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Abstract— Understanding the environment is a key require-
ment for any autonomous robot operation. There is extensive
research on mapping geometric structure and perceiving ob-
jects. However, the environment is also defined by the movement
patterns in it. Information about human motion patterns can,
e.g., lead to safer and socially more acceptable robot trajecto-
ries. Airflow pattern information allow to plan energy efficient
paths for flying robots and improve gas distribution mapping.
However, modelling the motion of objects (e.g., people) and
flow of continuous media (e.g., air) is a challenging task. We
present a probabilistic approach for general flow mapping,
which can readily handle both of these examples. Moreover, we
present and compare two data imputation methods allowing to
build dense maps from sparsely distributed measurements. The
methods are evaluated using two different data sets: one with
pedestrian data and one with wind measurements. Our results
show that it is possible to accurately represent multimodal,
turbulent flow using a set of Gaussian Mixture Models, and
also to reconstruct a dense representation based on sparsely
distributed locations.

I. INTRODUCTION

A. Motivation

Many robotics applications can benefit from maps going
beyond mere occupancy by explicitly modelling the motion
in an environment. To allow robots to operate efficiently and
in an acceptable way among people, we have to provide
methods to both map and exploit information about motion
patterns. Motion pattern information can be useful for many
tasks; e.g., task and motion planning, object tracking and
intention recognition. These tasks are relevant for areas as
diverse as Human Robot Interaction (HRI) and Mobile Robot
Olfaction (MRO).

In HRI, information about how people usually move
should affect the robot’s motion planning. A motion planner
can use this knowledge to build socially more acceptable and
predictable paths [12]. Motion patterns implicit embed in-
formation about traffic rules and also mark frequented paths.
Such information will help to improve motion planning in
complex environments, as demonstrated in [16, 17], and
allow robots to move in a safer way.

Similarly, in MRO and environmental monitoring, statis-
tics about airflow can facilitate better understanding of gas
distributions [20]. Gas plumes are heavily influenced by the
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local airflow. However, the task of wind flow modelling in
small scales is rarely addressed [20]. Moreover, for tasks
considering long term surveillance with aerial vehicles it
is important to plan energy efficient paths considering air
flow. Probabilistic modelling of wind flow can aid trajectory
planning of a robot during exploration.
B. Problem statement

We address the problem of statistically modelling flows in
non-trivial environments using sparse and noisy data.

It is rarely possible to have access to data completely
describing the motion in an environment, e.g., building a
very dense sensor network to monitor wind flow is usually
unfeasible or too expensive. Another problem is randomness
in motion observations, which can be a result of noisy
measurements, or an inherent feature of the motions. Both
cases require a proper statistical analysis in order to identify
and model the motion patterns.

Our proposed Circular–Linear Flow Field map (CLiFF-
map), introduced in Sec III-A, represents motion patterns
using multimodal statistics to represent speed and orientation
jointly. The approaches presented in Sec III-D allow to
reconstruct a dense map from spatially and temporally sparse
data.
C. Contribution

The contributions of the paper are as follows.
First, we describe CLiFF-map, a probabilistic framework

for mapping velocity observations independently from their
underlying physical processes. In this way we gain generality
that allows to build a comprehensive and coherent model.
The model consists of a set of Gaussian mixture models
(GMMs) representing local observations, and variables de-
scribing the confidence in each part of the model, as well as
the likelihood of the motion. In contrast to other methods,
CLiFF-map represents speed and orientation in a joint space.
This allows to properly address multimodality in the data.

Second, we investigate two data imputation methods for
generating maps from sparsely distributed measurements.

Third, we present a validation of the representation and
the quality of map reconstruction using real world data with
the k-NN divergence estimator from [25].

II. RELATED WORK

Our work is connected to the field of mapping of dynamics,
which is different from dynamic mapping (creating a geomet-
ric map in a changing environment). Recently, a number of
approaches for mapping of dynamics have been developed.

One general approach is to store past observations in
a compressed way (e.g., work of Arbuckle et al. [1] and



Mitsou et al. [14]). Such methods provide tools to analyse the
history of the environment, but they are not able to predict
how it will evolve in the future. On the other hand, work
on generative models, which try to predict future states of
the environment, can be found in work of Wang et al. [26],
Kucner et al. [10] and Saarinen et al. [23]. All of these
methods treat dynamics as a change of occupancy in grid
map cells and most of them assume that state changes of
neighbouring cells are independent. In contrast, CLiFF-map
models the flow field of the environment and how it affects
the motion of objects.

The related problem of analysing trajectories of moving
objects has been addressed, e.g., in work of Calderara et
al. [3] and Nawaz et al. [15]. The authors try to detect
similarities between trajectories and cluster them. An exten-
sion of this approach, presented by Ellis et al. [7], clusters
trajectories based on their entry point and uses a Gaussian
Process to model the observed motion patterns. The shared
limitation of the trajectory analysing methods listed above is
that they cannot work with inputs providing only velocity
estimates or incomplete data. Moreover, they rely on the
assumption of complete observability, which is difficult to
ensure for large environments (e.g., airports). Furthermore,
the work of Ellis et al. [7] requires to build a separate model
for each entry point, which can lead to a complex multilevel
representation. They also do not address the problem of
multimodality, assuming that intersections will only happen
between trajectories with different entry points.

Joseph et al. [9] describe trajectories as flow fields where
each position has a corresponding path derivative. The
motion in the environment is modelled as a mixture of
Gaussian Processes. The major difference between CLiFF-
map and the work of Joseph et al. is that CLiFF-map does not
depend on the knowledge of trajectories. CLiFF-map aims
to address a wide spectrum of problems focusing on cases
where trajectory information is not available (air flow) or
is scarce (data obtained with mobile platform), while the
work of Joseph et al. focus on cases where it is possible to
associate trajectories with objects (even if the information
is sparse). Moreover the trajectory derivatives are modelled
independently along the x and y axes while CLiFF-map
treats velocity as joint random variable.

Chen et al. [4] propose a method to solve trajectory map-
ping as a constrained dictionary learning problem. However,
there is no information about velocity and only heading is
modelled.

One of the goals of CLiFF-map is to capture the depen-
dency between the speed and the direction. The von Mises
distribution, which is broadly used for modelling circular
data (e.g., work of Calderara et al. [3], is not suitable
for heterogeneous data where one of the components is
circular while the other is linear. There have been attempts to
overcome this obstacle by building Independent von Mises–
Gaussian distribution, proposed by Roy et al. Roy et al.
[21]. Such distributions assume that there is no correlation
between orientation and magnitude of the velocity vector,
which is an invalid assumption in many real world ap-

plications. Instead, CLiFF-map uses the idea of a Semi-
Wrapped Gaussian Mixture Model presented in a later work
of Roy et al. [22]. A similar idea on how to jointly analyse
speed and orientation was suggested in work of Calderara et
al. [2], which points out that using a normal distribution on
a line and a wrapped normal distribution allows to compute
a covariance matrix explaining the correlation between the
speed and orientation.

In this paper we also address the data imputation prob-
lem [11]. Data imputation is a set of methods that are used
to fill in missing records in a data set. We use non-parametric
random kernel imputation [18, 19]. In this approach missing
data are drawn, according to weights computed using a kernel
function, from already computed models and then imputed
into unobserved locations.

III. ALGORITHMS

A. Representation

Velocity VVV can be described as a heterogeneous quantity
combining orientation (θ) and speed (ρ), (see Eq. 1). In con-
trast to a representation using a 2D Euclidean vector (Vx, Vy),
in this representation each component has a physical meaning
and can be analysed separately, and the covariance matrix has
a clear physical interpretation.

VVV = (θ, ρ)T , ρ ∈ R+ ∧ θ ∈ [0, 2π) (1)
To build a probabilistic model of velocities we use a semi-
wrapped normal distribution (SWND), which is a distribu-
tion on a cylinder. One of the dimensions is wrapped around
the circumference of it and the other one is along its height.

NSWµµµ,ΣΣΣ (VVV ) =
∑
k∈Z
Nµµµ,ΣΣΣ

([
θ
ρ

]
+ 2π

[
k
0

])
(2)

In Eq. 2 we see that density function of a semi-wrapped
normal distribution is a periodic sum of period 2π of normal
distributions on a surface defined by (µµµ,ΣΣΣ). We can imagine
that we are wrapping a distribution on a cylinder and k, the
winding number, indicates the number of revolutions.

To preserve the multimodal character of, e. g., wind or
pedestrian flow we employ Semi-Wrapped Gaussian mixture
models (SWGMM). A SWGMM is a PDF represented as a
weighted sum of J SWNDs

p(VVV |ξξξ) =

J∑
j=1

πjNSWΣΣΣj ,µµµj
(VVV ), (3)

where ξξξ denotes a finite set of components:
ξξξ = {ξi = (ΣΣΣi,µµµi, πi)|i ∈ Z+}. (4)

Each component ξi is defined by its mean µµµi,
covariance ΣΣΣi and mixing factor πi. The Circular–
Linear Flow Field map (CLiFF-map) is a set of SWGMMs
coupled with their location (lllj), motion probability (p̄j) and
observation ratio (q̄j), denoted as

ΞΞΞ = {(ξξξs, p̄s, q̄s, llls)|s ∈ Z+ ∧ llls ∈ R2}. (5)
The motion probability estimates how often motion occurs

at lllj , given our observations. We compute it as the ratio of
the duration when motion has been observed and the total



observation duration for lllj :

p̄j =
Tm
To

. (6)

The observation ratio represents how much information we
have collected at lllj , relative to the rest of the map. It is
the ratio between the observation duration for lllj and Tt,
which is the duration of the whole experiment or the longest
observation time for the data set:

q̄j =
To
Tt
. (7)

The motion probability carries information on how intensive
the motion is in a given location. It is particularly useful for
motion planning, marking busy areas. The observation ratio
quantifies the relative confidence of a given distribution.

To estimate the parameters of a SWGMM (ξξξ) we use a
two step approach. First, we estimate the number of clusters
and their positions using Mean Shift (MS). These clusters
are initial conditions for Expectation Maximisation (EM).

1) Parameter estimation with EM: To estimate the pa-
rameters of the SWGMM, we use Expectation Maximisation
(EM) [6]. For the general, n-dimensional case the derivation
of update rules can be found in the work of Roy and
Puri [22]. For the 2D case the update rules look as follows.

a) Expectation Step:

ηtijk =

πt−1
j N

(
~Vi;µµµ

t−1
j + 2π

[
k
0

]
,ΣΣΣt−1

j

)
M∑
j=1

∞∑
k=−∞

πt−1
j N

(
~Vi;µµµ

t−1
j + 2π

[
k
0

]
,ΣΣΣt−1

j

) (8)

In the expectation step, we compute the responsibility η that
cluster j takes for the ith data point for the kth round of
wrapping, based on the parameters estimated in the previous
iteration of the algorithm.

b) Maximisation step: Here we compute the new set of
parameters ΞΞΞ using the following update rules.

πtj =
1

N

N∑
i=1

∞∑
k=−∞

ηtijk (9)

µµµtj =

N∑
i=1

∞∑
k=−∞

(
~Vi − 2π

[
k
0

])
ηtijk

N∑
i=1

∞∑
k=−∞

ηtijk

(10)

ΣΣΣtj=

N∑
i=1

∞∑
k=−∞

(
~Vi−µµµj−2π

[
k
0

])(
~Vi−µµµj−2π

[
k
0

])T
ηtijk

N∑
i=1

∞∑
k=−∞

ηtijk

(11)
2) Mean Shift for EM initialisation: We employ Mean

Shift [5] as a mode seeking algorithm to obtain the number
and initial positions of modes and covariances for EM.

Mean Shift treats each data point as the mean of its
neighbourhood. The neighbourhood is defined as all the
points within a given window. In each step the algorithm
computes a new value of the mean based on the shape and
size of the window and then shifts the centre of the window
to the computed mean. In this way we obtain maxims of
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(a) Clusters obtained using MS al-
gorithm for one of the locations.
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(b) Distribution obtained using EM
algorithm for one of the locations.

Fig. 1. Visualisation of mapping steps.
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Fig. 2. Measurement discretisation procedure. Each blue circle represents
an area with radius r from which measurements are associated with the
location in its centre. Yellow arrows represent the measurements that are
associated with location lll5. The orange arrows represent measurements not
taken into account for lll5.
the underlying density function and clusters corresponding to
each maximum. We define the window as an non-isotropic
2D Gaussian whose covariance matrix is defined as Σ =
diag(δθ, δρ). Where δθ and δρ are estimated with Silverman’s
rule [24] σ =

(
4σ̂5/3N

) 1
5 . Where σ̂ is the standard deviation

and N is the number of samples for the whole data set.
In Fig 1a we can see the initial set of clusters built with

Mean Shift, while in Fig 1b we can see the resulting PDF
after applying EM initialised with these clusters.
B. Data discretisation

CLiFF-map builds a map of a flow field as if all the
observations were obtained at a discrete set of measurement
locations (ljljlj). For wind mapping, such locations are places
where the robot stopped to acquire data, while measures of
people’s velocities are associated to different locations. In
order to compute a CLiFF-map, we aggregate measurements
at a discrete set of locations, by assuming that each measure-
ment within radius r of lllj was obtained at lllj . See Fig. 2.

C. CLiFF-map analysis

CLiFF-map allows to grasp the multimodal characteristics
of flows. Fig 4 demonstrates key characteristics of the
CLiFF-map representation with two toy examples.

Fig. 3a shows two tracks. Black dots represent the mea-
surements locations and arrows represent the measured ve-
locities. To build the distributions shown in Fig. 3b we have
discretised the data from Fig. 3a as described in Sec. III-
B. We can see that CLiFF-map correctly models the two
crossing flows.

The tracks in Fig. 4a have different speeds.Fig. 4b shows
that CLiFF-map correctly models the two modes coming
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(a) Input: two tracks with the same
velocity but different orientation.

(b) CLiFF-map for Fig. 3a, with
modes for different directions.

Fig. 3. A toy example demonstrating how CLiFF-map addresses the
problem of multiple modes.

0.6

0.8

1

1.2

1.4

1.6

S
p
ee
d
[m

/s
]

0.6

0.8

1

1.2

1.4

1.6

S
p
ee
d
[m

/
s]

(a) Input: two tracks with different
velocity along the same line.

(b) CLiFF-map for Fig. 4a, with
modes for different speeds.

Fig. 4. A toy example demonstrating how CLiFF-map addresses the
problem of multiple modes.

from different speeds at the same location. In Sec IV we
analyse CLiFF-map with real life data.D. Data Imputation

As already mentioned, it is rare to have velocity data
densely covering an area. We can define such problem as
an incomplete data set. Therefore, our goal is to estimate
missing data points[11], which will later on allow us to build
a dense representation.

We compare two imputation methods employing a data
model, in contrast to re-sample already obtained obser-
vations: Monte Carlo Imputation (MC) tends to preserve
multimodal characteristics of the data and keep the sharp
borders between different motion directions, while Nadaraya
Watson Imputation (NW) smooths the data and introduces
gradual changes between different data points.

1) Monte Carlo Imputation: We reconstruct a distribution
in an unobserved location by sampling virtual observations
(V̂̂V̂V = (θ, ρ)) from the surrounding, already learned, distribu-
tions as shown in Fig 5a. For obtaining virtual observations,
we use hierarchical sampling (as follows).

First, we pick one of the existing SWGMMs (ξξξ). The
likelihood of picking an SWGMM is proportional to the
distance (RAMi ) between the location to be estimated (lllMi )
and the existing one (lllA1 ):

RAMi = |lllA1 − lllMi | (12)

p(ξξξ = ξ̂îξîξi|q̄i,K(RAMi )) = q̄iK(RAMi ) (13)
In Eq 13, a kernel function K(•) defines the sampling
window. In this work we use a Gaussian kernel K(RAMi ) =
N (RAMi |0, σ).

lM1
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lA1

RAM
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RAM
2

(a) MC imputation.

lM1
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lA1

RAM
1

RAM
2

(b) NW imputation.
Fig. 5. Comparison of imputation methods. Green plots describe the
SWGMM for observed locations, and red is unobserved. Black dots rep-
resent virtual observations sampled from locations lM

(2,1)
and lM

(1,2)
. The

number of observations is proportional to the distance R1 and R2.

After, we sample a virtual observation from this SWGMM.
Depending on the motion probability p̄ we can sample an
empty observation (no motion) or a realisation of VVV .

Finally, we obtain the realisation of VVV . The probability of
realisation V̂̂V̂V is presented in Eq 14.

p(VVV = V̂̂V̂V |ξ̂̂ξ̂ξ) =

J∑
i=1

N SW (V̂̂V̂V |µµµi,ΣΣΣi)πi (14)

To each of the newly estimated SWGMMs we associate
a trust factor, which denotes how confident we are in the
reconstruction. The intuition behind this factor is that we
have more trust in reconstructed locations which are closer
to observed ones.

t̂ =
M∑N

i=1(RAMi + 1)
, (15)

where M is the number of realisations of VVV and RAMi is the
distance between lllA1 and the SWGMM selected in step 1.

2) Nadaraya Watson Imputation: The first step is to
sample one observation from each existing SWGMM. We
discard observations with zero velocity.

The realisation V̂̂V̂V of variable VVV was presented in Eq 14.
In the following step we compute the weighted mean of
observations. The weights are proportional to the distance
and the observation ratio (see Eq 16).

V̄̄V̄V =

∑N
i=1K(RAMi q̄−1

i )V̂̂V̂V i∑N
i=1K(RAMi q̄−1

i )
(16)

For this imputation method we compute the trust factor as
the number of observations having a high impact on lllA1 ,
divided by the distance from lllA1 ,

t̂ =

∑N
i=1 I(K(RAMi ))∑N

i=1 I(K(RAMi ))RAMi + I(K(RAMi ))
, (17)

where I(•) is an indicator function

I(d) =

{
1 if d < 3σ

0 if d ≥ 3σ
(18)

IV. RESULTS

As mentioned in Sec I-C the evaluation will be twofold.
First, we evaluate the divergence between the observations
and the CLiFF-map. Second, we present an evaluation of the
map reconstruction (using imputation).



A. Pedestrian Data
We assume that to each location in the map there is

associated a true and unknown PDF ξξξt. It is impossible to
access this distribution directly. We can only access a set
of observations {V̂̂V̂V o1, . . . , V̂̂V̂V on}. One method to estimate the
divergence between two d-dimensional distributions, while
having access only to samples was proposed by Wang et
al. [25]. They propose an estimator that employs only the
samples coming from the two distributions. The estimator is
computed as follows:

D̂n,m(ξξξt||ξξξ) =
d

n

n∑
i=1

log2

νk(i)

ρk(i)
+ log2

m

n− 1
(19)

The idea is to compare the distance ρk(i) between V̂̂V̂V oi and
its k-NN in {V̂̂V̂V oj}j 6=i to the distance νk(i) between V̂̂V̂V oi and
its k-NN in {V̂̂V̂V sj}, where {V̂̂V̂V sj} denotes virtual observations
sampled from the CLiFF-map.

Using this divergence estimator to evaluate the model is
beneficial because it allows to estimate the distance between
the true distribution and the reconstructed one, even though
we do not have direct access to a true distribution.

The pedestrian data set [13] does not contain velocities.
We approximate them assuming that motion between subse-
quent detections is linear and constant, thus obtaining a dense
set of measurements as shown in Fig. 10a, where we can see
approx. 250 000 velocity estimates obtained during 12 h of
observation. In the figure we can observe a diagonal motion
pattern connecting the top left and bottom right corners.
Moreover, there is a vertical motion pattern on the right and
on the left side of the image. These patterns are also visible
in the reconstructed map in Fig. 10b. Fig. 10c shows a map
of motion probability. Brighter colours correspond to cells
with higher motion intensity.

Fig. 11a shows a CLiFF-map obtained by discarding 75%
of the locations shown in Fig 10b. The dominant motion
patterns are still clearly visible.

Fig. 11b shows a map reconstructed using MC with kernel
size 0.25 m. The dominant diagonal direction is preserved,
and the big motionless area on the left side of the map
was reconstructed correctly. Also the vertical and horizontal
motion patterns along the edges of the map remain visible.

Fig. 11c shows a reconstruction of the map with NW, also
with kernel size 0.25 m. The quality of the resulting map is
much lower. There is a clear line dividing the map in to two
areas, and the motion patterns are averaged over a big area.

In fig. 12a a more challenging example is presented.
Only 3% of the locations remained and were used for map
reconstruction. The result of reconstruction with MC (see
Fig. 12b) still appears to be qualitatively correct. The motion
patterns on the left and in the upper right corner are still
visible, but the information about the motion in the lower
left corner is lost. In Fig. 12c, the results of reconstruction
with NW looks similar to the previous one. We can see a
clear cut into two areas and over-smoothing.

To quantitatively measure the quality of the reconstruction,
we compute the divergence between the learned SWGMMs
and the original data using the estimator of Wang et al [25].
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Fig. 6. Analysis of mapping.
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result of interpolation.
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Fig. 7. Analysis of reconstruction with Monte Carlo imputation.

Fig 6 shows a map of divergence and the histogram of the
computed distances. The distances are concentrated around
5 bits. Fig 7 shows results of map reconstruction based on
MC. The distances are concentrated as in Fig 6b, however
the average bit count is higher. There is a similar tendency
for maps reconstructed with NW imputation. In Fig. 8, the
histogram and divergence map look similar to the previous
examples.

To properly evaluate the quality of reconstruction, we have
measured the divergence for reconstructed maps for 9 days,
each consisting of 825 cells, i. e., 7425 data points. It took
on average 8 s to estimate parameters for each location.

In Fig. 9a and 9b we present how the reconstruction
quality depends on the imputation method and the kernel
size. For this experimental setup the reconstruction quality
depends on the amount of input data. However, in both cases
the results are close to the quality of the original map. The
MC method shows to be better over all than NW method,
except one case in 3% data set, in which, for a small kernel,
NW is better.

However, while the quality of reconstruction with MC
improves with larger kernel sizes, the quality with NW
decreases.

As a baseline comparison to the CLiFF-map representation
and the MC and NW reconstruction methods, we have
implemented a histogram method. Each location stores a
histogram of velocity observations, with bin sizes 0.12 rad
and depending on the day from 1-2.25 m/s.1 Results are
shown in the “Dense” column of Tab I. In each case, CLiFF-
map has about 0.5 bits less divergence than the histogram
maps.

As a baseline for map reconstruction, we have linearly
interpolated the 4 nearest histograms to recreate the missing
locations. In this case, Tab I shows that the reconstruction
quality depends on the density of the input data. For 1 m

1Histograms were computed using MATLAB R©’s histcounts2 function.



(a) Velocity measurements for September 01,
2009. Arrows are coloured based on their ori-
entation, and the lengths are proportional to the
speed.
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(b) A visualisation of CLiFF-map for the same
data. The distance between locations is 0.5 m
and the discretisation radius is also 0.5 m. (We
show only means of modes with mixing factor
higher than 0.05).
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(c) A visualisation of motion probability, the
colours correspond to how many times motion
was observed in each location.

Fig. 10. CLiFF-map constructed from all available observations. We can see that the patterns from (a) are preserved in (b).
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(a) Subsampled map used as input.
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(b) Map interpolated with MC, kernel size 0.5 m.
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(c) Map interpolated with NW, kernel size 0.5 m.
Fig. 11. Sparse reconstructions from 221 locations (1 m between input locations), shown as blue crosses in (a). (We show only means of modes with
mixing factor higher than 0.05.)
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(a) Subsampled map used as input.
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(b) Map interpolated with MC, kernel size 1 m.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ix
in
g
fa
ct
or

(c) Map interpolated with NW, kernel size 1 m.
Fig. 12. Sparse reconstructions from 20 locations (4 m between input locations), shown as blue crosses in (a). (We show only means of modes with
mixing factor higher than 0.05.)

5 10 15 20 25 30

5

10

15

20

25

0

5

10

15

20

B
it
s

(a) A plot of the distance between
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result of interpolation.
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Fig. 8. Analysis of reconstruction with Nadaraya Watson imputation.

resolution, both MC and NW outperforms histogram inter-
polation. For 4 m, resolution, the quality of MC and NW
reconstruction is similar to interpolation. We assume, that
this drop in quality is caused because there is too little
data for proper reconstruction and is independent from the
reconstruction method.
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Fig. 9. The box-plot of divergence for reconstructed maps

B. Wind Data

The wind data set [8] does not provide ground truth,
because there are no denser measurements to compare to.
This data set will instead be evaluated qualitatively using
stability maps. A stability map shows which regions contain
a stable wind flow over multiple sessions.

To evaluate stability we compute a summed pairwise



date Dense (0.5m) Hist. Interp. CLiFF+MC CLiFF+NW
CLiFF Hist. 1m 4m 1m 4m 1m 4m

01.09 5.424 5.824 6.191 6.217 6.079 6.531 6.149 6.470
02.09 5.198 5.570 6.150 6.243 5.777 6.175 5.993 6.123
04.09 5.559 5.774 6.134 6.144 5.952 6.397 6.225 6.372
05.09 4.320 5.756 6.295 6.294 5.996 6.396 6.229 6.408
06.09 4.068 5.717 6.356 6.505 5.961 6.289 6.213 6.377
10.09 4.928 5.589 5.869 5.972 5.529 6.025 5.725 6.230
11.09 4.551 4.952 5.509 5.568 5.161 5.664 5.410 5.755
12.09 4.548 4.886 6.511 6.590 4.345 5.633 5.009 5.781
13.09 4.297 4.957 5.398 5.504 5.031 5.671 5.543 5.776
Mean 4.872 5.447 6.046 6.115 5.527 6.087 5.833 6.144

TABLE I. Comparison of divergence for CLiFF-map and baseline his-
togram maps, showing divergence [25] from original data (in bits) for
maps with 0.5 m discretisation (“Dense” column) and reconstructions from
sparsely sampled maps, using several days form the pedestrian data set.

symmetric KLD between all corresponding map cells.
I(k) =

∑
i,j∈n

sKLD(k)i,j (20)

The KLD is computed in a discretised state space ΓΘ,P .
Each state in ΓΘ,P is a γ = (Θ, P ) tuple of direction and
speed where Θ ∈ {Θmin,Θmin + ∆Θ, . . . ,Θmax} and P ∈
{Pmin, Pmin+∆P, . . . , Pmax}. We denote a discretised PDF
for each distribution for each location (ξξξ) as xxx = (xγ |γ ∈ Γ).
Therefore we can define KLD for kth element in the map as

KLD(xxxa(k)||xxxb(k)) =
∑
γ∈Γ

xaγ(k) log
xaγ(k)

xbγ(k)
. (21)

The symmetric KLD (sKLD) for each cell is computed as
sKLD(k) = KLD(xxxr(k)||xxxgt(k)) + KLD(xxxgt(k)||xxxr(k))

(22)
The wind data was collected in a foundry, using a mobile

platform. The size of the environment is 40 m x 70 m. The
robot was deployed for several data collection tours. In each
tour, the robot stopped at different way points and collected
data for 120 s. Using data from these locations we have
reconstructed the airflow in the environment with MC and
NW imputation, respectively.

Fig. 13a shows a map reconstructed with MC. The colour
corresponds to the mixing factor. It is possible to clearly
distinguish areas with different wind directions. Moreover
there are clear borders between areas with different airflow
directions. Fig. 13b shows a map representing the confidence
in the reconstruction. The highest confidence is near the mea-
surement locations and clearly decreases with the distance
from the measurement location.

Fig. 14a shows the result of reconstruction with NW. The
areas with similar motion directions are as visible as in
Fig. 13a, however in this case it is important to mention
that the borders separating the regions are not so visible. We
can observe a gradual, smooth change between the flows.

Fig. 14b shows the trust map for NW. The positions of
measurement locations are still visible, however the overall
score is much lower and more evenly distributed.

Figs. 13c and 14c show stability maps built from data
obtained during 7 different sessions. Even though the maps
were obtained using different interpolation methods, large
parts of them present the same level of stability. However,

what is most interesting is the areas with different stability
levels. We can see that in Fig. 13c the centre of the map is
stable while in Fig. 14c the same area has a worse score. It is
caused by the differences between the imputation methods.
MC keeps all virtual samples, therefore it is able to model
turbulent wind behaviour. NW, on the other hand, averages
the virtual observations finding the dominant wind direction.
This results in different types of distributions in this area.
MC builds a set of models of turbulent flow which are more
similar, while NW builds a set of models which have a clear
dominant direction. In the latter case such smoothed out
distributions can vary a lot between the different data sets
and are the reason for the worse stability score. It depends
on the application, which behaviour is more preferable.

V. SUMMARY AND FUTURE WORK

We have presented CLiFF-map, an approach for flow map-
ping. CLiFF-map is a complete probabilistic model, which
also accounts for motion probability and model confidence.
We have also introduced two methods for map reconstruction
from spatially sparse measurements (MC and NW). Finally
we have evaluated the accuracy of the representation and of
the reconstruction methods.

The evaluation was threefold. First, based on dense pedes-
trian data we have built a CLiFF-map model and computed
the divergence [25] between the original data and the model.
The results have also shown that CLiFF-map accurately
represents multimodal flow of people.

In the second experiment with pedestrian data we have
reconstructed maps using 75% and 3% of the original
data. We have evaluated the quality of reconstruction using
the same divergence estimator. The results show that MC
reconstruction performs better than NW. The quality of
reconstruction with MC is less sensitive to the kernel size
than NW.

The third experiment, with wind data, shows an interesting
phenomenon. We have built stability maps showing changes
in the flow across several days – one using MC and another
with NW. The stability maps show large similarities, which
implies that the PDFs reconstructed with MC and NW
are similar, even though the methods emphasise different
features of the flow.

The conducted experiments show, that CLiFF-map can
accurately model multimodal, turbulent flow of people and
air. The results also support the hypothesis that it is possible
to reconstruct a map of flow based on sparse measurements.

Knowledge of the flow in the environment influences
motion planning, allowing to build more efficient trajectories.

A future direction of research is to address flow changes
in time. A time dependent model will allow to grasp flow
variability over time. It will also be important to include in-
formation about the environment’s shape. Additional spatial
information will improve the reconstruction procedure.
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