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Abstract— Local scan registration approaches commonly
only utilize ego-motion estimates (e.g. odometry) as an
initial pose guess in an iterative alignment procedure. This
paper describes a new method to incorporate ego-motion
estimates, including uncertainty, into the objective function of a
registration algorithm. The proposed approach is particularly
suited for feature-poor and self-similar environments,
which typically present challenges to current state of the
art registration algorithms. Experimental evaluation shows
significant improvements in accuracy when using data acquired
by Automatic Guided Vehicles (AGVs) in industrial production
and warehouse environments.

I. INTRODUCTION

Registration — the problem of determining the relative

pose between sensory data; is one of the fundamental build-

ing blocks of autonomous mapping and localization systems.

Several approaches have been suggested in the past, and ex-

amples that are prominently used in robotics contexts include

ICP [1], [2], NDT [3], [4], [5], NICP [6], and GICP [7].

A shortcoming inherent to all the aforementioned methods

is that any additional information – for example, obtained

by odometry – is solely incorporated as an initial estimate

for the registration method and is not exploited further,

during the registration process. There are approaches that

utilizes initial estimates along with an uncertainty estimate

to improve correspondences in scan matching, for example,

point to point correspondences [8] and to filter out spurious

readings due noise or moving objects [9]. For vision based

approaches it is common to have a tightly coupled integration

with egomotion sensing, see for example [10].

Looking at a complete mapping solution, such as ap-

proaches based on graph-SLAM, incremental pose estimates

are commonly added into the graph structure which is

then further optimized. Incremental tracking and mapping

approaches [11], [12] do not typically utilize this infor-

mation, which can result in inconsistencies in feature-poor

environments.

In general, local registration methods have problems with

self similar and feature-poor environments: for example, cor-

ridors where registration methods commonly underestimate

the distance traveled. In this work we propose a method

to integrate information about the expected uncertainty of
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the initial guess into the scan registration algorithm, in

order to improve the accuracy of registration in feature-poor

environments. We build upon an existing state of the art

point cloud registration method — the NDT distribution-

to-distribution (NDT-D2D [5]) algorithm; and modify it to

use available ego-motion estimates within the registration

procedure. We incorporate the uncertainty of the ego motion

estimate and use it to penalize scan alignment solutions

which are inconsistent with the initial guess. Although we

utilize some properties inherent to the NDT-D2D registration

approach, the ideas presented in this work could equally well

be applied to augment other local registration methods.

The main contribution of this work is thus an augmented

registration algorithm which integrates multiple redundant

sources of information in the scan alignment process. We

demonstrate that our approach can be used to enable an

open-loop tracking and mapping system [12] to build con-

sistent local submaps, even in feature-poor environments.

As a direct application of our approach, we envision that

locally consistent submaps with a global graph-SLAM back-

end would entail several advantages over current state of

the art keyframe-based systems. First, this strategy would

substantially reduce the number of graph nodes in the

global optimization scheme and allow scalability to much

larger environments. And second, using a dynamics-aware

submap representation (e. g., NDT-OM [13]) will allow to

re-construct more consistent global maps and to handle

dynamic entities by fusing multiple sensory readings rather

than handling dynamics and spurious data in the registration.

II. METHODS

The robotics and computer graphics communities have

proposed a multitude of scan registration methods, a thor-

ough review of which is outside the scope of this work.

We will, however, discuss in slightly more detail registration

methods from the Normal Distributions Transform (NDT) [3]

family, since one of them (NDT-D2D [5]) serves as a base

for our approach. For a more detailed comparison between

NDT-based registration methods and the state of the art, we

refer to a recent standard data set-based comparison [14].

A. NDT-D2D

The central idea of the NDT representation is to model the

observed range points using a set of Gaussian probability

distributions. Given a point set, its NDT model is created

by discretising space using a regular grid and fitting a

Gaussian probability density function N = {Ci,µi} to the

samples in each voxel. Magnusson et al. [4] applied the NDT



Fig. 1: Top: NDT map illustration from an incremental pose

estimation test in a warehouse. Bottom: Picture from one of

the aisles in the warehouse.

representation to the domain of 3D scan registration. The

central idea in their approach is to maximize the likelihood

of points from one range scan, given the NDT model created

from a previously known reference 3D scan (NDT-P2D).

Stoyanov et al. [5] propose an extension of the registration

approach — the NDT Distribution-to-Distribution (D2D)

algorithm, which minimizes the sum of L2 distances between

pairs of Gaussian distributions. Formally, the transformation

between two point sets M and F is found by minimizing:

fD2D(p) =

nM,nF
∑

i=1,j=i

−d1 exp

(

−
d2

2
µT

ij(R
TCiR+ Cj)

−1µij

)

(1)

over the transformation parameters p, where: nM and nF

are the number of Gaussian components in the NDT models

of M and F ; R and t are the rotation and translation

components of p; µi, Ci are the mean and covariance of each

Gaussian component; µij = Rµi+t−µj is the transformed

mean vector distance; and d1, d2 are regularization factors

(fixed values of d1 = 1 and d2 = 0.05 were used). The

optimization over p can be done efficiently using Newton

method optimization with analytically computed derivatives.

If egomotion estimates, for example odometry, are avail-

able they are typically used as a starting point for the

optimization procedure: i. e., to initialize the transforma-

tion parameters R and t associated to an initial guess

p0. The success of the registration procedure then relies

on p0 being within the convergence basin of a globally

optimal solution p∗ ∈ arg min
p

fD2D(p). Providing initial

transformation parameters does not by any means change

the shape of the objective function though. For example, in

a corridor with limited amount of features this optimization

procedure will tend to maximize the overlap between the two

observations, which would typically cause the translation to

be underestimated. The reason is that two sensory readings

from a featureless corridor environment will be very similar,

resulting in a global minimum of fD2D(p) for p∗ close to 0,

which may not reflect the information contained in the initial

guess p0 from egomotion estimation. In order to improve the

accuracy of registration in such conditions, it would clearly

be beneficial to integrate the initial guess (and our degree of

confidence in its accuracy) in the objective function. In the

next subsection, we propose our approach to incorporating

an egomotion estimate in the registration objective.

B. NDT-DTD with Soft Constraints on Pose

One method to actively incorporate a (incremental) pose

estimate to the registration method described above is to con-

strain the space of feasible solutions by imposing additional

inequality constraints. For example, one could instead solve

the problem:

minimize
p

fD2D(p)

subject to ||p− p0||2 ≤ b,
(2)

which would constrain the solution p∗ within a neighbour-

hood of the initial guess p0. Such a solution would however

disregard the information on the reliability of the egomotion

estimate, which is typically readily available through the esti-

mate covariance Σ. To incorporate that information, we could

instead use the Mahalanobis distance under the covariance

Σ:
minimize

p
fD2D(p)

subject to (p− p0)
TΣ−1(p− p0) ≤ 1,

(3)

where we have eliminated the free parameter b by assum-

ing it is encoded in the covariance Σ. The so formulated

problem could be solved by a constrained non-convex op-

timization approach. We argue however that this is neither

necessary, nor desirable: it is much more prudent to allow

the registration method to violate the constraints imposed

by odometry in cases when strong features are present in

the environment. Therefore, we propose to incorporate the

inequality constraint into the objective as a penalty term. We

re-formulate the problem as:

minimize
p

fD2D(p) + λ(p− p0)
TΣ−1(p− p0), (4)

where λ is a penalty coefficient (set to 1 in our experimental

evaluation). Please note that for the specific objective func-

tion used for the soft constraints the λ term should be 1 since

we here maximize the sum of two likelihoods.

To model the covariance Σ, we adopt the motion model

originally presented by Eliazar et al. [15], where the uncer-

tainty in each incremental motion step is modeled through

a set of normal distributions – D,C, and T ; with D and C

associated to the forward and lateral motion components, and

T to the rotation. The covariance matrix for an incremental

motion step (∆x = (∆x,∆y,∆θ)), in the vehicles frame, is

computed as:





d2Dd + t2Dt 0 0
0 d2Cd + t2Ct 0
0 0 d2Td + t2Tt,



 (5)



where d =
√

∆x2∆y2 and t = |∆θ|. Although the

egomotion estimate and its associated covariance assume

a 2D planar world (3DoF), the registration algorithm is

still optimizing over the full 6DoF pose space. As a future

extension of our approach, we plan to integrate multiple

“soft” constraints that originate from other types of ego-

motion sensors, which potentially could also be in a global

reference frame (such as roll or pitch from an IMU). In the

experimental section the variance of Σ in (4) for the roll,

pitch and z directions is set to a constant value (= 1.).

III. EVALUATION

In order to evaluate the proposed approach, we used

data from two different industrial environments: a dairy

production facility (Fig. 2) and a warehouse (Fig. 2). The

data were collected using already installed automatic guided

vehicles (AGVs) used in production. The data consist of 3D

laser range measurements acquired from a Velodyne HDL-

32 mounted one of the vehicles, odometry obtained from

the wheel encoders (steer and drive) of the vehicle, as well

as pose estimates from a commercial reflector based global

localization system. The reflector based localization system

utilizes pre-installed markers and provides an accuracy of

< 0.02 meters and is used throughout the evaluations as

ground truth. In the dairy production facility and in one of

the two warehouse datasets (the “loop” dataset) the AGV

was in autonomous operation mode, whereas in the second

warehouse dataset (the “zig-zag aisle” dataset) the AGV

truck was manually operated (see Fig. 3).

The evaluation is conducted by evaluating the registration

approach alone as well as utilizing the simultaneous mapping

and tracking approach detailed in [12]. This approach incre-

mentally builds a map by registering the current sensory data

with the map, and then updating the map by integrating the

measurements from the scan. A more detailed description on

the measurement updates of the underlying NDT-OM map

can be found in [13]. Evaluating the registration method as

a component of a mapping and tracking system allows for a

comparison under more realistic usage setting, compared to

scan to scan matching in isolation.

The parameters that are varied in the evaluations are the

resolution of the NDT maps (i. e., the regular grid cell size),

the sensor cut-off distance (which limits the sensor range

and therefore provides less information), and whether soft-

constraints are used or not. The motion parameters used in

the experiments, unless otherwise specified, is Dd = 0.004,

Dt = 1, Cd, Ct, Td, Td = 100. The parameters are selected

in order to place a large weight on the part of the egomotion

estimate that corresponds to distance traversed.

In addition to the real world environments a simulated

environment consisting of an “endless” corridor (Sec. III-A)

is used to illustrate the approach.

The proposed registration approach will be available in the

next release of the perception oru ROS package1, while the

datasets used for evaluation will be made publicly available2.

1http://wiki.ros.org/perception oru
2http://aass.oru.se/Research/Learning/datasets.html

A. Endless corridor - simulated environment

To illustrate the behavior of the registration approaches in

an environment without any features that allow to reliably

determine a translation component, a dataset was acquired

from a simulated gazebo environment “endless corridor” (see

Fig. 4). A vehicle with a combined steer and drive wheel

kinematic, similar to that of a real forklift AGV, was used to

collect data from the environment. Odometry was obtained

in the same way as for the real vehicle: by integrating the

rotational velocity of the drive wheel, combined with the

steering angle at each time step. Odometry, ground truth

(obtained by querying the simulation engine) and range data

were recorded.

The results are depicted in Fig. 4. It is clear that aligning

the simulated laser data using the extended registration

version with soft constraints yields better results. However,

by looking at the rotational part in the relative pose error

(RPE) on this dataset the mean error is 0.021 ± 0.013

degrees and 0.053 ± 0.046 without and with soft constraints

respectively. The larger error using soft constraints could

here be explained by the fact that the additional flexibility

for the registration was limited by the added cost of the

egomotion based constraint. The relative position error is

0.542 ± 0.552 and 0.009 ± 0.005 without and with soft

constraints respectively.

B. Motion parameters selection

The motion parameters in our covariance model directly

affect the shape of the registration objective function. There-

fore, before continuing with the full evaluation, we evaluate

the sensitivity of our approach to selecting different Dd

values — i. e., we vary the motion parameter that influences

the variance in the direction of forward motion. To do so, we

ran the tracker on the “zig-zag” dataset from the warehouse

environment (see Fig. 3) and compared the Absolute Trans-

lational Errors (ATEs) against the ground truth, for different

values of Dd. The results are shown in Fig. 5. What we can

observe is that the selection of the Dd parameter is more

important for a lower sensor cutoff distance and reasonable

parameters lie in the range of 0.001 to 0.01. Based on this the

D2

d parameter were set to 0.004 throughout all subsequent

evaluations.

C. Warehouse

One of the motivations of the proposed approach is to

provide additional information for registration in feature-poor

environments. To evaluate the suitability of our method, we

use two data sets from a logistics warehouse consisting of

multiple rows of shelves and aisles: one dataset records zig-

zag driving between different aisles; while the second dataset

traces a large loop (see left and middle subfigures in Fig. 3).

The evaluation is performed by varying both the sensor cut-

off distance and the resolution of the NDT map, and the

resulting ATE plots are shown in Fig. 6 and 7. For both

datasets we observe that the original NDT-D2D registration

method results in a drastic degradation of performance at

resolutions of about 0.8 meters, whereas the performance



Fig. 2: Environments: Dairy production environment, production area (top) and fridge storage area (middle). Warehouse

environment (right) with high-storage shelves and long corridors.

Fig. 3: Different datasets used in the different evaluations depicted with the estimated map, estimated trajectories (green) and

odometry (purple) using a 0.5 m resolution (using the proposed extension with soft constraints). Left: warehouse aisle zig-

zag dataset (traversed distance: 400 meters). Middle: warehouse loop (traversed distance: 462 meters). Right: dairy factory

(traversed distance: 262 meters).

of the augmented approach is substantially more robust to

the NDT grid resolution. This behavior can clearly also be

seen in Fig. 9(top) which depicts the relative position error.

The relative rotational error, shown in Fig. 9(bottom), is

not significantly affected by the proposed approach. This is

due to the fact that the odometry-based orientation estimate

is typically very noisy, with a significantly larger variance

than the expected rotational error of the original NDT-D2D

registration approach. Analyzing these results, we note that

the NDT-OM grid representation tends to smooth out details

with increasing cell size. Thus, the better performance of

the proposed approach for larger cell sizes indicates that

compared to the original NDT-D2D algorithm, it copes better

with feature-poor environments.

Finally, a comparison of the runtime complexity of scan to

map registration for the different algorithms and parameter

configurations is depicted in Fig. 8. We note an increase in

computational complexity when using soft-constraints, which

we attribute to the more complex shape of the objective

function and consequently to a higher number of iterations

necessary for convergence.

D. Dairy production

The “dairy production” dataset consists of more open areas

and areas and with more significant features, such as larger

pillars and goods (trays of milk). In general the area is more

open and the sensor view is not blocked by homogeneous

large structures (e. g., shelves). The size of the environments

makes this dataset to be less demanding, especially if the

sensor cut-off distance is large and the same walls are visible

from a large portion of the traversed trajectory. The prior

NDT-D2D registration approach performs reasonably well,

even when using large cell sizes (See Fig. 10). This can

be explained by the larger and planar structures present in

this environment, which are well modeled even at rough grid

resolutions (large cell sizes). For larger NDT cells and lower

sensor cut off distances, we note that the proposed approach

results in more accurate tracking also in this environment.

E. Comparison of scan to scan registration approaches

In addition to the evaluation performed using the map-

ping framework the underlying scan to scan registration is

evaluated in this section. Three approaches are evaluated;

the original NDT-D2D algorithm, the extended version with

soft constraints (NDT-D2D-SC) and a filtering approach

where the odometry (with covariance) is fused with the

NDT-D2D result along with a covariance estimate of the

registration. The weighting of odometry and registration uses

the weighted mean maximum likelihood estimate defined as:

p̄ =
Σ−1

D2Dp+Σ−1p0

Σ−1

D2D +Σ−1
, (6)

where p and p0 is the pose estimate from the NDT-D2D

registration and odometry respectively and ΣD2D is the

estimated covariance of the registration whereas Σ is the

covariance from the incremental odometry (Eq. 5). The
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covariance matrix ΣD2D is the inverse of the Hessian matrix

in the last iteration in the optimization of fD2D(p) using

Newton’s method.

To visualize the the objective functions, including the

estimated relative pose estimates, a set of 2D plots were

generated. In all figures, the x axis is the relative forward

motion whereas the y axis contains the rotation (yaw). The

origin of the plots is selected based on the objective plotted,

for example, in case of the NDT-D2D objective it also use

this estimate as the center of the plot. The two scans that
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are used is depicted in Fig. 11. In Fig. 12 the objective of

the standard NDT-D2D approach is visualized along with

different motion model parameters of the NDT-D2D-SC

approach whereas a comparison of different resolutions is

shown in Fig. 13.

Despite that these score plot only show data from a single

scan pair some indications on different behavior are visible.

The NDT registration is sensitive to the resolution factor

where a small resolution will cause points from one laser

beam (’ring’) on the floor to end up in the same distribution.

This would cause the floor to be represented of a set of
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thin distribution along a single direction rather than flat ones

(which naturally would occurs in larger resolutions), see

also Table I. Note that this is one reason for the different

performances between a scan to scan based approach (this

section) and an approach that incrementally build local maps

(previous sections) where, for example, the distributions

representing the floor are more accurately modelled.

In addition to the single pair scan to scan matching the

Zig-zag dataset (Fig. 6) was used where each consecu-

tive scan pair were registered and the pose estimates are

computed by incrementally adding each registration results

together (a total of 3206 pairs).

The results using the default parameters Dd = 0.004 and

Dt = 1 are shown in Table I where there results are far

less precise compared to the results presented in Fig. 6. To

Fig. 11: Two consecutive laser scans from the warehouse

data set (zig-zag) where the corresponding forward motion

is along the x-axis in this image (right). The relative offset

displayed in this figure are computed using the NDT-D2D

with soft constraints. Contrary, the objective for the original

NDT-D2D registration is smallest when the red and green

laser points on the floor overlap, that is when the red points

are shifted towards the left in this images indicating no

forward motion, see also Fig. 12.

TABLE I: ATE registration results with resolution 0.4 and

1.0 using, Dd = 0.004 and Dt = 1.

Registration method ATE mean (res 0.4) ATE men (res 1.0)

NDT-D2D 15.42 6.70

NDT-D2D-SC 14.00 3.21

NDT-filter 15.15 5.78

further limit the variance on the forward motion the rotational

component Dt was set to be the same as the Dd parameters

in the following experiment. The results are depicted in Fig.

14 which indicates that a larger resolution in this case makes

the scan to scan registration approaches less sensitive to

the parameter selection. It also indicates that scan to scan

registration, for the evaluated methods, is more sensitive than

incrementally fusing the data into a map.

IV. CONCLUSIONS AND FUTURE WORK

In this work we proposed a method to incorporate

uncertainty-aware ego-motion estimates into the objective

function of a registration algorithm. We evaluated our ap-

proach in an industrially-relevant AGV application scenario

and noted a significant improvement in pose estimation

accuracy. Our approach was shown to be especially beneficial

in cases that due to the environment topology, limitations of

the sensor range, or the mapping resolution, do not provide

enough features to reliably estimate relative translation.

Although the motivating application of this work lies

in AGVs for indoor operation, in the future we plan to

extend our approach to outdoor applications, by utilizing

other types of egomotion/positioning sensors, for example,

IMUs. This extension will allow us to also test on popular

large-scale outdoor datasets, such as the KITTI [16] or Ford

Campus [17] datasets, which are currently out of the scope

of our approach, as they do not provide any egomotion

estimates from odometry.
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’filter’ - the ML estimate detailed in Eq. 6.

Objective score value with SC [0,5] res: 0.4 Dd: 0.0001

GT
odom

d2d
d2d sc

filter

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-4000

-2000

0

2000

4000

6000

8000

10000

12000

Objective score value with SC [0,5] res: 0.6 Dd: 0.0001

GT
odom

d2d
d2d sc

filter

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-4000

-2000

0

2000

4000

6000

8000

10000

12000

Objective score value with SC [0,5] res: 1 Dd: 0.0001
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Fig. 13: Objective score with different resolutions (from left to right; 0.4, 0.6 and 1.0) from NDT-D2D-SC where the center

is plotted in the estimated pose from NDT-D2D-SC registration.
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