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Abstract. This work addresses the performance of several local
planners for navigation of autonomous pallet trucks in the presence of
humans in a simulated warehouse as well as a complementary approach
developed within the ILIAD project. Our focus is to stress the open
problem of a safe manoeuvrability of pallet trucks in the presence of
moving humans. We propose a variation of ROS navigation stack that
includes in the planning process a model of the human robot
interaction.
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1 Introduction

Fig. 1. The ILIAD robot, a Linde CitiTruck
modified for autonomous operation

Autonomous Guided Vehicles (AGV)
operating on virtual rails are evolving
towards true Autonomous Mobile
Robots (AMR) moving freely without
any specific infrastructure or extra
safety guards in warehouses. This
trend raises concerns about the safety
and comfort of sharing the space
with humans as co-workers. Of course,
obstacle-aware navigation itself has
been in the focus of research for
several decades already and has
matured ever since, also dealing with dynamic obstacles safely. But it has been
confirmed by many previous works that the aspect of human-aware navigation [5]
demands often distinct approaches that consider also the implicit intention
communicated by motion itself [4,6] and the negotiation of space for navigation.

In this paper, we focus at the case of an autonomous pallet truck (see Fig. 1),
developed to operate in infrastructure-free (no beacons, magnetic strips or other
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infrastructure to facilitate navigation and localisation) in the context of the
H2020 ILIAD project1.

Specifically, the objectives of this paper are to appraise the suitability of two
classical variants of the general move base2 navigation frameworks for navigation
of pallet trucks in the presence of humans in a simulated warehouse setting as
well as a complementary approach developed within the ILIAD project; and to
suggest an extension to these frameworks to address challenges of human-aware
navigation.

2 Problem statement and analysis

Classical Robot Navigation in Warehouses Safety is one of the highest
priorities in any working environment. However, even though safety itself may
be guaranteed by safety lasers, human perceived safety is a completely different
matter [6]. Sudden stops or abrupt changes on speeds are usually perceived as
threads by humans and have also detrimental effects on robot performance.

Aim for our work is therefore to minimise safety stops induced by a safety
device itself, and maximise comfort of humans in vicinity of the robot
(perceived safety), while maintaining effective and efficient operational
characteristics. We will perform tests using three planning algorithms to
illustrate how ”classical” approaches (that do not treat humans different from
other obstalces) handle human presence: Dynamic Window Approach (DWA),
a local planner based on an online collision avoidance strategy developed
originally by Dieter Fox et al. in [3]. Timed Elastic Bands (TEB), first
proposed in [9], it dynamically optimizes running time and guarantees
kinodynamic compliance in global trajectories. ILIAD planner : a real-time,
lattice-based planner for non holonomic vehicles developed by Henrik
Andreasson et al in [1].

Analysis In order to test the performance of these three classical navigation
approaches, we defined five different simulation scenarios in the Gazebo
simulator3:

– Base Scenario: Robot travels towards a goal 6.5 straight ahead, undisturbed.
– Cross L-R: Human crosses the robot’s path from its left side.
– Cross R-L: Human crosses the robot’ path from its right side.
– Overtake: Robot is overtaken by a human.
– Pass-by : Human is walking towards the robot and passes it.

Results in Base scenario are presented in Table 1, to be compared with results
in the other scenarios. Each combination of scenarios and navigation algorithms
was tested 6 times (3× slow moving human, 3× fast moving human, timed to
collide with robot if not actively avoided). Table 2 highlight how in case of the
fast human motion collisions cannot be avoided.
1 http://iliad-project.eu
2 http://wiki.ros.org/move_base
3 http://gazebosim.org
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Scenario base

Planner DWA TEB ILIAD

∅ time to compl. 37.38 32.62 31.98

∅ path length 6.55 6.5 6.67

∅ robot speed 0.17 0.2 0.21

Table 1. Performance results
of three classical navigation
approaches in base scenario.

Discussion The simulation experiments
give an indication of the problems of
human presence in robot navigation (as also
discussed in details in [5]). In alignment
with expectations, presence of humans has an
immediate impact on the trajectory length,
and, consequently, on the completion times.

The TEB planner outperforms DWA in all
our test cases, likely due to its ability to better
plan with the Ackermann constraints of the robot’s kinematics. Both motion
controllers (TEB & DWA) are liable to failure due to collision, and inefficiency
(time, paths) due to constant replanning of trajectories due to the dynamic
motion. On the other hand, ILIAD planner is always capable of handling
crossings by just stopping (implementing the preferred model of [6]). Although
it is a very accurate planner, it does not change its trajectory in presence of
obstacles/humans, but instead slows down and even stops if an obstacle happens
to be too close. In crossing scenarios, this crossing is so narrow that fully stops
the robot, notifying an early finish of the plan, but safe after all. This policy is
clearly insufficient in the event of an obstacle that is heading towards the robot,
like in scenario pass-by. As a conclusion, strong commitment to a robot’s original
path (and slowing the execution of the trajectory in the presence of humans),
like offered by the ILIAD planner, can indeed show better performance than
continuous replanning (TEB & DWA), in specific scenarios. More generally, a
motion planner must actively avoid humans, but a certain level of commitment
to its global reference path is expected to provide a good trade-off.

3 Proposed Approach and Conclusion

As the experiments have indicated, an operational ”sweet spot” may exist
between the full commitment to a global trajectory (current ILIAD planner)
and the continuous replanning approach of the classical motion controllers.
Hence, we propose an extension to the classical ROS move base stack, depicted
in Fig. 2(a), to incorporate additional constrains into the local planning. This
concept shall allow the robot to flexibly switch between very strong
commitment to a (global) reference trajectory provided by narrow constraints,
and to give freedom to flexibly avoid humans in other situations.

Scenario cross L-R cross R-L overtake pass-by

Planner DWA TEB ILIAD DWA TEB ILIAD DWA TEB ILIAD DWA TEB ILIAD

∅ time to compl. 40.07 35.14 28.22 38.99 35.5 27.61 37.95 34.88 31.26 48.86 41.75 -

∅ path length 6.59 6.54 4.54 6.56 6.52 5.41 6.55 6.53 6.66 6.85 7.20 -

∅ robot speed 0.16 0.18 0.17 0.17 0.18 0.19 0.17 0.18 0.21 0.13 0.16 -

∅ min. h-r dist. 1.43 1.47 1.85 2.0 1.96 1.65 0.78 0.78 0.78 0.44 0.53 -

#Collisions 3 3 - 3 3 - - - - 3 3 6

Table 2. Performance results in 3 scenarios (∅ of 6 runs at 2 different human speeds,
∅ computed on successful runs only).



(a) Classical navigation architecture with proposed additional
modules (yellow).

(a) (+ 0 � 0) ! (�+) (b) (+ 0 � +) ! (�+) (c) (+ 0 0 +) ! (0 +) (d) (+ 0 + +) ! (++)

Fig. 3. Example of a pass-by interaction. Blue figure: robot, red figure: human. The partial circles (with radius max(⇢)) inside the yellow square represent
a Cartesian representation of the Polar space used for the Velocity Costmap (see Fig. 4). Blue: low cost areas {5, 10, 15} to increase avoidance manoeuvre
(see Equ. 1), yellow: maximum costs of 100, free space: 0 costs, red dots: generated samples ⌧j 2 ⌧ . Captions represent the mapping Oj ! Si of
observed human state to learned robot state.

The other version of the calculus used in our model, called
QTC Double-Cross (QTCC) for 2D movement, extends the
previous one to include also the side the two points move
to, i.e. left, right, or along the connecting line

�!
k l,

�!
l k (see

Fig. 2)3. In addition to the 2-tuple (q1 q2) of QTCB , the
relations (q3 q4) are considered, where each element can also
assume any of the values {�, 0, +} as follows:
q3) movement of k with respect to

�!
k l

� : k is moving to the left side of
�!
k l

0 : k is moving along
�!
k l

+ : k is moving to the right side of
�!
k l

q4) movement of l with respect to
�!
l k: as above, but

swapping k and l

Hence, QTCC is defined as {(q1 q2 q3 q4) : qj 2 {�, 0, +}}.

B. Combining QTCB and QTCC

As proposed in previous work [7], we combine QTCB

and QTCC into the joint model QTCBC based on the Eu-
clidean distance d(k, l) between the two agents. This results
in {(q1 q2 q3 q4) : q1, q2 2 {�, 0, +} , q3, q4 2 {�, 0, +, ;}}
where q3, q4 = ; if d(k, l) > ds where ds is a predefined
distance threshold. The reasoning behind this being that
when k and l are far apart, we are only interested in knowing
if either k or l are respectively approaching the other or
not for noise reduction and to highlight the “essence” of
the interaction in close proximity. In previous work [7],
we showed that for pass-by scenarios in HRSI a distance
threshold of ds � 1.8m is sufficient to reliably classify
passing on the left or right which means that this threshold
can be freely chosen or learned as long as ds � 1.8m holds.

IV. SYSTEM ARCHITECTURE

The basis for the system is a human tracker and QTC
state generator which we introduced in previous work [21].
The generated QTC states are used to find the next best
action for the robot given the current observation of the
human and learned behaviour model. The desired robot state
is then passed to the Velocity Costmap server which creates
an occupancy map representing the desired state as costs in
velocity space (see Fig. 3 and 5) which is fed to the local
planner.

3The actual variants of QTC described here are QTCB11 and QTCC21

to which we will from here on refer to as QTCB and QTCC for simplicity.

A. QTC based HRSI Activity Modelling

The models to find the next best action for the robot
use a conglomerate of different QTC states. We produce
states in QTCBC for human h and robot r to also encode
the distance between the two and QTCC states for the
human and the robot’s goal g. This allows us to not only
model the interaction between human and robot but also the
intention of the robot by including its goal. The resulting
QTC states for each observation, therefore, consist of the
QTCBC 4-tuple (qhr

1 qhr
2 qhr

3 qhr
4 ) representing the state of

human and robot and the QTCC 4-tuple (qhg
1 qhg

2 qhg
3 qhg

4 )
representing the relative movement of human and goal. The
symbols q?1 and q?3 represent the movement of the human
and q?2 and q?4 represent the robot or the goal. Since the goal
does not move during the interaction, we are disregarding
(qhg

2 qhg
4 ) in the following. Using the 4 symbols describing

the human movement, we create the current observation
Oj = (qhg

1 qhg
3 qhr

1 qhr
3 ) and use the remaining two symbols

to describe the state of the robot Si = (qhr
2 qhr

4 ). The
mapping of the current observation of the human to the
robot state can, therefore, be expressed as Oj ! Si. Hence,
the sum of all observations results in the two sets of states
⌦ = {(qhg

1 , qhg
3 , qhr

1 , qhr
3 ) : qhg

1 , qhg
3 , qhr

1 2 {�, 0, +}, qhr
3 2

{�, 0, +, ;}} and ⌃ = {(qhr
2 , qhr

4 ) : qhr
2 2 {�, 0, +}, qhr

4 2
{�, 0, +, ;}} with k⌦k = 108, k⌃k = 12 and Oj 2 ⌦,
Si 2 ⌃.

To predict the most appropriate robot state Si using
our mapping, we create the conditional probability table
P (Si|Oj) by simply counting occurrences of Oj ! Si with
Oj 2 ⌦ and Si 2 ⌃. The resulting state space for all possible
combinations is therefore ⌃⇥⌦ of which only a fraction is
observed for each interaction.

B. Velocity Costmaps

In this work, we use the DWA local planner [9]4 which
we consider state-of-the-art because it is part of the default
Robot Operating System (ROS) navigation stack, which
is widely used and very popular with many reaserch and
industrial projects all around the world. This planner samples
trajectories in velocity space to avoid obstacles which, for a
non-holonomic robot, is equivalent to the Polar coordinate
space (⇢, ✓) where ⇢ represents the linear and ✓ the angular

4http://wiki.ros.org/dwa_local_planner

(b) QTC-generated
constraints for DWA.

Fig. 2. Architectural overview and example QTC-generated constraint [2]

Current implementation can track humans around the robot [7] and plan
accurate global reference trajectories [1]. Relative motion between human and
robot is represented as a sequence of Qualitative Trajectory Calculus (QTC)
states, as in [2]. This way, different situations will be trained and represented
in a Markov model, allowing to learn and predict suitable, situation-dependent
dynamic constraints (see Fig. 2(b) for an example). This work will be extended
towards a more flexible and ROS-compatible framework, allowing the dynamic
incorporation of local constraints, based on trained models. Other deep
learning navigation algorithms, such as [8] will be also taken into consideration
as candidates for enhancement with human aware constraints.
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