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Abstract— We present a mobile robot motion planning ap-
proach under kinodynamic constraints that exploits learned
perception priors in the form of continuous Gaussian mixture
fields. Our Gaussian mixture fields are statistical multi-modal
motion models of discrete objects or continuous media in the
environment that encode e.g. the dynamics of air or pedestrian
flows. We approach this task using a recently proposed circular
linear flow field map based on semi-wrapped GMMs whose
mixture components guide sampling and rewiring in an RRT*
algorithm using a steer function for non-holonomic mobile
robots. In our experiments with three alternative baselines,
we show that this combination allows the planner to very
efficiently generate high-quality solutions in terms of path
smoothness, path length as well as natural yet minimum control
effort motions through multi-modal representations of Gaussian
mixture fields.

I. INTRODUCTION

Robot operation environments are often rich in semantics,
affordances and dynamically moving objects that follow typ-
ical motion patterns. Knowledge of such features in addition
to the basic geometry of the workspace represents valuable
information for a motion planner to generate better solu-
tions in terms of path quality, safety, replanning frequency
or social normativeness. Mobile service robots in human
environments, for example, may exploit information about
typical pedestrian flows to avoid high-density areas and to
take advantage of such flows to reach a destination. UAVs in
robot olfaction scenarios, for example, may plan paths that
help to estimate gas distributions or localize gas sources.
In this paper, we present a planning approach that accounts
for typical motion of dynamic objects or continuous media
such as pedestrian flows or air/water currents, modeled as
a field of semi-wrapped Gaussian mixtures to represent the
underlying multi-modal vector field.

Past approaches have considered motion planning over
regular (unimodal) vector fields: Kularatne et al. [11] present
a graph-based approach that generates time optimal and
energy efficient motion plans for autonomous surface and
underwater vehicles in time-varying flow fields. The kine-
matic constraints of the vehicles are accounted for in the
cost function. Otte et al. [14] describe a graph-based al-
gorithm to solve the problem of real-time path planning
in time-varying wind fields. The anytime algorithm finds
an αβ solution quickly which is then, given more time,
incrementally improved. Lolla et al. [12] generate paths for
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Fig. 1. We present a planning approach that generates smooth and
optimal trajectories over a field of Gaussian mixtures. Left: The figure
shows an example from the studied simulated intersect scenario where
multiple flows of people encounter each other. Right: An example path (in
green) generated among the Circular Linear Flow Field (CLiFF) map which
associates a Gaussian mixture model to each location, whose components
encode multiple weighted flow directions.

swarms of underwater vehicles over dynamic water flow
fields using a level set approach. The method, based on
a 2D grid representation of the environment, finds time-
optimal paths while respecting the kinematic constraints of
the system. Ko et al. [9] present an RRT-based path planner
over a vector field defined in the configuration space. To
find a path, the algorithm tries to minimize an upstream
criterion which quantifies the control effort to go against a
vector field. Tree growth is guided by this criteria resulting
in extensions that are more probably aligned with the vector
field directions.

Recurring patterns of human motion that people typically
follow in an environment have been learned and used for
planning in [1, 13, 5, 18]. Such patterns can be seen as
sparse vector fields as they are only defined in parts of the
state space where humans have been repeatedly observed.
Based on the Risk-RRT algorithm [5], Rios et al. [18] use
Gaussian processes (GP) to predict motion of humans and
generate paths with an RRT-based planner that minimize the
risk of disturbing and colliding with surrounding people.
O’Callaghan et al. [13] present a method that generates
paths by following learned motion patterns of people using
GPs. The method computes a navigational map based on
the motion patterns whose cells incorporate velocity vectors.
The robot navigates through the environment by querying
the learned map and obtaining the next direction to follow.
Bennewitz et al. [1] learn a collection of human motions pat-
terns using Gaussian mixtures and Expectation Maximization
(EM). For each observed human the most probable pattern
is determined and used to compute motion predictions for
planning. The method uses A* on a 2D grid with cell costs
discounted by the probability that a person is in a cell at a
given time.

Unlike [11, 14, 12, 9] we use a more powerful probabilistic



representation than vector fields named Circular Linear Flow
Field (CLiFF) map [10]. It associates a Gaussian mixture
model to each location whose components encode multiple
weighted flow directions. The model captures the depen-
dency between motion speed (a linear variable) and direction
(a circular variable) using semi-wrapped Gaussian mixture
models introduced by Roy et al. in [20]. In addition to the
model to represent environment dynamics, and contrarily to
the previously described approaches that use discrete search,
we use an asymptotically optimal sampling-based motion
planner that implicitly considers the robot’s kinematic and
its non-holonomic constraints by using a steer function to
plan in a continuous state space.

The combination leads to a novel algorithm, named
CLiFF-RRT*, that plans kinodynamically feasible paths un-
der a CLiFF-map model, trading off classical path quality
metrics with the compliance to the environment dynamics.
In the experiments, we compare our approach to RRT, RRT*
and an uninformed variant of the algorithm and show that
CLiFF-RRT* is significantly faster than the baselines and
produces solutions that best comply to the flow directions as
modelled by the map. The algorithm also achieves shorter
and smoother paths and retains the probabilistic complete-
ness and asymptotic optimality properties of RRT*.

The paper is structured as follows: in Sec. II we briefly
present the CLiFF-map model and describe the algorithm and
its properties in Sec. III. We present experiments in Sec. IV
and discuss their results in Sec. V.

II. CLIFF-MAP MODEL

The Circular Linear Flow Field map (CLiFF-map) [10] de-
scribes motion patterns as a field of Gaussian mixtures whose
local elements are probability distribution of (instantaneous)
velocities VVV = (θ, ρ), where θ ∈ [0, 2π) is the orientation
and ρ ∈ R+ the speed. This is a heterogeneous vector
with one circular random variable (θ) and one linear (ρ).
For their representation we choose the semi-wrapped normal
distribution: a bivariate normal distribution on a cylinder
where one of the dimensions is defined along the cylinder’s
height while the other is wrapped around it’s circumference,

NSWµµµ,ΣΣΣ (VVV ) =
∑
k∈Z
Nµµµ,ΣΣΣ

([
θ
ρ

]
+ 2π

[
k
0

])
. (1)

To model multi-modal events such as human motion pat-
terns, CLiFF-maps employ semi-wrapped Gaussian mixture
models (SWGMM),

p(VVV |ξξξ) =

J∑
j=1

πjNSWµµµj ,ΣΣΣj (VVV ) (2)

with
∑J
j=1 πj = 1. A SWGMM (ξξξ) is a weighted sum of

J semi-wrapped normal distributions, that capture the local
distribution of velocities. A CLiFF-map (see Fig. 2), denoted
as D, is a field of ND tuples that characterize local motion
patterns of dynamic obstacles as

D = {(ξξξs, llls)|s ∈ Z+ ∧ llls ∈ R2}, (3)

where ξξξs denotes a SWGMM that describes a local motion
pattern at position llls. We use Mean Shift (MS) to estimate

Fig. 2. Visualisation of CLiFF distributions obtained for a set of wind
measurements. The red arrows represent the directions of the modes while
colour coded ones represent the raw measurements. [22]

the initial position of clusters for EM, which estimates the
parameters of SWGMM (ξξξ).

The von Mises distribution, broadly used for modeling
uncertain circular data (e.g. [4]), is not suitable for this
kind of heterogeneous variables. Attempts to overcome this
include e.g. building Independent von Mises–Gaussian dis-
tributions (Roy et al. [19]) but such distributions still assume
no correlation between magnitude and orientation of velocity
vectors – an invalid assumption in most real world cases.

III. OUR APPROACH

In this section we describe our method to plan a robot’s
motion under a CLiFF-map model. To this end, we introduce
an extended upstream criterion which measures the effort to
navigate through a CLiFF-map, followed by the description
of the algorithm and its properties.

A. Extended Upstream Criterion

The goal of our algorithm is to find planning solutions
that trade off classical motion planning metrics such as
path length and path smoothness with the compliance to
the environment dynamics. In order to quantify the latter,
we extend the upstream criterion, proposed by Ko et al. [9]
for unimodal vector fields, to fields of Gaussian mixtures so
as to account for the multi-modal nature of the CLiFF-map
representation.

Given a state xi that falls into a cell llli to which a mixture
ξξξi with Ji semi-wrapped normal components is associated,
the upstream metric is computed as

Ud(xi, ξξξi) =

Ji∑
j=1

(
‖µji‖ − 〈µji,x′i〉

)
with 〈, 〉 being the inner product, µji the first-order moment
of the jth component of mixture ξξξi, and x′i the unit vector
describing the direction of the path at xi. When xi is
mapped to a cell llli that has no distributions, we perform
nearest-neighbor interpolation and compute Ud(xi, ξξξi) using
the closest mixture ξξξi. The criterion yields low costs for
paths that comply to the directions of CLiFF-map mixture
components and high costs for paths in opposite directions.



B. CLiFF-RRT*

For planning, we choose (and modify) RRT* as a natural
choice for optimal motion planning under kinodynamic con-
straints. Let X ∈ Rd be the configuration space and U ∈ Rm
the control space, the dynamics of the robot can be described
by the differential equation ẋ(t) = f(x(t),u(t)), x(0) = x0,
with x(t) ∈ X , u(t) ∈ U and f describing the system’s
kinematic constraints.

RRT* [7] is a probabilistically complete single-query
sampling-based planner that asymptotically finds optimal
solutions for a motion planning problem. Given an obstacle
space Xobs∈X , a free space Xfree∈X \ Xobs, a start state
xstart ∈ Xfree and a goal state xgoal ∈ Xgoal ⊂ Xfree,
the algorithm expands into Xfree a tree τ whose edges are
trajectories σi (with σi(j) being state j of trajectory i) that
satisfy the kinematic constraints of the considered system.

In summary, we approach the task as a hierarchical motion
planning problem in that we first generate a discrete path
PD that selects mixtures at relevant locations, and then use
those mixtures to bias the sampling and rewiring procedures
in RRT*. The first step makes sure that an initially feasible
path is found quickly given a CLiFF map while the second
step, generates and incrementally improves a trajectory xD
that satisfies the kinodynamic vehicle constraints. The result
is CLiFF-RRT* in Alg. 1 whose steps are explained next.

Algorithm 1 CLiFF-RRT*
function CLiFF-RRT*(xstart , xgoal)
PD ⇐ SelectMixtures(xstart , xgoal)
if PD = ∅ then

return failure
end if
τ.AddNode(xstart)
g(xstart) ⇐ 0
n ⇐ 1
while n ≤ NIter do

xrand ⇐ CLiFFSampling(X ,PD)
xnear ⇐ NearestSearch(τ,xrand,PD)
unew,σnew,xnew ⇐ Steer(xnear,xrand)
if σnew ∈ Xobs then

continue
end if
τ.AddNode(xnew)
τ.AddEdge(xnear,xrand,σnew,unew)
g(xnew) ⇐ g(xnear) + Cost(xnear,xnew)
τ ⇐ Rewire(τ,xnew,xnear)
if xnew ∈ Xgoal then

xD = ExtractTrajectory(xnew)
end if
n ⇐ n+ 1

end while
return failure

SelectMixtures(X , xstart, xgoal): in this step we se-
lect the semi-wrapped mixtures N SW that allow the system
to move from xstart to xgoal while respecting the learned
environment’s dynamics. We run a Dijkstra search over the
graph G in which each node nG,i is associated to each
mixture component

(
∀(ξξξi, llli) ∈ D

)
: for each map cell llli

we compute edges that go between all pairs of the SWGMM
components of llli and those of the cells in its 4-neighborhood.

To each edge e(nG,i, nG,j), with nG,i and nG,j being two
neighboring nodes, we associate the following cost:

c(e(nG,i, nG,j)) = d(e(nG,i, nG,j)) + Ud(xnG,j , ξξξnG,j ) (4)

where d(e(nG,i, nG,j)) is the squared Euclidean distance
between the nodes, xnG,j and ξξξnG,j respectively the state
and the mixture associated to the node nG,j .

The search generates a concatenation PD (i.e. a path) of
NPD CLiFF-map tuples (ξξξi, llli) from lll0 (with xstart ∈ lll0)
to lllNPD−1

(with xgoal ∈ lllNPD−1
) which is forwarded to the

sampling unit.
CLiFFSampling(X ,PD): it draws xrand samples in X .

The parameter α ∈ [0, 1] sets the probability of the biasing
towards the NPD CLiFF-map mixtures ξξξi of PD:

xrand ∼
NPD−1∑
i=0

Ji∑
j=1

πjN SW
ξξξi

(µµµjξξξi ,ΣΣΣjξξξi)

With a probability of (1 − α), samples are drawn from a
uniform distribution defined on the entire state space X .
NearestSearch(τ , xrand, PD): it returns the node

xnear that connects to xrand with minimum cost-to-go
C(xnear, xrand, PD) within distance δR (as parameter) from
the latter:

xnear = arg min
x∈XδR

g(x) + Cost(x,xrand) (5)

with g(x) being the cost-to-come to vertex x from root xstart
through the current tree τ . If no nodes are found within this
distance, the closest vertex in terms of Euclidean distance is
returned.
Cost(xi, xj): returns the cost of the trajectory σ that

connects node xi to node xj . Our algorithm aims to find
trajectories which are smooth and short, respect the envi-
ronment dynamics and minimize the upstream criteria (the
control effort to move with the vector field) with respect to
the off-line learned mixtures ∀ξξξi ∈ D. For these reasons we
use the following cost function:

C(xp,xz,PD) =

Np∑
i=1

‖σ(i)− σ(i− 1)‖+ |(1− |qi · qi−1|)|

+

Np∑
i=1

Ud(σ(i), ξξξi)

where σ(i) are intermediate states of the trajectory σ con-
necting xp to xz , qi are related quaternions, and Ud(σ(i), ξξξi)
being the upstream functional value at σ(i). A supervised
learning approach can be used to improve the efficiency of
the cost computation as in [16].
Steer(xi, xj): it generates a trajectory σ and the set

of controls u needed to steer the system from xi to xj .
The analytical steer function connects any pair of states and
respects the topological property as described in [7, 17].
Rewire(τ,xnew,xnear): rewires the tree τ as in the

original RRT* [7], using the above described Steer and
Cost functions. The rewiring is done at each iteration on a
set of vertices found by a near neighbor search as in [8]: it
finds the set of all the states in τ that lie within a box centered



Fig. 3. Example smooth paths generated by the POSQ steer function when
steering the robot from the center to the poses on the circle.

on xnear whose volume scales as γD log(n)
n , with D being

the Hausdorff dimension of the distribution generated by the
system dynamics.

C. Steer Function
We consider wheeled mobile robots with a differential

drive kinematic configuration with state x = (x, y, θ, v),
where (x, y) ∈ R2 is the Cartesian position, θ ∈ [−π, π) is
the heading orientation and v its translational velocity. After
a Cartesian-to-polar coordinate transformation, the equations
of motions are ρ̇ = − cosα v, α̇ = sinα

ρ v − ω, φ̇ = −ω
where ρ is the Euclidean distance between the Cartesian
coordinates of the robot pose (x, y, θ) and of the goal state,
φ the angle between the x-axis of the robot reference frame
{Xr} and the x-axis of the goal state frame {Xg}, α the
angle between the y-axis of the robot reference frame and
the vector connecting the robot with the goal position, v
the translational and ω the angular robot velocity. Thanks
to the polar representation we overcome the obstruction to
stabilizability for such system described in the Theorem of
Brockett [3]. To exactly connect any pairs of states smoothly
and efficiently for this description of a wheeled mobile
robot, we use and extend the POSQ steer function [15],
see Fig. 3. Each time when the steer function is called in
Alg. 1 to connect two sampled states x1 = (x1, y1, θ1, v1) to
x2 = (x2, y2, θ2, v2), we plan an initial extension by using
POSQ as described in [15] and then modify the velocity
profile so that the initial velocity is equal to v1 and final
one is v2. The velocity profile is generated using an efficient
third-order polynomial time-law [2].

D. Algorithm Properties
RRT* has favorable properties such as probabilistic com-

pleteness and asymptotic optimality. In this section we briefly
analyze how the alterations of the proposed algorithm im-
pact those properties. RRT and RRT* are probabilistically
complete as their sampling procedure draw samples from
a uniform distribution over the state space. This applies
also to CLiFF-RRT* which generates, at a given probabil-
ity, uniformly distributed random samples, none of which
are rejected. Regarding asymptotic optimality, Karaman and
Frazzoli have shown that for n uniformly distributed random
samples, a steer function that connect two poses exactly,

an admissible cost function and a specific constant γ in
the selection of the neighboring nodes, RRT* almost surely
converges asymptotically to the optimal solution as n goes
to infinity [8]. CLiFF-RRT* uses the same rewiring and
neighbor nodes selection procedures of RRT*. It uses a steer
function that exactly connects two nodes and its cost function
C(xi,xj ,PD) is an admissible cost function for RRT*: it is
monotonic, additive and Lipschitz continuous. Moreover, it
generates, at a given probability (1-α), uniformly distributed
random samples. Therefore CLiFF-RRT* retains the asymp-
totic optimality property of RRT*.

IV. EXPERIMENTS

The purpose of the experiments is to evaluate the perfor-
mance of the proposed CLiFF-RRT* algorithm with respect
to the baselines of regular RRT and RRT* and an unin-
formed variant of the algorithm, called All-Mixtures-RRT*,
that generates samples from a distribution composed of all
CLiFF-map mixtures and not on a subset as it the case with
CLiFF-RRT*. All methods use the steer function described
in Sec. III-C and cost function described in Sec. III-B.

We run the experiments on a single core of an ordinary
PC with a 2.80 GHz Intel i7 processor and 32 GB RAM
using C++. After a set of informal validation runs we set the
parameters α to 0.95 and δR to 4 m, while γ is set in a way
to satisfy the requirements of RRT*, see [8].

A. Environments

We study how the planners behave in environments of
varying complexity. Given our interest in wheeled mobile
service robots, environments are generated by exploiting off-
line learned motion models of pedestrian traffic. We have
designed four simulated test environments shown in Fig.1
and Fig.4-5. In all cases there are different flow dynamics
between the start and goal, and different planning solutions
(homotopy classes) are possible. The L and P environments
contain a few obstacles. Here the planners have less geo-
metric constraints to better follow the upstream criterion in
the free space. The maze environment has many different
homotopy classes and narrow passages: the environment
has many different flows that go against each other. The
intersect scenario has many flows of pedestrians coming
from different corridors intersecting in a junction: also here
there are few geometric constraints but several flows are
present. All the CLiFF-maps have been generated with the
help of the pedestrian simulator Pedsim [21]. The grid cell
size for the CLiFF-map is set to 1 m in all the environments.

B. Metrics

For each planner and environment, we perform 50 runs.
For the L, P and intersect scenarios each run lasts 60 s,
and for the maze scenario 120 s. We compute the means
and standard deviations of the following metrics: planning
time Ts (measured in seconds), resulting trajectory length
lp (measured in meters) and final cost Cs. Furthermore,
to measure smoothness, we use a metric introduced in our
previous work [17]: roughness R, defined as the square of
the change in curvature κ of the robot, integrated along the



Fig. 4. Left: an example CLiFF-RRT* path (in blue) generated in the L
scenario. Right: an example CLiFF-RRT* path (in green) generated in the P
scenario. The arrows represent the learned mixtures. In these environments
just a few obstacles are present. The algorithm finds the best solution that
optimizes path length and the upstream criterion: the solutions follow the
learned flows.

Fig. 5. An example CLiFF-RRT* path generated in the more complex
maze scenario. In red the RRT* path generated by minimizing only path
length. The arrows describe the learned mixtures. CLiFF-RRT* computes
a path (in orange) that better minimizes the upstream criterion, without
encountering or crossing flows going in opposing direction.

trajectory and normalized by the trajectory length L, R =∫ tl
t0

∣∣ 1
L
dκ
dt

∣∣2 dt. Smoother trajectories have smaller roughness.
We also report the percentage of trajectories found (problems
solved) within the planning time limit.

V. RESULTS AND DISCUSSION

The experimental results for CLiFF-RRT* and the three
baseline planners are given in Table II. The best values
are highlighted in boldface, smaller values are better for
all performance metrics excepts for the percentage of the
problems solved.

CLiFF-RRT* outperforms the baselines with respect to all
the metrics. We make the following observations:

(i) CLiFF-RRT* with its focused search finds an initial
solution faster than all the baselines (thus also Informed
RRT* [6] which behaves as RRT* until a first solution is
found). RRT and RRT* do not avoid the time-consuming
exploration of the entire state space. For this reason the latter
more often fails to find an initial solution in the given time.
Moreover from Table I, we can see that the planning time
of sub-selecting a set of mixtures with the Dijkstra search
does not alter the overall planning time of CLiFF-RRT*.
Additionally CLiFF-RRT*, in average, converges faster to
a lower cost solution than the baselines, see Fig.6. Those
results confirm the intuition that having prior knowledge of
the environment’s dynamics, improves planning efficiency

Fig. 6. Cost convergence plot (median, first and third quartiles computed
over 50 runs) respect to the planning time of CLiFF-RRT* (in red), All-
Mixtures-RRT* (in green) and RRT* (in blue), for the Intersect scenario.
The informed sampling allows CLiFF-RRT* to quickly find an initial
solution and to converge faster to a lower cost solution than the baselines.

(e.g. in our experiments knowing how people usually move
in an environment allows the planner to explore a smaller
part of the configuration space).

(ii) CLiFF-RRT* finds less costly solutions if compared
to all the baselines. The mixtures selected via the Dijkstra
search guide the tree towards areas of the state space where
the found trajectory is most likely to offer a good trade-
off between length and control-effort against the dynamics
of the environment (the upstream-criterion). The uniform
sampling of RRT and RRT* has not such knowledge thus
those planners fail to find a better solution. All-Mixtures-
RRT*, without the Dijkstra search biasing, fails to find better
solution too in the allowed planning time.

(iii) The CLiFF-RRT* sampling strategy results in
smoother trajectories than the baselines. Mainly because the
off-line learned mixtures bias the tree towards concatenation
of extensions with less velocity discontinuities. Uniform
sampling generates velocities without prior knowledge about
usual motions in particular portions of the state space, thus
producing less correlated velocities.

VI. CONCLUSION

In this paper, we present CLiFF-RRT*, an algorithm that
exploits prior knowledge of the environment’s dynamics in
order to efficiently plan smooth and short paths. Differently
from previous approaches, our method plans considering a
novel multi-model representation (not a simple vector field)
of the dynamic obstacles’ motions. We evaluate and compare
the approach in four different environments to three different
baseline planners, namely RRT, RRT* and an uninformed
version of our algorithm that samples considering all the
off-line learned CLiFF distributions. The results indicate that
the CLiFF-map priors help CLiFF-RRT* to find shorter and

Environments TDijkstra [ms]
L 4.36
P 3.36
Intersect 2.83
Maze 121.20

TABLE I
EXPERIMENTAL RESULTS: PLANNING TIMES OF DIJKSTRA



L environment
Planner Cost Cs Planning time Ts [s] Traject. length lp [m] Roughness R Solved in 60s
CLiFF-RRT* 111.42 ± 5.08 5.30 ± 8.08 33.59 ± 0.78 0.00007 ± 0.00004 100%
All-Mixtures-RRT* 130.89 ± 32.92 14.97 ± 17.65 35.48 ± 2.31 0.00009 ± 0.0001 48%
RRT 784.82 ± 618.5 15.83 ± 17.16 40.59 ± 7.36 0.0023 ± 0.0048 36%
RRT* 212.26 ± 193.4 28.15 ± 14.91 37.31 ± 3.35 0.00043 ± 0.0013 34%

Maze environment
Planner Cost Cs Planning time Ts [s] Traject. length lp [m] Roughness R Solved in 120s
CLiFF-RRT* 151.51 ± 12.62 31.13 ± 32.66 123.23 ± 1.02 0.000022 ± 0.00004 90%
All-Mixtures-RRT* 180.52 ± 54.83 36.74 ± 38.12 126.43 ± 3.83 0.000038 ± 0.000025 10%
RRT 1260.54± 1278.96 41.74 ± 17.87 169.94 ± 25.93 0.00058 ± 0.00064 10%
RRT* 560.78 ± 397.98 64.29 ± 35.93 176.68 ± 43.67 0.00053 ± 0.00062 14%

P environment
Planner Cost Cs Planning time Ts [s] Traject. length lp [m] Roughness R Solved in 60s
CLiFF-RRT* 1125.16 ± 659.0 11.42 ± 14.11 59.13 ± 4.48 0.000098 ± 0.00025 56%
All-Mixtures-RRT* 1688.09 ± 27.48 12.38 ± 7.68 103.54 ± 31.1 0.0007 ± 0.0024 2%
RRT 2532.96 ± 798.46 21.16 ± 19.8 82.87 ± 23.04 0.0007 ± 0.0014 16%
RRT* 1128.06 ± 454.64 25.43 ± 18.90 122.61 ± 34.72 0.00057 ± 0.00007 16%

Intersect environment
Planner Cost Cs Planning time Ts [s] Traject. length lp [m] Roughness R Solved in 60s
CLiFF-RRT* 182.52 ± 28.77 24.96 ± 17.29 34.71 ± 1.00 0.013 ± 0.019 76%
All-Mixtures-RRT* 307.67 ± 56.25 29.4 ± 18.70 51.77 ± 20.76 0.013 ± 0.0104 14%
RRT 722.15 ± 373.35 27.78 ± 25.55 41.97 ± 10.14 0.0196 ± 0.012 10%
RRT* 298.75 ± 69.42 27.16 ± 15.77 47.61 ± 16.39 0.087 ± 0.0069 24%

TABLE II
EXPERIMENTAL RESULTS: TRAJECTORY QUALITY AND PLANNING EFFICIENCY

smoother trajectories significantly faster than all the base-
lines. Moreover the results show that the approach requires
less control effort (smaller cost) to drive a wheeled mobile
robot through a dynamic environment. CLiFF-RRT* retains
the probabilistic completeness and the asymptotic optimality
of RRT*. In future work, we intend to study the behavior
of the algorithm in different types of dynamic environments
(e.g. UAVs in robot olfaction scenarios). To further improve
planning efficiency and reduce the variance of the results,
we intend to investigate the use of deterministic, as opposed
to random sampling sequences.
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