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Abstract— Precise knowledge of pose is of great importance
for reliable operation of mobile robots in outdoor environments.
Simultaneous localization and mapping (SLAM) is the online
construction of a map during exploration of an environment.
One of the components of SLAM is loop closure detection,
identifying that the same location has been visited and is
present on the existing map, and localizing against it. We
have shown in previous work that using semantics from a
deep segmentation network in conjunction with the Normal
Distributions Transform (NDT) point cloud registration im-
proves the robustness, speed and accuracy of lidar odometry.
In this work we extend the method for loop closure detection,
using the labels already available from local registration into
NDT Histograms, and we present a SLAM pipeline based on
Semantic assisted NDT and PointNet++. We experimentally
demonstrate on sequences from the KITTI benchmark that
the map descriptor we propose outperforms NDT Histograms
without semantics, and we validate its use on a SLAM task.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM), the on-
line construction of a map and the localization within it,
remains a challenging problem, especially for outdoor en-
vironments with low structure and when the pose has 6
degrees of freedom, such as when a robot is moving on
uneven natural terrain. To achieve reliability in SLAM, it is
crucial to identify places that have been visited before and are
present in the map in order to bound the drift caused by dead
reckoning, a procedure known as loop closure detection. Of
particular benefit is the use of 3d laser scanners (lidar), which
are less prone to environmental conditions and changes in
illumination compared to visible light sensors, provide a
direct 3d representation without further processing and offer
360 degrees field of view; significant advantages for robust
and safe operation. For loop closure detection, however, the
current generation of lidars provide sparse readings only
(point clouds) and commonly used vision-based methods are
not directly applicable, for example, for the matching of key
points.

The Normal Distributions Transform (NDT) [1], [2] is a
compact representation of point clouds that is also used as a
map representation. It reduces the point cloud into a set of
normal distributions, each centered in a cell of a voxel grid.
We have shown in our previous work that the inclusion of
semantic information in NDT can improve registration, i.e.
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Fig. 1. A map instance as visible by the system at pose (-150,210) of KITTI
sequence 00. The colors represent classes, and the opacity the occupancy
value of the cells.

the alignment of point clouds, thus improving the accuracy,
robustness and speed of dead reckoning, even in cases of
low point cloud overlap and severe initial registration and
translation error [3], [4]. The resulting method, Semantic
assisted NDT (SE-NDT) used PointNet [5], a deep network
trained for the task of semantic segmentation, as the source
of semantic labels. In this work, we apply the same concept
to NDT Histograms [6], a method for global registration
and loop closure detection, and present a complete Semantic
SLAM solution, based on SE-NDT and PointNet++ [7].
Contributions of this work include:

1) a new method for semantic assisted loop closure for
SLAM, based on NDT Histograms,

2) exploitation of a single deep semantic segmentation
network for both registration and loop closure, and

3) experimental validation of the method on a standard
SLAM dataset, which demonstrates superior perfor-
mance compared to the standard version of loop clo-
sure based on non-semantic NDT Histogram descrip-
tors.

The paper is structured as follows. First, we present re-
lated work in global registration and mapping for point-
cloud-based SLAM. In Section III we present the proposed
SLAM pipeline and introduce our map descriptor. Section IV
presents the methodology of the experiments and the results,
and Section V concludes the paper and suggests directions
for future work.

II. RELATED WORK

Global registration and loop closure detection methods can
be categorized into local-region-based and scan-based.

Fast Global Registration [8] is a method for global
registration, which could have application in loop closure
detection. It makes use of Fast Point Feature Histograms [9],



a local region descriptor, to find correspondences in feature
space that are further filtered to reduce incorrect matches.

Another local feature method is the interest point descrip-
tor for robust map matching (IRON) [10], a local keypoint
descriptor calculated over an NDT map. The authors note
increased robustness with lower computing time than FPFH.
They do not use the descriptor for loop closure, but for Monte
Carlo localization and also evaluate the one-shot matching
on a pre-built map.

Other methods make use of scan descriptors for the
problem of global registration. LocNet [11] uses hand-crafted
point cloud features that are then compared using a siamese
neural network that compresses the features into the encoded
representation. The features rely on the property of rotational
lidar to generate concentric rings of points, and operate on
each ring independently.

Multiview 2D Projection (M2DP) [12] is another method
that applies to the entire scan. The cloud is projected
into different 2D planes, and a histogram of the points is
constructed according to their distance and angle from the
origin. The final descriptor comprises the two largest vectors
of the factorized matrix of accumulated histograms.

The Normal Distributions Transform Histogram [6] is a
scene descriptor evaluated over an NDT map. It encodes
information about the shapes and orientations of the normal
distributions over varying ranges from the sensor. It has been
used both for loop closure and place categorization [13].

Regarding mapping and map representations, Segment
mapping using data-driven descriptors (SegMap) is an al-
gorithm that segments the scene incrementally as the robot
moves, and then passes the segments onto a deep learned
descriptor to extract a signature per segment [14], [15]. The
map comprises the set of descriptors and their locations,
which can be used for global localization, reconstruction of
the segments, and as an input to a supervised classifier to ex-
tract semantics. The method relies on an external registration
algorithm to maintain the lidar odometry. The segmentation
pre-processing removes the ground points, which might not
be desirable in some applications, such as those requiring
full 6d mapping or analysis of traversible terrain.

On mapping using NDT, the authors of [16] propose a
SLAM system that uses occupancy mapping, tracks dynamic
cells, and represents the path as a pose graph. There is
no active global registration, and loop closures are checked
based on the pose uncertainty, matching the current map to
all possible candidates that are likely to overlap.

In this work we use a local map descriptor, with the
readings of multiple scans fused together into one NDT. The
descriptor encodes both geometric and semantic information
about the environment, and a single source of semantics
is used to improve both lidar odometry and loop closure
detection.

III. METHODOLOGY

We present a mapping system based on the Seman-
tic assisted Normal Distributions Transform. The mapping
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Fig. 2. The block diagram of the proposed semantic SLAM pipeline.

TABLE I
POINTNET++ NETWORK HYPER-PARAMETERS

Type Value Type Value Type Value

Sampling 1024 Grouping 32 Pntnet Conv 64,64
Sampling 512 Grouping 8 Pntnet Conv 256,128
Sampling 256 Grouping 8 Pntnet Conv 512,256
Sampling 128 Grouping 4 Pntnet Conv 512
Sampling 64 Grouping 4 Pntnet Conv 512
Dropout 0.75 Feat. Prop 512 Feat. Prop 256
Feat. Prop 128 Feat. Prop 64 Feat. Prop 64
Conv 1d 32 Relu Conv 1d 8

* (Read row-wise.)

pipeline is visualized in Figure 2 and can be summarized in
the following steps:

• semantic segmentation of the cloud;
• registration, lidar odometry;
• map update;
• construction of map descriptor;
• loop close to the node with most similar descriptor.

In the present state, the pipeline does not contain any
relaxation/pose graph optimization, which would be the next
step to improve localization precision and map quality. The
focus of the paper is instead on the demonstration of the
proposed map descriptor for loop closure.

A. Semantic Segmentation

Each lidar scan acquired is processed by a deep neural
network and segmented into 8 classes. In contrast to [4],
where PointNet was used for the semantic segmentation,
we use PointNet++ [7] that processes the cloud hierarchi-
cally. Therefore the cloud does not need to be segmented
into blocks before processing. An artificial dataset with 8
semantic categories is used to train the network, sampled
from Semantic3d.net [17] to emulate a 64-beam lidar. For
details of the training strategy and the artificial dataset see
[4]. We also use a simpler model and, with a compromise
in classification accuracy, the processing time is lowered
significantly, from 0.8 to 0.07 seconds per cloud. The hyper-
parameters of the model can be found in Table I, and the
architecture in Figure 3.
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Fig. 3. PointNet++ architecture used for semantic segmentation.

B. Scan registration

To obtain the alignment between two clouds we use a
registration method that is constrained by the segmenta-
tion of the clouds, Semantic assisted Normal Distributions
Transform (SE-NDT) [3]. SE-NDT is an extension of the
3D Normal Distributions Transform [2], [18]. Instead of
operating directly on the point cloud, the method applies a
voxel grid on the cloud, and fits a set of normal distributions
to the points of each segment, one distribution per voxel per
segment. To register two NDTs, the objective is to estimate
the transformation that minimizes the L2 distance between
the distribution sets. Only correspondences that belong to the
same semantic label are considered.

In this work, we apply two steps of registration. The
cloud is first registered to the previous cloud, and then the
transform is used as an initial estimate to register it to the
global map. We found that local registration had higher
translation accuracy, and registration to the global map had
higher accuracy in rotation, when the scene contained low
geometric structure. This combination resulted in increased
robustness in our odometry tests.

C. Map representation.

The map is based on NDT Occupancy Maps [19], and
has similarities to [20], as it uses submaps, centered on the
nodes of a pose-graph. Those approaches use local maps
that partially overlap, and when the robot moves outside a
predefined range a new map is loaded. We follow a different
approach that could be described as a scrolling map. When
the robot moves and a cell is no longer within the visible
range, it is unloaded and stored, then a new cell is initialized
in the area currently visible by the sensor. The occupancy
of the cells is continuously updated while they are within
the reach of the sensor. The cells are associated to the
node that initialized them. If the robot crosses the same
path again, it will create new cells associated to the new
nodes, and will not load the previous map instances, so that
each consecutive pass will create cells that overlap with the
previous ones. The stored map is loaded only in the event
of a loop closure. Currently we do not employ any method
to constrain the number of cells. For that purpose, the NDT
cells from different nodes can be fused, as in [21]. In contrast

to the prior work, we maintain an NDT-OM for each one of
the classes.

D. Loop closure

As the robot moves, the pose error will accumulate. Loop
closure detection is the recognition of a previously visited
location that aims to bound the pose error. To identify such
an event, we use a map descriptor that extends the 3D-NDT
Historgam by incorporating semantic information.

1) 3D-NDT Histograms: The NDT Histogram descriptor,
originally proposed in [6], encodes the appearance of a scan
as a histogram of the orientations of the normal distributions.
Each distribution in an NDT can be classified as planar, linear
or spherical according to the eigenvalues of its covariance.
Assuming the eigenvalues λ1 ≥ λ2 ≥ λ3, the distribution
is classified as linear if λ1 � λ2 ≈ λ3, as planar if
λ1 ≈ λ2 � λ3 and as spherical if λ1 ≈ λ2 ≈ λ3.
The planar distributions are then binned according to the
orientation of their normals, and the spherical distributions
according to their distance from the origin. Only one bin is
used for linear distributions. The final descriptor consists of
three histograms, for different ranges of distance. In [6] the
histogram is then rotated according to the principal directions
in order for the descriptor to have rotational invariance,
aligning the principal direction to the Z-axis.

Our method is based on [22], where the authors proposed
the alignment of histograms during comparison instead of
computing rotation invariant histograms. Instead of only
counting the frequency of the bins, this method also estimates
the mean of the normals for each bin in order to obtain more
precise results.

In order to match two histograms F,G, the method first
finds the top n dominant bins. The average directions for
each of the dominant bins are then estimated as D1 =
{d1

1 . . .d
1
n} and D2 = {d2

1 . . .d
2
n}. Next, the method com-

putes all possible permutations between pairs of directions
d1
a,d

1
b from D1 and d2

a,d
2
b from D2. Each pair defines a

plane by its cross product, and a closed-form solution exists
for the rotation that aligns d1

a×d1
b to d2

a×d2
b . The resulting

rotation matrix is applied to h1, and the rotation matrix
that minimizes its distance to h2 is selected as the correct
rotation. The distance measure used is the Euclidean norm,
‖T (h1,R) − h2‖2, where T is the function that applies
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Fig. 4. Step of the calculation of histogram bins. Splitting of planar
distributions into buckets depending on their orientation. The three dominant
directions in blue.

the rotation R to the histogram. Figure 4 visualizes the
splitting of the planar distributions into bins depending on
their orientation.

2) Semantic NDT Histograms: We extend NDT His-
tograms by incorporating an additional dimension, with the
assumption that it will increase the descriptor’s specificity,
leading to higher identification accuracy in loop closure. Low
specificity on NDT Histograms occurs when the normals
of the components are uniformly distributed, for example,
when the scene is predominantly occupied by convex or
concave objects larger than the resolution of the voxel grid.
After the transformation of the segmented cloud to SE-NDT,
three NDT Histograms are constructed per class, for different
distance ranges from the origin. The shape of the resulting
descriptor is 3 × Nclasses × (Nsphere + Nplane + 1). For
the alignment of the descriptors we use the approach of
[22]. The average directions of the planar bins, required
by the matching algorithm, are jointly estimated for all the
classes. In contrast to NDT Histograms, we use the Kullback-
Leibler divergence to measure the similarity of descriptors.
The measure is defined as

DKL(P ||Q) = −
∑
x∈X

P (x)log

(
Q(x)

P (x)

)
. (1)

It represents the cross entropy of the two distributions,
reduced by the entropy of the reference distribution. This
is the measure we want to minimize, since we want the
distributions to have high similarity (low cross entropy), and
also for the distributions to be highly discriminative, i.e. to
have low similarity to the uniform distribution (low entropy).
We found that this metric outperformed Euclidean distance

on all tested configurations of the SE descriptor, as shown
in the experiments.

3) Application in loop closure detection: A Semantic
Histogram of an NDT descriptor is estimated for the resulting
global map, centered at the current sensor location and
considering only cells within a defined range. We include
a filtering step to retain only descriptors which are highly
discriminative. We calculate the entropy of the histogram
descriptor, i.e. the similarity to a uniform distribution, and
we only keep the descriptor with the lowest entropy for each
path segment of a set length. Histograms close to uniform
distributions would not have such distinct dominant direc-
tions, affecting their matching performance, and would also
increase the likelihood of selecting cluttered scenes, instead
of ones with prominent structural and semantic features. The
descriptor and the pose are the nodes in the pose-graph.

Loop closures are searched on every iteration, by search-
ing a radius around the current pose proportional to the
accumulated uncertainty of the registration since the last
loop closure. The covariance estimate from [22] is used,
which is calculated using the estimated variance of the sensor
measurement and the Hessian and partial derivative with
respect to the sensor measurements of the Jacobian of the
registration function. For every pose with a NDT Histogram
descriptor within this radius, we calculate the histogram
similarity by means of KL-divergence, and if it is less than
a defined threshold, a registration is attempted between the
old map and the current map.

We perform further filtering to reduce incorrect predictions
in the case of a descriptor with high false positive rate. The
loop closure is accepted only if:

• the value of the NDT score function fd2d is below a set
threshold, and

• the resulting transformation is within the calculated
uncertainty interval.

If these conditions are not met, the candidate node is erased
from the graph, as it is likely that the descriptor does not
have sufficient discriminative power for that environment.
Filtering was not applied in the experiments, unless stated.

IV. EXPERIMENTS

We evaluate the proposed semantic NDT histograms
against the NDT histograms presented in [22], using se-
quences of the publicly available KITTI dataset for lidar
odometry [23]. The experiments are divided into two parts.
The evaluation of the proposed descriptor for the task of
place recognition in Section IV-A is done using sequence
00 of the KITTI dataset. We show precision-recall plots for
different configurations of the descriptor, and compare KL-
divergence and Euclidean distance as measures of similarity.
The mapping method is validated in Section IV-B, where we
run the proposed algorithm on sequences 00 and 08. Table II
presents the parameters that were used for the validation of
the methods.
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Fig. 5. NDT Histogram Similarity for each pair of point clouds and their
corresponding pose and sequential distance.
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Fig. 6. SE-NDT Histogram Similarity for each pair of point clouds and
their corresponding pose and sequential distance.

A. Descriptor evaluation.

To demonstrate the performance in place recognition, we
first run the algorithms for the entire sequence 00 of the
dataset, in order to get the maps, poses and histograms, as
described in Section III-D.3. For every possible pair of
nodes, we plot on the horizontal axis the distance between
nodes according to their sequence of construction, i.e. node
ID, and on the vertical axis the L2 distance between the
poses. The color of the data points represents the distance
of the maps in the histogram space. Points that approach
the horizontal axis, other than at node distance 0, are
therefore potential loop closure points, since they symbolize
a location that is revisited after a period of time. The ideal
algorithm would give very low values when the distance in
space is small, and very high otherwise. However, due to
environment aliasing (the similarity of scenes, for example,
due to common elements in the length of one street) we
expect some false positives. For better visibility, we have
thresholded the values of similarity, at 0.09 for Histograms,
see Figure 5, and 0.27 for Semantic Histograms, see Figure 6.
We also present the results for the Semantic Histograms in
the form of a similarity matrix and ground truth matrix in
Figure 11.

We notice that the Semantic Histograms give significantly
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Fig. 11. Ground truth matrix and similarity matrix for Semantic His-
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fewer false positives. Specifically, they can identify 6 true
positives with zero false positives, while NDT Histograms
always give a higher rate of false positives. With the thresh-
old of similarity set at 0.09, the plain NDT Histograms
correctly recognized 6 loop closures, and gave 261 false pos-
itives. For the semantic NDT Histograms, with a similarity
threshold of 0.27, 11 loop closures are identified correctly,
and the number of false positives is 9. We experimented
with different numbers of bins for the NDT Histograms
(tested 9,20,40,60 planar, and 5,9,20,40,60 spherical), with
no significant difference in the results, as demonstrated in
Figure 7 and Figure 8.

The existence of false positives means that the perfor-
mance of both methods in global registration is expected
to be low. However, if the estimated uncertainty is taken
into consideration, then Semantic Histograms can be used
for loop closure detection. This is exploited in the SLAM
application to search for similar scans only within a radius
defined by the accumulated uncertainty of the odometry since
the last loop closure.

In Figure 8 the precision-recall curves of different con-
figurations show that for a wide range of configuration pa-
rameters our method outperforms the NDT Histograms. We
also note that KL-divergence outperformed the normalized
Euclidean distance that is used in [6] for our descriptor.

TABLE II
PARAMETERS & RESULTS

Parameter name SE-NDT Histograms NDT Histograms

NDT Resolutions 4.0m, 0.8m 4.0m, 0.8m
Similarity threshold 0.27 0.09
Map size 80m 80m
Node spacing 10m 10m

Correct predictions 11 6
Incorrect predictions 9 261

B. Loop closure validation.

In Figure 9 and Figure 10 we present the path of sequences
00 and 08 as estimated by our algorithm. The NDT His-
tograms without semantics were not adequate for the task,
and the high rate of false positives resulted in very poor
performance in the SLAM task. We do not employ any pose
graph optimization, so the path is not corrected between two
loop closures, and the KITTI benchmark numerical results do
not reflect the improvement. No incorrect predictions were
given by our method. As expected, our method followed
more closely the true path than the open loop. Towards
the end of sequence 00, approximately at (-70,-40), we
notice a significant divergence of the path. Investigating the
source, we saw that registration did not perform well on
the final segment, and coincides with an underestimation
of the registration uncertainty, so the loop was recognized
but not closed as it was outside the uncertainty radius. The
loop corresponding to this point is the rightmost correctly
recognized loop from Figure 6. On sequence 08, the loop at
(110,290) was not identified, possibly due to the brevity of
the overlap and the filtering of nodes. While using the loop
closure filtering rules, we were able to increase the similarity
threshold to 0.35 and still get zero false positives with the
Semantic NDT Histograms.

The validation experiments show that the method is ap-
plicable in large-scale environments, and can perform loop
closures when the paths have high overlap. The addition
of an Inertia Measurement Unit (IMU) on the pipeline
can potentially benefit the registration with the use of the
measurement to rectify the point clouds by compensating
for the egomotion. However, since the method is resilient
to the initial registration error, the most significant limiting
factor for the pose accuracy is the resolution of the map.

Our method, including the classifier, was executed in real
time, at 10Hz, on an Intel i7 and an NVidia 1080Ti, and is
fully integrated into ROS [24].

V. CONCLUSIONS AND FUTURE WORK

This work presents a localization and mapping approach
based on the Semantic Assisted Normal Distributions Trans-
form. The proposed method uses per point semantics, as
provided by PointNet++, and we propose an extension of
the NDT Histograms of normals that utilizes the semantic
labels to estimate the similarity between maps and identify
loop closures. In contrast to the original NDT Histograms



where the Euclidean distance is used to compare the scene
descriptors, in our work we formulate the distance as the
minimization of the KL divergence to account for descriptors
that might have high similarity but are not very descriptive,
i.e. carry low information.

The overhead of the classifier is kept low by reusing
for loop closure detection the same labels as for point
cloud registration. The entire semantic mapping pipeline
can execute in real-time due to the efficiency of the NDT
representation and the use of the PoinNet++ classifier. We
also propose a filtering method of the graph, where a node is
only inserted for the scenes that maximize the discriminative
power of the descriptor, measured by its entropy, or the
amount of information that it encodes. In the search for loop
closure candidates, the algorithm only considers nodes that
are within the uncertainty radius, which is calculated based
on the accumulated uncertainty of the previous registrations.
With the use of this filtering, the number of false-positive
loop closure detections is reduced significantly. We use a
graph structure for the representation of the map, where
instead of maintaining one map for all the operating envi-
ronment the map is incrementally grown with each explored
area, and the cells are associated with the first node in the
pose graph that they were visible. With this technique, cells
in the map can overlap between different crosses of the same
path. Due to the representation of the path as a pose-graph
any pose-graph optimizer can be applied to the final result.

We evaluate the improvement over the non-semantic ver-
sion of NDT Histograms and demonstrate the performance
of the complete system on the KITTI dataset. Future work
will include fusion of the maps to constrain the size of the
map, investigation of how the shape of the objects in the
scene affect the performance of the descriptor, integration
of a pose graph optimizer and investigation of more flexible
approaches to handle cells that contain dynamic objects. This
work extends the available toolset for NDT-based mapping
and the system is integrated into ROS. The source code and
the trained PointNet++ model is released1.
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