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Abstract— As robots are leaving dedicated areas on the
factory floor and start to share workspaces with humans,
safety of such collaboration becomes a major challenge. In
this work, we propose new approaches to robot velocity
modulation: while the robot is on a path prescribed by
the task, it predicts possible collisions with the human and
gradually slows down, proportionally to the danger of collision.
Two principal approaches are developed—Impulse Orb and
Prognosis Window—that dynamically determine the possible
robot-induced collisions and apply a novel velocity modulating
approach, in which the phase progress of the robot trajectory
is modulated while the desired robot path remains intact. The
methods guarantee that the robot will halt before contacting the
human, but they are less conservative and more flexible than
solutions using reduced speed and complete stop only, thereby
increasing the effectiveness of human-robot collaboration. This
approach is especially useful in constrained setups where the
robot path is prescribed. Speed modulation is smooth and does
not lead to abrupt motions, making the behavior of the robot
also better understandable for the human counterpart. The
two principal methods under different parameter settings are
experimentally validated in a human-robot interaction scenario
with the Franka Emika Panda robot, an external RGB-D
camera, and human keypoint detection using OpenPose.

I. INTRODUCTION

With growing numbers of collaborative robots—industrial
robots that work alongside or directly with humans in a
shared space (see Fig. 1)—as well as personal/home robots,
new solutions need to be developed to warrant safety and
effectiveness of such collaboration. A fundamental demand
in safe Human-Robot Interaction (HRI) is to prevent unin-
tended robot-induced collisions, i.e. contacts where a moving
robot part hits a human. This can be achieved through
evasive movements of the robot (see I-A), but some tasks or
setups (e.g., gluing, sawing) impose strict constraints on the
robot end-effector path that do not allow such manoeuvres.
Therefore, the only available action is to modify the task
execution velocity, eventually halting if necessary.

We draw inspiration from the fact that humans are
known to anthropomorphize their robot partners and prefer
movements that have human-like characteristics [1], [2].
In particular, in handover tasks, people focus on the task
space and modulate the velocity according to the cues from
the partner [3]. Robot control with similar characteristics
would thus be desired for two reasons: (i) Being closer
to human expectations, it would be more predictable and
perceived more natural; (ii) Smooth velocity modulation—
as opposed to simple stopping—shortens the downtime of
task execution.
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Fig. 1: Human robot collaboration scenario where a human
and a robot share the same workspace.

In this work, we propose an approach whereby the robot
always sticks to the prescribed path in the task space but
modulates its speed relying on predictions of possible colli-
sions with the human. This future-oriented component draws
on the prediction of future positions of the robot, which are
readily accessible.

A. State of the Art
Four modes of human-robot interaction can be distin-

guished [4], [5]: hand-guiding, safety-rated monitored stop,
power and force limiting (PFL), and speed and separation
monitoring (SSM). Hand-guiding does not allow autonomous
operations of the robot and therefore is not suitable for our
task. Safety-rated stop demands that the robot halts when
the human enters the robot workspace and therefore this
mode is not suitable for effective implementation of a highly
collaborative task where the human often interferes with the
robot workspace. PFL allows physical contact with a moving
robot, but the impact force/pressure/energy need to be within
specific limits, which constraints the mechanical character-
istics of the robot (mass, shape, etc.) and its movement—
speed in particular. The collision needs to be detected and
responded to (see [6] for a survey). The limits can draw on
preliminary versions of standards [5] employing the “pain
threshold” methodology or on biomechanical injury data [7].

The last mode of collaboration is the Speed and Separation
Monitoring regime, which demands that a protective separa-
tion distance is maintained at all times and that the robot
stops before a collision can occur. This distance is derived



from the relative speed of the robot and the human (or relying
on worst-case values). The approaches, therefore, need to
combine robust human detection and distance evaluation with
fast robot control for efficient reaction (see [8] for a review of
vision-based systems). Integrated devices are currently also
being introduced for the detection of a human [9] or that
support robot evasion and speed limiting [10].

Many of the approaches originate in the potential field
approach [11] for obstacle avoidance. These obstacle-based
repulsive fields were further developed into robot-based
repulsive vectors or danger fields in the context of physical
human-robot interaction [12], [13]. Repulsive vectors are also
applied in humanoid robotics, for example, in connection
with the so-called peripersonal space representations [14].

The necessary separation distances can be calculated dy-
namically from the properties of the system, e.g., velocities,
stopping times, and distances [15], [16]. A related approach
is the so-called kinetostatic danger field (KDF) [17], [18]
that uses a precalculated safety field that is updated with
the robot velocity and the human position to generate ap-
propriate evasive action. So-called swept volumes based on
a human kinematic model, i.e. prediction of space occupied
by the human, allow the robot to generate evasive trajectories
effectively [19].

B. Problem Statement and Contributions
In this work, we address the problem of safety in human-

robot collaboration through smooth and predictive robot
speed modulation, while keeping the planned end-effector
path unchanged. More specifically, we design a novel colli-
sion prevention approach that smoothly modulates the rate of
task progress according to anticipated collisions, which are
detected based on the robot intended motions and the relative
location of the human to the robot desired path. Two principal
approaches are defined and experimentally validated under
different parameter settings, including a combination of the
two principal approaches.

This paper is structured as follows. The theory of the
new methods is outlined in the next section. Section III
briefly outlines the experimental setup and then results of
experimental validation are presented and discussed. We
close with discussion and future work.

II. COLLISION PREVENTING PHASE-PROGRESS
CONTROL

Considering x ∈ R3 as the robot end-effector position,
and xd ∈ R3 as the robot desired position, the objective is
to prevent collision caused by the robot motion towards the
human position at xh ∈ R3. The additional task constraint is
that no deviation from the prescribed robot path is allowed.
Therefore, a proposed solution to ensure collision prevention
is to modulate the robot velocity. In the following section,
first, we introduce a motion generation method that enables
us to reduce the robot end-effector velocity while keeping
the robot path intact. Afterwards, we present two collision
preventing approaches to provide the amount of velocity
reduction for the motion generator based on the collision
possibility with respect to the robot intention.

A. Velocity Adaptation
The implementation of the above-mentioned methodology

is as follows. The desired trajectory xd is encoded as a
function of a new variable φ ∈ [0, 1] (i.e. xd(φ)), where

Location of xh: Braking value

Inside the inner sphere: γio = 1

Outside the inner sphere and inside the outer sphere: 0 < γio < 1

Outside the outer sphere: γio = 0

TABLE II: The braking variable γio based on the human
location xh with respect to the spheres of the Impulse Orb.

xd(φ = 0) and xd(φ = 1) correspond to the initial and final
desired positions, respectively. Once the trajectory is defined
one can progress through the phase by:

φ =

∫ t

0

Ωdt′, (1)

in which Ω ≥ 0 determines how fast the desired trajectory
will reach the end. Now, in order to alter the speed, one can
update Ω via:

Ω∗ = (1− γ)Ω (2)

where γ ∈ [0, 1], γ ∈ R is a braking variable that determines
how much the robot should slow down (see Table I).

Braking value The effect

γ = 1 Full stoppage

0 < γ < 1 Speed reduction

γ = 0 No speed reduction

TABLE I: The effect of the braking variable γ on the desired
velocity.

The following two approaches will showcase how the
braking variable γ is defined to achieve the collision pre-
vention adaptation laws.

B. Approach I: Impulse Orb
Intuitively, in order to prevent a collision, the relative

position ph of the human with respect to the robot end-
effector needs to be determined as follows:

ph = xh − x. (3)

Once the relative position is established, possible collisions
can be anticipated from the relative distance ‖ph‖, as well
as from the robot intended motion. Naturally, if the robot
intends to move in the direction of the human, the possi-
bility of collision increases. The latter can be assessed by
comparing the angle θ between the robot intended motion
ẋd and the relative position ph as shown in Fig. 2.

The behavior of the robot in the proximity of a human is
defined by two spheres: a smaller one contained in a larger,
both tangential to the end-effector (see Fig. 2). The space
encapsulated by the outer sphere is called the Impulse Orb.
The chance of collision when xh is located within the smaller
inner sphere is considered to be high, and when it is located
outside the outer larger sphere, the chance is considered to
be zero. Thus, the braking variable γio can be attributed to
these two regions, as described in Table II.



Fig. 2: A graphical representation of the Impulse Orb and
the corresponding variables.

Considering rin,r, rout,r ∈ R+ as the radius of the inner
and the outer spheres respectively, where rout,r ≥ rin,r, the
mathematical representation of the braking variable γ based
on the location of human with respect to the Impulse Orb
becomes

γio=


1 if 0.5

rin,r
≤ cos(θ)
‖ph‖

1
2
(1− cos(π

0.5 cos(θ)
‖ph‖ − 1

rout,r
1

rin,r
− 1
rout,r

)) if 0.5
rout,r

≤ cos(θ)
‖ph‖

< 0.5
rin,r

0 else.
(4)

In Fig. 3 as the human position xh approaches from the outer
sphere surface towards the inner sphere, the braking variable
γio smoothly grows from 0 to 1 according to Eq. (4).

Fig. 3: The evolution of the braking variable γio over a planar
cross section of an Impulse Orb with rin,r = 0.075 [m] and
rout,r = 0.225 [m].

According to Eq. (4), the design of the Impulse Orb boils
down to the choice of spheres’ radii rin,r and rout,r. To
improve collision prevention, it makes sense to have larger
radii for faster motions. On the other hand, having large radii
for slower motions might lead to unnecessary braking. Thus,
a reasonable design of the Impulse Orb would imply defining
rin,r and rout,r as functions of the robot intended speed ‖ẋd‖
as follows:

rin,r = κin‖ẋd‖ (5)
rout,r = κout‖ẋd‖ (6)

where κin, κout ∈ R+ are the radius of the inner and outer
spheres respectively, for ‖ẋd‖ = 1 [m/s].1

Substituting Eq. (5) and (6) into Eq. (4), the braking policy
becomes2

γio=


1 if 0.5

κin
≤ ẋTd ph
‖ph‖2

1
2 (1− cos(π

0.5ẋTd ph

‖ph‖2
− 1
κout

1
κin
− 1
κout

)) if 0.5
κout
≤ ẋTd ph
‖ph‖2 <

0.5
κin

0 else.
(7)

Hence, Eq. (7) defines a set for the braking variable γ
based on the intended robot velocity, ẋd), and the relative
position of the human with respect to the robot end-effector
(ph). Increasing the number of robot or human keypoints
would not affect the proposed approach as it would essen-
tially mean that there will be several relative vectors ph.

C. Approach II: Prognosis Window
In addition to instantaneous robot position and velocity

w.r.t. human position (and possibly velocity), the planned
robot path can be also exploited. An intuitive way to do
so is to constantly consider a segment of the immediate
upcoming robot desired path and inspect its relative distance
to the human position. Hereinafter, this segment is called the
Prognosis Window.

Considering xd(φ) as the robot desired position at the
current phase, the length of the Prognosis Window can be
determined by the amount of phase progression ∆, where
∆ = {∆ ∈ R|0 ≤ ∆ ≤ 1}, such that xd(φ + ∆) is the
desired position at the end of the window. Throughout this
window, n ∈ N regions can be set with the phase progression
δ such that

δ =
∆

n
. (8)

The relative distance of the Prognosis Window to the human
can be evaluated by determining the distance between the
human position and the desired robot position at the edge
of each of the aforementioned regions (i.e. xd(φ),xd(φ +
δ), . . . ,xd(φ+ nδ)).

Depending on the task, the significance of human prox-
imity to each of these regions might vary. This can be em-
ployed by associating different non-negative weights αi, i ∈
{0, . . . , n} to different regions. Thus a weighted proximity
for each of the selected points inside the Prognosis Window
can be defined as

ψi =
αi

‖xd(φ+ iδ)− xh‖
, i ∈ {0, 1, . . . , n}, (9)

and the overall weighted proximity becomes

ψ =

n∑
i=0

ψi. (10)

Two spheres that are centered at the human position are
defined with the radii rin,h, rout,h ∈ R+ where rout,h ≥
rin,h. When the whole Prognosis Window is outside the outer
sphere, the situation is considered to be safe and there is no

1See Section III-D for a discussion of the possible values.
2Please note that ẋTd ph = ‖ẋd‖ ‖ph‖ cos(θ).



need for the robot to reduce speed. On the other hand, when
the whole Prognosis Window is inside the inner sphere, a
full stop is necessary. Thus, the braking variable γpw can be
associated with these situations as described in Table III.

Location of the Prognosis Window: Braking value

Inside the inner sphere: γpw = 1

Outside the inner sphere and inside the outer sphere: 0 < γpw < 1

Outside the outer sphere: γpw = 0

TABLE III: The braking variable γpw based on the relative
location of the Prognosis Window w.r.t. the two virtual
spheres around the human.

To verify the relative location of the Prognosis Window
with the two spheres, the following boundaries for braking
are defined

ψin =

n∑
i=0

αi
rin
, (11)

ψout =

n∑
i=0

αi
rout

. (12)

The braking policy then becomes

γpw =


1 if ψ ≥ ψin,
1
2 (1 + cos(π ψin−ψ

ψin−ψout
)) if ψin > ψ ≥ ψout,

0 else,
(13)

where the braking variable γpw smoothly grows from 0 to
1, when the Prognosis Window enters the outer sphere and
approaches to the inner sphere.

Fig. 4: A graphical represenation of the Prognosis Window
and the corresponding variables.

D. Fused Approaches
Both Impulse Orb and Prognosis Window approaches pre-

vent robot-induced collisions. Based on previously conducted
experiments, the Impulse Orb approach has shown to be the
most effective in more dynamic environments. On the other

hand, Prognosis Window has shown effectiveness in rather
static situations. As the real world contains an unpredictable
blend of both these situations, we suggest combining both
approaches for effectiveness and versatility. Depending on
a situation when one method would be preferred while
maintaining the benefits of the other, a prioritization strategy
can be introduced. Subsequently, the final velocity adaptation
law from Eq. (2) becomes

Ω∗ = (1− βioγio + βpwγpw
βio + βpw

)Ω, (14)

where βio and βpw are non-negative priority weights that
determine the efficacy of each braking policy. Obviously,
assigning zero priority to either approach nullifies its effect
on the overall adaptation of the velocity. The overall velocity
adaptation approach is depicted in Fig. 5.

The proposed approach essentially scales down the veloc-
ity. This can be viewed as a damping effect. Considering
that the original desired trajectory complies with the overall
stability of the system, the proposed approach would not
violate stability. Moreover, as mentioned previously, it is
always assumed that the system is able to follow the intro-
duced modulation on the desired velocity and the possible
constraints would not jeopardize this; similar assumptions
were in [20].

III. EXPERIMENTAL VALIDATION

In this section, the proposed approaches are implemented,
tested, and the effect of the corresponding variables is
demonstrated. The 7DoF Franka Emika Panda robot with
a properly tuned Cartesian Impedance controller is used to
perform a point-to-point motion, while a human, one of
the authors, is present within the manipulator workspace
(see Fig. 1). The Intel RealSense R©D435 RGB-D camera is
used as a vision unit to locate the human. The calibration
was performed with respect to the robot base with the
use of AruCo markers. The camera resolution is 848×480,
and its default settings are used. The image is processed
by the camera’s Python API (2.17.1) [21] and OpenCV3
[22]. Colour images are processed by the OpenPose library
[23] that calculates the estimated human keypoints based
on the BODY-25 model. The keypoint locations found are
deprojected using the aligned depth image. For the sake of
clarity, only the end-effector and human wrist keypoints are
taken into consideration. The latter are OpenPose’s keypoints
4, 7 (see Fig. 6). Experiments with more keypoints are
planned to be included in future work.

All the experiment types along with visualization of the
important features (Impulse Orb / Prognosis Window) are
illustrated in the accompanying video.

A. Experiment I: Impulse Orb
To test the Impulse Orb approach, a linear, phase-based,

point-to-point motion is set as the desired end-effector tra-
jectory. The end-effector moves with the maximal velocity
0.3 [m/s] and in total covers 1 [m] length on the x-axis.
The human wrist is at 0.35 [m] on the x-axis and 0.12 [m]
on the y-axis (see Fig. 7 and Fig. 8). The Impulse Orb is
designed with rin,r and rout,r respectively set to 0.15 [m]
and 0.45 [m].

To verify the effectiveness of the Impulse Orb approach,
it is compared with another SSM approach: the Reduced



Fig. 5: Block diagram of the overall safety-ensuring velocity adaptation law. The tunable parameters are indicated in circles.

Fig. 6: Openpose detected keypoints and camera view.

Fig. 7: Impulse Orb Experiment I: a collision prediction zone
is constantly verifying the possible collisions based on the
instantaneous robot motion and the human position detected
by the camera.

Speed Zone [5], [24] where a fixed-sized sphere with the
radius of 0.3 [m] is defined around the robot end-effector
such that when the human is detected inside the sphere, the
desired speed is reduced to 1/3 of the original speed. As can
be seen in Fig. 8 in segment i , when the desired velocity
grows, the Impulse Orb size also grows. This can be seen
through the reduction of 1/(2rin,r) and 1/(2rout,r). The size
of the Reduced Speed Zone remains the same.

In the segment ii in the Impulse Orb approach, it is
visible that when the end-effector position x approaches the
hand position xh (i.e. where ‖ph‖ is adequately reduced),
the relative angle θ starts to grow. This signifies that the
hand enters the Impulse Orb, and thus, the braking variable
γio starts to have non-zero values. Therefore, the shaped
desired velocity ẋd smoothly decreases via the reduced Ω∗.
As soon as the end-effector passes the hand along the x-

Fig. 8: Impulse Orb (left), Reduced Speed Zone (right).

axis, the braking variable γio changes to zero and the shaped
desired velocity ẋ∗d becomes the same value as the original
ẋd because the wrist is outside the Impulse Orb region. This
can be seen especially in the experiment segment iii .

In contrast to the explained behavior, when using the
Reduced Speed Zone, in segment ii , the shaped desired
velocity ẋ∗d is suddenly reduced to the 1/3 of the original
velocity ẋd. This effect continues even when the robot
end-effector passes the hand position in the x-direction,
which is not an unsafe situation anymore. Thus, in the safe
segment, iii the robot is still forced to move at a slow pace
unnecessarily.



Exp. ∆ n α0 α1 α2 α3 rin,h rout,h

II-A 0.045 3 4 3 2 1 0.05 [m] 0.15 [m]
II-B 0.045 3 1 2 3 4 0.05 [m] 0.15 [m]
II-C 0.45 3 4 3 2 1 0.05 [m] 0.15 [m]

TABLE IV: Parametetrization for the Prognosis Window
experiments.

B. Experiment II: Prognosis Window
These experiments investigate the Prognosis Window ap-

proach and the effect of the choices of the window length
∆ and the proximity weights αi as explained in Section
II-C. There are three conducted experiments with different
parametrization, as shown in Table IV.

In all three experiments, the desired end-effector trajectory
is encoded to a cyclic motion along the x-axis. Considering
the phase (Eq. (1)) and the velocity adaption law (Eq. (2)):

xd = 0.35 cos(2πφ)− 0.35, (15)

ẋd = −0.7πΩ∗ sin(2πφ), (16)

and the phase progression pace is originally set to Ω =
0.1 [φ/s]. The human hand is located along the x-axis of
the desired path 0.04 [m] (see Fig. 9).

Fig. 9: Prognosis Window Experiment II: robot is able to
predict possible collisions in the upcoming phases, with the
help of camera indicated by circle.

As can be seen in Fig. 10, segment a , because the length
of the Prognosis Window for the Experiments II-A and II-B
is short, it takes longer for the window to enter into the outer
sphere around the human hand. This is different from the
Experiment II-C where the window size is 10 times longer.

On the other hand, when the Prognosis Window enters
into the outer sphere, and the braking variable γpw starts
to grow, the long length of the window in Experiment
II-C allows for the prediction to foresee the return path,
leading to the conclusion that no collision would occur. Thus,
although for the experiment II-C the braking variable grows
during segment b , it never becomes 1 as opposed to the
Experiments II-A and II-B. As a result, the robot desired
motion stops during the Experiments II-A and II-B, and it
does not stop in the Experiment II-C.

Moreover, the effect of proximity weight distribution αi
on the braking behavior can be seen in the differences
between Experiments II-A and II-B. The coefficient weights
are distributed more towards the future (i.e. αi+1 > αi) in
the Experiment II-B, so the robot detects the danger faster.
As a result, it stops 0.02 [m] earlier than in the Experiment
II-A for which the weights are distributed more towards the
current phase (i.e. αi+1 < αi). This effect is more visible
when the length of the Prognosis Window is large enough

Exp. βio βpw

III-A 1 0

III-B 0 1

III-C 0.5 0.5

TABLE V: The prioritization of the approaches during the
fusion.

so that the variance of the desired position over the window
is adequately high.

C. Experiment III: Fused Safety Approaches
As explained in Section II-D, both approaches should

warrant that the robot stops prior to collision and they
were experimentally validated to be safe. Although both of
them were performing better than the Reduced Speed Zone
approach, in certain situations, they were over-conservative
(“false positive speed reductions”), suggesting that the per-
formance on the task can still be improved.

The fusion of these approaches via Eq. 14 increases
the effectiveness as demonstrated in the following series
of experiments. The robot is supposed to follow the same
motion as in Eq. 15, 16. However, this time, both human
hands are in the collaborative workspace and interfere with
the robot movement. The left hand is located at 0.35 [m] on
the x-axis and 0.05 [m] on the y-axis, and the right hand is
located 0.05 [m] far from the end of the desired path (see Fig.
11). The applied human detection considers the closest hand
to the end-effector for the safety evaluation and the same
parameters are used for each of the approaches as were in
the previous experiments; the prioritization parameters β are
set according to Table V.

As seen in Fig. 12, the system becomes over-conservative
when only the Impulse Orb approach is being used. The robot
approaches the edge of the motion and because it assumes
that a collision is going to occur, the associated γ increases
and as a result the robot will stop. On the other hand, as seen
in Fig. 13 when only the Prognosis Window is being used
and the size of windows is not being well-tuned, the end-
effector can undergo a premature stoppage even though the
trajectory is not directed towards the human position but only
in the vicinity of a human. As a result, also in this case, the
robot would stop. Although in both cases no collision would
occur the effectiveness of the overall behavior can grow by
fusing both approaches in Experiment III-C. Here, the robot
does not stop and still, no collision would occur.

D. Discussion
The Impulse Orb, the Prognosis Window, and the com-

bination of both approaches were tested in a real-time
application. The following points should be noted:

First of all, the robot must be capable of tracking the
desired motions for the velocity adaptation to take effect.

Secondly, different criteria can be used for the
parametrization of the approaches. For instance, the size of
the Impulse Orb (i.e.rin,r and rout,r) could be adapted by
using the reflected mass, as suggested in [7]. Alternatively,
the length of the Prognosis Window, ∆, can also be adapted
such that the amount of the future-prognosis is adequate for
the task at hand. Also, the choice of variable n can depend



Fig. 10: Experiment for the Prognosis Window approach. From left to right the Exp. II-A and Exp. II-B for short window
and Exp. II-C on right for long window.

Fig. 11: Experiment III - Setup with indicated camera and
robot end-effector movement.

on path variance. For instance, for a highly varying path, a
bigger n is preferred to provide an adequate estimation of
upcoming collisions.

It should be noted that our current approach did not follow
any specific velocity dampening strategy neither did it slow
down to a specific velocity value that would be considered
as safe (either by standards or data-driven approaches [7]).
This can be part of future work.

Last, human detection does not need to be a keypoint-
based detection, as in the presented case. However, the
keypoint-based approach allows a higher resolution of the
human position than classical approaches and thereby allows
the robot to react only when necessary. Similarly, the resolu-
tion of the robot position could be improved by considering
the whole robot and not only the end-effector. This extension
would be especially desirable in the case of humanoid
robots as they might collide with humans in multiple ways.

Fig. 12: Exp. III-A - Only Impulse Orb prioritized.

However, the current method is already directly applicable
to a dual-arm setup.

IV. CONCLUSION AND FUTURE WORK

We presented two methods to smoothly modulate robot
velocity taking into account the presence of human operator
as well as the instantaneous and intended robot trajectory: (i)
the Impulse Orb approach is based on immediate proximity
in the end-effector movement direction; (ii) the Prognosis
Window approach takes into account a future segment of
the end-effector trajectory. When applied individually, both
methods were found to be still overly conservative, i.e.
reducing the robot speed more than necessary. Best results



Fig. 13: Exp. III-B - Only Prognosis Window prioritized.

Fig. 14: Exp. III-C - Fusion of both methods with equal
priorities.

were achieved with their combination, which constitutes a
versatile tool for safe, effective and human-friendly speed
modulation of the robot. We verified the suggested methods
in an interactive setup with a Franka Emika Panda robot
platform, with human keypoints detected using an external
RGB-D camera and feeding the OpenPose network.
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