ensures a proper tension in 
the belt of at least 20 N, necessary to transmit the required 
torque. Finally, a set of idle rollers 9  sustains the objects and 
forms an approximately flat surface under the belt.

Translating Human Picking Skills Into Robot 
Motion Primitives
Inspired by observation of the strategies adopted by the 
human pickers (described in the section “Human Picking 
Skills”), parametric motion primitives were defined to plan 
the motion of the robot during the task execution.

●● �Sliding: One end effector is used to push (or pull) an object 
toward the other end effector, which secures the grasping 
and may support the weight of the object, as demonstrated 
in Figure 6(a).

●● �Horizontal rotation: One end effector is used to gently tilt 
the object about a horizontal axis. This can be achieved in 
two different cases: 1) about a horizontal axis on the front-
bottom edge of the bounding box enveloping the object [see 
Figure 6(b)] and 2) about an axis on the back-bottom edge 
of a bounding box enveloping the object [see Figure 6(d)]. 
In the first case, the object rotation will end when it is lying 
on the support end effector. This strategy is intended to be 
used with objects (boxes or cylinders), the height of which is 
the largest dimension. In the second case, the object’s rota-
tion will allow the second end effector to be placed under 
the object as support.

●● �Vertical Rotation: One end effector approaches the object’s 
side then rotates it about a vertical axis ideally located at 
one edge of the object. Once the rotation has produced 
enough room for the end effector, it slides inside this gap 
and proceeds to slide the object toward the pallet’s exterior. 
This strategy is suitable when objects are compactly packed 
[see Figure 6(c)] and it is necessary to make room for the 
end effectors to perform a successful grasp.
For each object, the choice of the strategy was made based 

on its shape and on how the objects are stacked on the pallet. 
Each motion primitive is defined as a set of Cartesian way-
points for the two end effectors, expressed with respect to a 
frame placed on the object. The definition of waypoints that 
allows for a correct manipulation of the object, e.g., to rotate 
or tilt it to produce enough room for positioning an end effec-
tor as in Figure 6(c) or (d), is the result of simulations and real 
experiments on the objects. Thus, they depend on the physi-
cal properties of the end effectors and the objects. Once the 
pose of the object is retrieved and the correct primitive is 
selected, the waypoints expressed in the object-fixed frame 
are transformed into the world frame.

To take into account the robot kinematics and the joint 
limits for motion planning, we determined the path at the 
joint level via the reverse priority algorithm described in [49], 
which allowed us to define a set of tasks with different priori-
ties including unilateral constraints (e.g., joint-position lim-
its). For each of the two arms, we set the Cartesian pose 
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6
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1

1 2 3 4 5

8 9

6 7

(a) (b) (c)

Figure 5. The manipulation end effector (Pisa/IIT SoftHand) and the support end effector (velvet tray). (a) The Pisa/IIT SoftHand is the 
dexterous end effector of WRAPP-up. All the components attached to the wrist of the robotic arm are described in the text. (b) The 
velvet tray is the support end effector of WRAPP-up. A 3D view is provided. (c) A cut view of (b) illustrates the power transmission 
group and the conveyor belt with the components described in the text. 
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tracking, i.e., the position and orientation of the end effec-
tor, as the low priority task and the joint-position con-
straints as the high priority tasks. Then, the path following 
could be achieved by the minimum-time approach pre-
sented in [50].

Accounting for realistically imperfect knowledge of the 
object position provided by a vision system in a future integra-
tion, the force/torque sensors were exploited to plan the tra-
jectories based on contacts with the objects reactively. Indeed, 
the measured forces can be used to detect possible contact 
with an object whenever they exceed a user-defined threshold. 
Our reactive planning approach [see Figure 7(a) for a sche-
matic representation of the architecture] was accomplished by 
decomposing each picking strategy into consecutive basic 
phases represented by states of a finite state machine. Each 
phase was planned online [the block “Plan Picking Phase” of 
Figure 7(a)] and generated the Cartesian trajectory for the end 
effectors. For each of the phases, the kinematic feasibility of 
the planned trajectory was checked [the block “Feasible” in 
Figure 7(a)]. In this block, the generation of a path for the 
joints of the robot was performed using the reverse priority 
algorithm. If the desired motion was not feasible because of, 
e.g., the constraints on the joint ranges, the task was aborted, 
allowing the intervention of a human operator. The transition 
between a phase and the following phase was triggered online 
based on the information coming from the force/torque sen-
sors and the joint-position sensors of the robot. This informa-
tion could be used to detect two possible events [the block 
“Event” in Figure 7(a)]: a detected contact (or the loss of con-
tact) or the end effectors reaching their target position. The 
reaction of the system at these events depends on the typology 
of the picking phase. Indeed, the phases are of two types: 
approaching phases and manipulation phases. Approaching 
phases are the ones in which the end effectors have to estab-
lish contact with the object. This was a critical step of the 
manipulation process since an incorrect positioning of the 

end effector with respect to the object, possibly due to errors 
on the estimate of the object pose, could cause picking failure. 
Hence, the end effector would start moving toward the object 
along a specified direction until contact is detected. Then, it 
would stop, and the end-effector position at the contact would 
be used to update the object pose estimate. This refined esti-
mate is used to update the planned trajectory for the following 
phases. If the expected contact does not happen within a cer-
tain region, the system enters an emergency state, and, eventu-
ally, a human operator will be alerted. Conversely, 
manipulation phases are the ones for which a contact is 
already established and the end effectors are manipulating the 
object. The condition used to trigger the transition to the suc-
cessive phase is defined based on the end effector reaching the 
target position. Sensing of unexpected forces causes the sys-
tem to enter an emergency state and eventually alert a human 
operator, regardless of the specific phase. At the end of the 
picking strategy, since the object will be placed on the velvet 
tray, the force measurements can be used to identify whether 
the object has been picked or if it fell. 

An example of the described reactive approach is reported 
in Figure 7(b) and (c), where the states of an example trajecto-
ry and the corresponding force sensor readings are depicted. 
For this example, we considered a worst-case scenario where 
the uncertainties on the pose estimate are such that additional 
pose refinement steps are required. Indeed, in phase (A) the 
hand is approaching the object laterally to refine its pose. As 
reported in Figure 7(b), when contact is correctly detected 
(the magnitude of the force Fx  along the contact direction 
exceeds the threshold set at 10 N), the pose along this direc-
tion is updated, and the hand is placed in front of the object 
and starts moving toward it. Once again, the force measure-
ments inform about the established contact, and the robots 
enter the third phase, (C), of the manipulation. In this case, 
since a horizontal rotation is used, the hand lifts the bucket to 
create space for the velvet tray. Therefore, the transition 

(a) (b)

(c) (d)

Figure 6. The robot grasping strategies. (a) The strategy to grasp an object from behind (side view). (b) The strategy to roll a tall 
object (side view). (c) The strategy to rotate an object exploiting environmental constraints, such as another object used as a pivot 
point (top view). (d) The strategy to lift an object and put it on the tray (side view). 
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Figure 7. The reactive planning approach. (a) The reactive planning architecture. The picking strategy is divided into basic consecutive 
phases planned online. The information from the sensors is used to detect contacts between the robot and the environment or if the 
end effectors reached their target position. Depending on the typology of the picking phase (i.e., approach or manipulation), these 
events trigger the transition to the next phase or an emergency state. (b) Force sensor readings for the two end effectors during the 
strategy execution. The transitions between the states into which the strategy is decomposed are highlighted. (c) The sequence of a 
picking strategy in which each block corresponds to a state of the finite state machine on which the planner is built. 
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toward the next phase is triggered by the hand reaching 
the target Cartesian pose, and no force information is 
required. Note that, to increase the robustness of the sys-
tem, the force measurements in this phase could detect 
the loss of contact between the hand and the object and be 
used to abort the current picking action. Regarding the 
other phases, contact information is again used to trigger 
the transition from (D) to (E), where the velvet tray is 
placed under the object in contact with it, and (E) to (F), 
where the hand is approaching the object from the top to 
perform a collaborative sliding.

As described previously, the example shows the effective-
ness of the reactive approach even in case of an imprecise 
knowledge of the pose, which requires the execution of the 
redundant and time-consuming lateral approach [phase (A)]. 
Depending on the level of uncertainties on the pose estimated 
by the perception system, such redundant steps could be 
unnecessary.

Experimental Validation
In this section, we report the preliminary experimental valida-
tion of WRAPP-up. The picking capabilities of the system are 
demonstrated on a representative set of objects from the ones 
in Figure 2. Indeed, the objects used for the tests allowed us to 
cover the two main shapes we identified to be relevant for 
logistics, i.e., cuboids and cylinders. Furthermore, they allowed 
us to test all four of the motion primitives we have presented 
and validate the platform’s performance in different picking 
scenarios.

Figure 8(a) depicts the strategy used to manipulate objects 
that have a characteristic cylindrical shape, better suited for a 
horizontal rotation strategy. With this approach, the hand is 
placed in front of the bucket and grasps its edge, allowing it to 
lift and tilt it. This movement permits the velvet tray to be 
placed beneath it as a support. Once the tray has been cor-
rectly positioned, the hand can release the object [see, e.g., the 
last frame of Figure 8(a)], and the tray can be used to collect 
and deploy the bucket. In this case, the hand can be employed 

(a)

(b)

Figure 8. The WRAPP-up picking cylindrical objects. (a) The horizontal rotation primitive. (b) Cylindrical objects being picked using the 
horizontal rotation strategy.
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to ease the tray during the picking phase. An example of the 
described approach used to collect three rows of objects 
placed on a pallet is presented in Figure 8(b). 

The horizontal rotation strategy is also effective for 
picking thin boxes [see Figure 9(b)]. In this case, the hand 
is placed behind the box and tilts it until the box lies on 
the tray placed in front of the object with a proper inclina-
tion. Then, the hand is used to ease the object picking, 
keeping it on the velvet tray while the latter is returning 
parallel to the horizontal plane. The former approach has 
been tested for successfully picking eight boxes close to 
one another, as in Figure 9(b), illustrating the robustness of 
the designed strategy even in the presence of other objects 
behind the handled box.

The best picking strategy is not chosen based solely on 
the object’s shape but also depends on the location of the 
object on the pallet and the position of the other possible 
items. To demonstrate this concept, two different picking 
tests were performed on the same object (with a box-like 

shape) depending on its different orientation, see Figures 10 
and 11.

In the first test, the boxes are easily picked using a sliding 
approach due to their configuration. The hand is placed 
behind the box and used to pull the object toward the tray. 
The situation is different and requires a more complex strate-
gy if the boxes are in a different configuration, e.g., they are 
rotated by 90° around the vertical axis with respect to the pre-
vious case and they are compactly packed, as shown in Figure 
10. This condition requires the use of a vertical rotation strat-
egy where the hand approaches the box’s side and, eased by 
the tray, rotates it about a vertical axis located at one edge. 
Then, the hand slides inside the created gap and proceeds to 
slide the box toward the tray.

Table 3 presents the time for picking every individual  
object during the performed experiments. Then, an estima-
tion of the time to empty an entire pallet full of that object is 
reported. To estimate the total number of boxes contained in 
the pallet, the standard Euro-pallet dimensions were 

(a)

(b)

Figure 9. The WRAPP-up picking thin boxes. (a) The horizontal rotation primitive. (b) Two rows (eight pieces) of thin boxes being 
picked using the horizontal rotation strategy. 
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considered for the base of the pallet, and a full pallet was con-
sidered to be 1.5 m high. To compute the number of objects 
that can be contained in such a pallet, the dimensions of the 
objects were taken into account. Thus, a pallet of thin boxes 
contains 192 items; a pallet of cylinders, 360 items; and one of 
thick boxes, 176 items in the first case and 165 items in the 
other. Hence, the time to empty a pallet was estimated, multi-
plying the average time to pick an object by the number of 
objects in the full pallet. Table 4 reports the global perfor-
mance indicators we obtained for the picking task. The time 
to empty a pallet was computed as the average of the values 
reported in Table 3. Fifty picking actions were performed for 
each case to test the system and estimate the values of the per-
formance indicators. The success rate is the average of the 
four cases.

Discussion
This set of experiments was aimed at verifying the effective-
ness of the hardware and picking strategies in an unloading 
simulation of goods on a pallet. These experiments demon-
strate that the WRAPP-up robotic platform is suitable to ful-
fill the picking tasks of goods stacked on a pallet. A 
comparison with the performance requirements specified in 
Table 1 highlights that the reliability requirement is met, but 
the productivity should be improved through optimization 
techniques (not yet integrated) that will be the subject of 
future work. The performance reported in Table 4 is 
expressed for the platform in its current setup, i.e., without a 
perception system and the optimization module for the two 

arms and for the set of objects we used for the tests. Indeed, 
the reliability must be intended as an upper bound for the sys-
tem since it does not include the presence of a perception sys-
tem. For the average time to empty a pallet, it will have to be 
evaluated for the fully integrated platform to quantify the 
impact of the time required by the perception system to 
retrieve the pose of the objects and the impact the optimiza-
tion module presented in [50] in the overall performance. It is 
worth noting that, with the current setup, some of the more 
burdensome objects in Figure 2 could result in their being dif-
ficult to handle because they exceed the nominal payload of 
the arms. Strategies and solutions to effectively handle those 
objects will be investigated. Subjects for the future will be a 
more specific study on the robustness of the platform for dif-
ferent objects and setups and an evaluation of how different 
friction forces could impact the reliability of manipulations 
that involve the exploitation of environmental constraints. 

Conclusions and Future Work
In this article, we addressed the problem of realizing a proof-
of-concept robot that is flexible enough to manipulate a variety 
of goods relevant to the intralogistics of warehouses. Inspired 
by the picking strategies that skilled human operators adopt in 
the execution of these tasks, we realized a dual-arm robot pro-
vided with a Pisa/IIT SoftHand and a velvet tray. The first end 
effector is adaptable; hence, it is used for establishing stable 
grasps to rotate and slide goods with various shapes; the sec-
ond end effector is mainly used to support the weight of the 
objects. The robot has been experimentally validated in 

Figure 10. The WRAPP-up picking thick boxes using the sliding primitive. 
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multiple picking actions on a set of four different representa-
tive objects. Future study will be to, on one hand, provide the 
robot planning with a high-level decision tool that is able to 
automatically generate the right strategy to adopt on the basis 
of features of the objects that can be detected by a vision sys-
tem and, on the other hand, to adopt suitable feedback strate-
gies based on vision, force feedback, and tactile feedback to 
improve robot reliability. Furthermore, the average picking 

time will be minimized by adopting 
suitable optimization algorithms, and 
the robot will be provided with a 
mobile base.
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