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Abstract— Finding optimal paths for self-driving cars in
cluttered environments is one of the major challenges in au-
tonomous driving. The complexity stems from the nonlinearity
of the system and the non-convexity of the configuration space.
This paper introduces a novel extend function called Hybrid
Curvature (HC) Steer for sampling-based nonholonomic motion
planning in tight environments. HC Steer solves the two-point
boundary value problem by computing continuous curvature
paths while the vehicle is going in one direction, but allows
curvature discontinuities at switches in the driving direction.
The resulting paths approximate Reeds-Shepp’s paths and
are directly drivable by an autonomous vehicle. BiRRT*, an
optimal sampling-based motion planner, is used to evaluate and
compare HC Steer’s performance to state of the art steering
functions, namely Reeds-Shepp (RS) and Continuous Curvature
(CC) Steer. Extensive experiments in challenging environments
show HC Steer’s advantage of computing smoother paths than
RS Steer in equally tight environments and finding solutions
with less direction switches, higher success rates, and shorter
planning time than CC Steer.

I. INTRODUCTION

Advances in autonomous driving will soon show the first
commercially available Automated Valet Parking (AVP) sys-
tems, where the vehicle is left in a drop-off zone and executes
the driving and parking task autonomously [1]. Within this
context, a future concept is High Density Parking (HDP) [2].
It leverages the potential of AVP by increasing the number
of parked vehicles on an existing parking lot by (1) packing
the vehicles denser since humans can already exit the car
in the drop-off zone, and (2) changing the parking layout,
e.g. allowing vehicles to also park on one side of the
driveway [3], see Figure 1. As a consequence, free space
in the parking area will be reduced thus making the motion
planning problem even more challenging.

Despite the numerous research projects since the DARPA
Urban Challenge (DUC) in 2007, motion planning for non-
holonomic systems in cluttered environments is still an
actively researched topic [4]. The key challenge lies in the
design of a generic motion planner, which takes into account
the nonlinearity of the system and the non-convexity of the
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Fig. 1: Maneuvering in a tight parking environment with BiRRT* and
Hybrid Curvature Steer. The solution path is visualized in green with four
direction switches. The trees rooted at the start and the goal configuration
are colored in red and orange.

configuration space. Preferably, a motion planner for such
a problem should fulfill the following four criteria [4], [5]:
(1) Given an arbitrary environment, it should find a collision-
free solution if one exists (completeness). (2) The solution
should minimize an objective function (optimality). (3) The
computed path should be easily drivable with the given
actuator limits, and (4) the computational cost should be
rather small.

In this regard, the main contributions of this paper are:
• Introduction of a novel steering function called Hybrid

Curvature (HC) Steer. It generates curvature continuous
paths while the vehicle is going in one direction, but
allows curvature discontinuities at direction switches.

• Comparison of HC Steer with state of the art steering
functions, namely Reeds-Shepp (RS) [6] and Continu-
ous Curvature (CC) Steer [7], in terms of path length,
computation time, and topological admissibility. HC
Steer’s capability of approximating RS Steer and outper-
forming CC Steer in terms of path length while having
comparable computation times to CC Steer is shown.

• Evaluation and comparison of RS, HC, and CC Steer’s
performance in the optimal motion planner BiRRT* [8]
on two HDP scenarios. HC Steer’s advantage of com-
puting smoother paths than RS Steer in equally tight
environments and finding solutions with less direction
switches, higher success rates, and shorter planning time
than CC Steer is illustrated.

The remainder of this paper is organized as follows.



Section II gives a brief overview of related work. BiRRT*
is described in Section III, and HC Steer is introduced in
Section IV. The collision checker and the cost function
for planning with BiRRT* are detailed in Section V. The
experimental results are analyzed in Section VI, and a
conclusion and outlook is given in Section VII.

II. RELATED WORK

Recent surveys on motion planning for self-driving cars
can be found in [9] and [10]. Based on [9], the different
approaches can be categorized into four groups: graph search,
random/deterministic sampling, interpolating curves, and nu-
merical optimization.

The core idea of graph search-based planners is to dis-
cretize the state and action space and search the resulting
graph for the optimal solution [11], [12], [13]. With ap-
propriate heuristics, graph search-based planners compute
fast solutions. However, they suffer from completeness and
optimality only with respect to the discretization, and expo-
nentially growing computations with smaller discretization.
In addition, the discretization may result in unnatural paths
requiring an additional smoothing step [12].

Sampling-based planners draw their samples either from
a discretized set of actions [14], [15] or randomly [16],
[17], [18]. While discrete sampling shares the advantages and
drawbacks of graph-based planners, random sampling does
not rely on discretization resulting in probabilistic complete-
ness. Additionally, randomized planners like RRT* [19] also
guarantee asymptotic optimality. Compared to graph search,
these advantages come at a cost of higher computation times.

Interpolating curve planners such as [20] concatenate a set
of curves, e.g. lines, circles, and clothoids, to plan a feasible
path. In general, they are fast, but inflexible because scenario-
specific rules for the concatenation of the curves have to be
derived. Besides, completeness can not be guaranteed.

Optimization-based planners [21], [22], [23] formulate the
path planning problem as an optimal control problem and
solve it with numerical optimization. A discretization of
the state space can be avoided. In order to guarantee a
fast convergence to the optimal solution, the optimization
problem needs to be convexified. Approximating general en-
vironments as convex spaces is either challenging or suffers
from inaccuracies due to convex approximations.

The following chapter briefly describes Bidirectional
RRT* (BiRRT*) [8] as the general motion planner (sampling-
based, randomized) used in this paper.

III. BIRRT*
Rapidly-exploring Random Trees (RRT) [24] have proven

to quickly solve high dimensional single-query motion plan-
ning problems in various robotic domains, such as au-
tonomous driving [25]. A probabilistically complete and
asymptotically optimal variant of RRT, called RRT*, was
introduced in [19]. The basic idea of RRT* is to incremen-
tally build a tree from a start to a goal configuration in three
steps: (1) Sample a random configuration in the obstacle-
free configuration space, (2) connect it with a collision-
free, minimum-cost extension to the tree, and (3) rewire

the tree locally in order to converge asymptotically to an
optimal solution. An in-depth description of the algorithm
for nonholonomic systems can be found in [26]. BiRRT* [8]
is a two-tree version of RRT*, which builds a tree from the
start to the goal and vice versa. It has shown an improved
performance compared to RRT* in complex environments.

Applying RRT* to autonomous driving requires a fast,
(sub)optimal solution to the two-point boundary value prob-
lem (BVP) of a car model, which connects a newly sam-
pled configuration to the tree. This is often referred to
as extend/steering procedure. Known steering functions for
forward driving are either optimal controllers for linearized
vehicle models [27], shooting methods [16], or geometric
approaches with a Dubins’ car [28], [17], [26]. Steering func-
tions for driving with direction switches are Reeds-Shepp
(RS) [6], [18] and Continuous Curvature (CC) Steer [7].

While RS Steer solves the BVP optimally with respect
to path length, CC Steer does not strictly optimize any
objective function anymore. The discrete nature of RS Steer
exposes the vehicle to significant stress and makes the
resulting paths uncomfortable to drive. In contrast to that, CC
Steer adds comfort to the computed paths, but decreases the
maneuverability of the car significantly, e.g. requires more
direction switches for the same maneuver. A novel steering
function that overcomes these issues is described in the next
section.

IV. HYBRID CURVATURE STEER

This section introduces Hybrid Curvature (HC) Steer, a
novel steering function that is inspired by human driving in
tight environments. HC Steer computes continuous curvature
paths while the vehicle is going in one direction, but allows
curvature discontinuities at changes in the driving direction,
in the following referred to as cusps. This approach combines
the advantages of RS and CC Steer, namely approximating
RS Steer in terms of path length, ensuring curvature con-
tinuity between cusps, and increasing the maneuverability
compared to CC Steer.

In the following subsections, HC Steer is described in
detail. The car model for HC Steer is described in Sub-
section IV-A. HC Turns as the basic components of HC
Paths are introduced in Subsection IV-B. A description of
the computation of HC Paths, a comparison with RS and
CC Steer, and an analysis of the topological admissibility
are given in Subsections IV-C, IV-D, and IV-E, respectively.

A. Car Model for HC Steer

For path planning at small velocities, the dynamics of a
vehicle can be described by a kinematic bicycle model [29].
It is given with respect to arc length s by

x′

y′

θ′

κ′

 =


cos(θ)
sin(θ)
κ
0

 d+


0
0
0
1

σ, (1)

where the position of the midpoint of the rear axle is
described by (x, y), the orientation of the car by θ, and the



curvature of the path at position (x, y) by κ. The driving
direction d and the change of curvature σ, also referred to
as sharpness, are the inputs of the system. The derivatives
with respect to s are given by (•)′. The configuration of the
vehicle can be abbreviated by q = [x, y, θ, κ]T and the input
by u = [d, σ]T .

The curvature κ and the sharpness σ at a given velocity v
are constrained by the physical limits of the car κmax and
σmax. Note that σmax is inversely proportional to v. Therefore,
HC Steer requires

|σ| = +∞, if cusp, (2)
|σ| ≤ σmax, else, (3)

where σmax is given for the maximum velocity along the
path.

B. HC Turns

HC Turns are the fundamental component of HC Paths.
A HC Turn starts with a configuration of zero curvature
and results in a configuration with maximum curvature.
Therefore, it consists of a clothoid and a circular arc and
is entirely defined by the direction of the movement d ∈
{−1, 1} (backwards, forwards), the direction of the turn
t ∈ {−1, 1} (right, left), the start configuration qs, and
the change of orientation between the start and the goal
configuration δ ∈ [0, 2π[, also denoted as deflection.

Similar to CC Turns, there are two different HC Turns,
a regular and an irregular one, which are described in the
following.

1) Regular HC Turn: Given a start configuration qs and
the direction of the movement, a HC Circle Cdt (qs) can be
computed that contains the position of the start configuration
and whose tangent encloses the angle µ with qs. Figure 2
visualizes such a HC Circle including a HC Turn for a
forwards movement (d = 1) to the left (t = 1).

qg
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xI

y1

x1
−µqs

qi

κ−1max

r

µ

δmin

δ

Cd=1
t=1 (qs)

xc

Fig. 2: A regular HC Turn, where the vehicle starts in qs and moves on a
clothoid and a circle to qg .

The following paragraphs detail the mathematical descrip-
tion of a HC Circle and a HC Turn.

The start configuration of the vehicle in an inertial frame I
is given as qI s = (xs, ys, θs, 0). The intermediate configu-
ration q1 i in the local frame 1 at the end of the clothoid can

be computed as

q1 i =


xi
yi
θi
κi

 =


d
√
π/σmaxCf (

√
κ2max/(πσmax))

t
√
π/σmaxSf (

√
κ2max/(πσmax))

tdκ2max/(2σmax)
tκmax

 , (4)

where the Fresnel Integrals are defined as Cf (t) =∫ t
0
cos(π2u

2)du and Sf (t) =
∫ t
0
sin(π2u

2)du.
The transformation between the local frame 1 and the

inertial frame I is given by

qI ? = qI s +AI1 · q1 ?, (5)

where ? stands for an arbitrary configuration and AI1 is the
transformation matrix from the local frame to the inertial
frame.

The deflection δmin describes the change of orientation
between start and intermediate configuration and can be
calculated as

δmin = κ2max/(2σmax). (6)

The center of the HC Circle xc is given by

x1 c =

(
xc
yc

)
=

(
xi − κ−1i sin(θi)
yi + κ−1i cos(θi)

)
, (7)

and its radius by r = ‖ x1 c‖2.
The goal state qg of the HC Turn is obtained by rotating

qi on a circle with radius κ−1max and center xc by δ − δmin
according to

q1 g =


xg
yg
θg
κg

 =


xc + κ−1i sin(θi + td(δ − δmin))
yc − κ−1i cos(θi + td(δ − δmin))

θi + td(δ − δmin)
κi

 . (8)

The angle between the orientation at the start configuration
and the tangent to the HC Circle at that position is denoted
by µ and computed as

µ = arctan(xc/yc). (9)

The length of the path on a regular HC Turn is defined as

l(δ) =

{
lmin + κ−1max(2π + δ − δmin), if δ < δmin

lmin + κ−1max(δ − δmin), if δ ≥ δmin,
(10)

where lmin = κmaxσ
−1
max describes the length of the clothoid.

2) Irregular HC Turn: This turn results in a shorter path
than the regular one for δ < δmin and δ > δmin + π
when a switch in direction is allowed at the intermediate
configuration qi. Figure 3 visualizes an irregular HC Turn
for a forwards movement (d = 1) to the left (t = 1).

The length of the path on an irregular HC Turn can be
computed as

l(δ) =


lmin + κ−1max(−δ + δmin) if δ < δmin,

lmin + κ−1max(2π − δ + δmin) if δ > δmin + π,

lmin + κ−1max(δ − δmin) else.
(11)

Note however that the driving direction at the start and
end positions are different due to the cusp at the intermediate
configuration.
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Fig. 3: An irregular HC Turn, where the vehicle starts in qs, moves on a
clothoid to the intermediate configuration qi, switches direction, and reaches
qg on a circle.

3) Comparison of RS, HC, CC Turns: In order to better
understand the differences between RS, HC, and CC Steer,
the respective turns are compared here. Figure 4 illustrates a
RS, HC, and CC Turn for a given deflection δ and Figure 5

Fig. 4: Comparison of the different turns for δ = 0.8π.

compares the turn lengths for δ ∈ [0, 2π[.
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Fig. 5: Comparison of the turn lengths along a RS, HC and CC Turn with
respect to the deflection δ for κmax = 1m−1 and σmax = 1rad m−1.

It can be observed in Figure 5 that the turn lengths are
lower bounded by the RS Turn for all δ. It increases linearly
until it reaches its peak at δ = π and decreases for larger
deflections again due to a change of the driving direction.
The symmetric nature of CC Turns allows to use elementary
paths [30] for small deflections resulting in shorter turn
lengths than a HC Turn. However for δ < δmin, there exists a
deflection for which a HC Turn leads to a shorter turn than
a CC Turn. For δ ≥ δmin, a HC Turn always results in a
smaller turn length than a CC Turn because each deflection

can be reached with only one clothoid and an arc instead of
two clothoids and an arc. Note that the nature of the irregular
HC and CC Turns avoids that the turn lengths keep growing
monotonously for large deflections.

C. HC Paths

According to Reeds and Shepp, the shortest path for a
car can be computed by evaluating 9 path families using
RS Turns and straight lines [6]. For paths, which include
clothoids, there exists an infinite number of possibilities to
connect two configurations [7]. Therefore, it is proposed for
HC Steer to select a path with minimal length out of 13
HC Families, see Table I. They consist of the RS Families
and four additional ones based on experimental results and
experience [30].
TABLE I: HC Families: C denotes a turn, S a straight line, and | a cusp.

RS Families Additional Families

C|C|C CCC
C|CC C|SC
CC|C CS|C
CSC C|S|C
CC|CC
C|CC|C
C|CSC
CSC|C
C|CSC|C

HC Paths provide the flexibility to start and end with
zero curvature, in the following denoted as HC00, or with
maximum curvature ±κmax denoted as HC±±. Compared to
HC00, HC±± Steer leaves the initial and final clothoid away
resulting in shorter paths, see Subsection IV-D. The next
paragraph outlines the general procedure for computing the
HC Families and explicitly details the computation of HC00

Steer for the family C|C|C.
For every HC Family and two given configurations qs

and qg , a path can be computed in four steps: (1) Fit 4 start
and 4 goal HC Circles (forwards/backwards, left/right) to
the given configurations. (2) Out of the 4 · 4 possibilities to
connect qs and qg , remove the combinations that can not be
realized by the corresponding family. For instance in case
of C|C|C, the HC Circle Cd=1

t=1 (qs) always requires the HC
Circle Cd=−1t=1 (qg) at the goal configuration, see Figure 6.
(3) For every resulting combination, use RS, HC, CC Turns,

qg

κ−1max
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κ−1max
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t=1 (qs)

Cd=−1t=1 (qg)

qs

dist
xc,1

xc,3

xc,2

h

xI

yI

x1

y1

Fig. 6: Illustration of a HC00 Path for a C|C|C family and the two HC
Circles Cd=1

t=1 (qs) and Cd=−1
t=1 (qg).



and tangency conditions to connect start and goal HC Circle
by enforcing curvature continuity between cusps. In case of
C|C|C, this is shown in Figure 6, where a RS Turn is used
to connect the start and goal HC Circle. The center of the
RS Turn xc,2 in the local frame can then be computed as

h =

√
(4κ−2max −

1

4
dist2(xc,1,xc,3)), (12)

x1 c,2 =

(
1
2dist(xc,1,xc,3)

h

)
, (13)

where the symbols correspond to Figure 6. (4) Finally select
the start and goal HC Circle that results in the shortest path
for the corresponding family.

D. Comparison of RS, HC, CC Steer

This subsection evaluates and compares HC Steer with RS
and CC Steer in terms of path length and computation time.

Figure 7 illustrates the relative difference in path length of
HC±±, HC00, and CC Steer compared to RS Steer for 105

random steering procedures.
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Fig. 7: Relative difference in path length of HC±±, HC00, and CC
Steer compared to RS Steer for 105 randomly sampled start and goal
configurations (κmax = 1m−1, σmax = 1 rad m−1).

While CC Steer generates the largest deviations from RS
Steer, HC±± Steer generates paths that deviate in more than
60% less than 2.5% from the length of RS Paths. This
shows HC±± Steer’s capability of approximating RS Steer
while maintaining curvature continuity between cusps. The
performance of HC00 Steer lies between HC±± and CC
Steer.

The computation times of the different steering func-
tions are evaluated on a single core of an Intel Xeon
E5@3.50GHz, 10MB cache, and listed in Table II. It can be
observed that the curvature continuity comes at a cost of up
to 13 times longer computations. RS Paths can be computed
TABLE II: Comparison of the computation time of RS, HC00, HC±±, and
CC Steer for 105 random steering procedures.

computation time

mean [µs] std [µs]

RS 6.9 ±1.3
HC00 89.5 ±10.5
HC±± 89.1 ±15.0
CC 79.0 ±11.5

on average in 6.9 µs. HC00 and HC±± Steer perform almost

equally and find solutions on average in less than 89.5 µs.
The computation of CC Steer is slightly faster and takes on
average 79.0 µs. Standard deviations are below 15.0 µs for
all analyzed steering functions.

As shown in Section VI, the longer computations have
a minor effect on the overall runtime when integrated into
BiRRT* since most of the computation time is spent in the
collision checker.

E. Topological Admissibility

RS, HC, and CC Steer always find a connecting path
for two random configurations making all three steering
functions complete. In order to guarantee that these methods
also result in a collision free, (probabilistically) complete
path when integrated into a general motion planner like
BiRRT*, they have to be topologically admissible [31], [7]:

∀ε > 0,∃η > 0,∀(qs,qg) ∈ C2,
qg ∈ B(qs, η)⇒ steer(qs,qg) ⊂ B(qs, ε),

(14)

where B(q, •) describes a ball of a given size centered
at configuration q, and steer(qs,qg) denotes a steering
procedure.

Equation (14) states that a steering function is topo-
logically admissible if the computed path stays in an ε-
neighborhood when start and goal configurations are located
in an η-neighborhood. By nature, RS Steer fulfills this con-
dition since its paths only consist of straight lines and circles
without a minimal required path length. In contrast to that,
CC Steer is only topologically admissible when additional
so-called topological paths are introduced [7]. Similar to CC
Steer, HC00 Steer also requires additional topological paths
for completeness in a general motion planner. The reason is
that the clothoids at the start and goal configuration result
in path lengths that are always lower bounded by 2lmin.
Experiments have shown however that these topological
paths are only a theoretical construct and not practical in
reality. This is because the nature of the clothoids in the
topological paths allows only small η-neighborhoods for
a moderate ε limiting the maneuverability of the vehicle
significantly.

In contrast to CC and HC00 Steer, HC±± Steer is topo-
logically admissible. This is due to the fact that the families
C|C|C and C|S|C in HC±± Steer only consist of circles
and straight lines (HC±± starts and ends with maximum
curvature). The absence of clothoids allows to generate paths,
whose length is not lower bounded anymore. Therefore,
HC±± Steer results in completeness when integrated into
a general motion planner.

V. PLANNING WITH BIRRT*

In order to compute a collision-free, asymptotically op-
timal path, BiRRT* requires a collision checker and a
cost function for minimization. This section introduces the
implemented collision checker in Subsection V-A and the
chosen cost function in Subsection V-B.



A. Collision Checking

Designing a fast collision checker is essential since
BiRRT* spends most of its computation time checking tree
extensions for collisions with the environment. Currently, it
is assumed that the environment is static and that obstacle i,
labeled as Oi, is given as a convex polygon. For non-convex
shapes, this can be achieved by a convex decomposition [32].
Note that in the following, a calligraphic letter is used
whenever a set of points occupied by an object is described.

At every discrete configuration q along the path, the body
of the ego vehicle A1 and all actuated tires j, labeled as
Tj , are checked in two consecutive steps for collision with
the entire environment. This setup is illustrated in Figure 8,
where the body’s circumscribed circle is denoted as A2 and
A1,A2,Oi, Tj ⊂ R2.

O1

O2

O3

A2(q)

T1(q)

T2(q)

yI

xI

A1(q)

q

Fig. 8: Illustration of the ego vehicle’s body A1, the car body’s circum-
scribed circle A2, its actuated tires Tj at configuration q, and the obstacles
Oi in the environment.

In the first step of the collision check, obstacle Oi is
labeled as a collision hypothesis Hi if

A2(q) ∩ Oi 6= ∅, (15)

where A2(q) describes the car body’s circumscribed circle at
configuration q. In the second step, all collision hypotheses
are checked against the body of the car A1 and its actu-
ated tires Tj at configuration q. Collision hypothesis Hi is
collision-free if

A1(q) ∩Hi = ∅ ∧ Tj(q) ∩Hi = ∅, ∀j. (16)

We use the Gilbert-Johnson-Keerthi (GJK) algorithm [33]
to perform the second step of the collision check. The GJK
algorithm takes on average 700 ns for a binary collision
check of two polygons each consisting of 23 vertices on a
single core of an Intel Xeon E5@3.50GHz, 10MB cache. It
is also capable of computing the minimal distance between
two polygons if they are not colliding, which takes on
average additional 300 ns.

B. Cost Function

The cost function J is evaluated along the path, which is
given by N segments, see Figure 9. It consists of four terms,
computes a positive cost for every non-trivial path [34], and
is given as

J = wT
J


Jlength
Jcusp
Jcurv
Jobs

 , (17)

s

(sk,qk,uk)
(sk+1,qk+1,uk+1)

Fig. 9: Illustration of the kth path segment connecting configuration qk and
qk+1. The arc length along the path is described by s and uk,uk+1 denote
the inputs at distance sk and sk+1, respectively.

where wJ allows to weight each cost term, Jlength penalizes
the length of the path, Jcusp punishes cusps in the path,
Jcurv makes uncomfortable paths in terms of curvature more
expensive, and Jobs puts a cost on paths with little clearance
to static obstacles.

The cost terms are computed as

Jlength =

∫ sN

s0

ds, (18)

Jcusp =

N−1∑
k=0

1dk+1·dk<0, (19)

Jcurv = (κmax(sN − s0))−1
∫ sN

s0

|κ(s)|ds, (20)

Jobs = 1− min
s∈[s0,sN ]

(dobs(s), dsafety,1)

/
dsafety,1, (21)

where the driving direction at distance sk is denoted as dk,
the minimal clearance along the path as dobs, and the soft
safety distance as dsafety,1. Equation (18) computes the length
of the path while equation (19) counts the cusps in the path.
Equation (20) integrates and normalizes the curvature along
the path, and equation (21) compares the minimal clearance
of the path with the soft safety distance, also see [15].

VI. EXPERIMENTS

The experimental results analyze and compare the per-
formance of BiRRT* with RS, HC±±, and CC1 Steer on
two different HDP scenarios.2 Figure 10 visualizes the two
scenarios.

Fig. 10: Scenario I (left) and scenario II (right), where the gray shaded area
marks the region that is excluded from the sampling region of BiRRT*.

The setup used in the experiments is described in Subsec-
tion VI-A, and Subsection VI-B discusses the results.

A. Setup

The width of the driveway is given by wD = 5.5m, the
width and length of a parking spot by wS = 2.5m and lS =

1CC Steer is used without topological paths as explained in Section IV-E.
2This link https://youtu.be/RlZZ4jnEhTM provides a video of

the results, and the source code of the steering functions is available at
https://github.com/hbanzhaf/steering_functions.



5m according to the national standards in Germany [35]. In
order to analyze how the proposed motion planner performs
in each scenario, the experiments incrementally increase the
length lD in the driveway.

As it can be seen in Figure 1, the vehicles in the environ-
ment, which consist of commercially available mid-size and
full-size cars, are given by their convex hull. Each is inflated
by a hard safety distance of dsafety,2 = 10 cm. The hard safety
distance shrinks the available space for maneuvering since
lD describes the actual distance between the car bodies. An
additional 20 cm is added as a soft safety distance dsafety,1,
see Subsection V-B.

The ego vehicle’s parameters are listed in Table III, where
κmax and σmax already include 10% control reserve. The max.
sharpness is given at a longitudinal velocity of 1m s−1.

TABLE III: Vehicle parameters

Parameter Symbol Value

Length - 4.926m
Width - 2.086m
Wheel Base L 2.912m
Max. Curvature κmax 1/4.994m−1

Max. Sharpness σmax 0.315 rad m−1

The planner BiRRT* is executed for 6 s by uniformly
sampling configurations in the operating region, which can be
seen in Figure 10 (21m× 5.5m in scenario I, 21m× 18m
in scenario II, and [0, 2π[ for the heading angle in both
scenarios). A goal sampling frequency of 5% is applied,
collision checks are performed every 10 cm, and the constant
γ [26] is set to 6.0. To mitigate randomization effects, every
experiment is repeated 100 times with the same setup. The
extend procedures in BiRRT* are selected as RS, CC, and
HC±± Steer due to its topological admissibility.

The proposed motion planner is implemented as ROS node
in C++ based on [36] and executed on a single core of an
Intel Xeon E5@3.50GHz, 10MB cache.

B. Results

The results with regard to lD, namely the time to first
solution tTTFS, the number of curvature discontinuities, the
number of cusps, the path length, and the success rate
of finding a solution after 100 repetitions of the same
experiment, are given in Table IV. Note that BiRRT* grows a
tree from start to goal and vice versa and therefore performs
equally for maneuvering in and out of the parking spot.

Based on Table IV, Figure 11 illustrates the time to first
solution tTTFS and the success rate relating to lD in scenario I.

BiRRT* with RS and HC±± Steer finds solutions for lD ≥
5.6m in scenario I while CC Steer requires an additional
80 cm. In scenario II, solutions are generated with RS and
HC±± Steer for lD ≥ 4.0m, and lD ≥ 4.6m for CC Steer.

Overall the average time to first solution, the number of
curvature discontinuities, and the number of cusps decrease
when lD is increased while the success rate raises, also
see Figure 11. RS Steer mostly results in slightly faster
solutions with less cusps and higher success rates than HC±±
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Fig. 11: Comparison of BiRRT*’s performance with RS, HC±±, and CC
Steer by measuring the time to first solution tTTFS with respect to lD in
scenario I. The size of the visualized markers indicates the success rate in
finding a path within 6 s.

Steer. However, Table IV shows that RS Steer’s paths suffer
from more than twice as many curvature discontinuities than
HC±± Steer’s paths because HC±± Steer enforces κ to be
continuous between cusps, see Figure 12. Consequently, the
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Fig. 12: Curvature κ along a solution path in scenario II when maneuvering
into the parking spot (lD = 4.8m) with BiRRT* and HC±± Steer. The
driving direction at a given arc length s is given by d.

resulting paths of HC±± Steer are more comfortable to drive
and easier to be tracked by a controller than the curvature
discontinuous paths of RS Steer.

Compared to CC Steer, HC±± Steer computes solutions
faster, leaving BiRRT* more time for optimizing the initially
generated path. Additionally, it outperforms CC Steer in
terms of number of cusps and success rate.

VII. CONCLUSION AND OUTLOOK

In this paper, a novel extend function called Hybrid
Curvature (HC) Steer for sampling-based nonholonomic mo-
tion planning in tight environments is introduced. HC Steer
approximates Reeds-Shepp’s paths in terms of path length,
but enforces curvature continuity between cusps resulting in
directly drivable paths for nonholonomic systems. Experi-
ments in tight environments with the optimal motion planner
BiRRT* show HC Steer’s advantage of computing smoother
paths than RS Steer in equally challenging environments.
Compared to CC Steer, HC Steer with BiRRT* finds solu-
tions with less direction switches, shorter planning time, and
higher success rates. Hence HC Steer clearly outperforms
both RS and CC Steer from a practical point of view.

In the future, we aim to combine the proposed HC±±

steering function with HC0± and HC±0 Steer, which start
or end with either zero or maximal curvature. Such a com-
bination would allow to generate paths with preferably zero



TABLE IV: Results of BiRRT* in Scenario I/II after 6 s of sampling time and 100 repetitions of the same experiment. The time to first solution tTTFS, the
number of curvature discontinuities, the number of cusps, the path lengths, and success rates are listed with respect to lD. Mean path lengths are rounded.

tTTFS (mean± std) [s] #curv. discon. (mean± std) [−] #cusps (mean± std) [−] length (mean± std) [m] success rate [%]

lD [m] RS HC±± CC RS HC±± CC RS HC±± CC RS HC±± CC RS HC±± CC

Sc
en

ar
io

I

5.4 - - - - - - - - - - - - 0 0 0
5.6 3.3±1.4 4.9±0.9 - 12.5±2.7 6.8±1.8 - 6.4±1.5 9.1±2.1 - 14±1.7 17±3.8 - 50 13 0
5.8 1.1±1.0 2.9±1.6 - 10.2±3.1 4.6±1.5 - 4.6±1.4 6.7±2.5 - 14±3.5 17±3.9 - 100 90 0
6.0 0.3±0.2 0.9±0.7 - 8.3±2.3 3.2±1.1 - 3.4±1.0 4.7±1.8 - 13±1.5 15±2.3 - 100 100 0
6.2 0.1±0.1 0.4±0.3 - 7.7±2.4 2.3±1.2 - 2.3±1.1 3.5±1.7 - 14±2.1 15±2.8 - 100 100 0
6.4 0.1±0.1 0.2±0.2 2.4±0.7 6.7±2.1 1.8±0.9 0±0 1.7±0.9 2.6±1.3 4.5±0.5 13±1.3 14±2.3 16±0.1 100 100 2
6.6 0.1±0.1 0.2±0.2 1.2±0.8 6.5±1.9 1.5±0.9 0±0 1.5±0.8 2.2±1.5 4.7±1.7 13±1.5 14±3.3 18±3.1 100 100 100

Sc
en

ar
io

II

3.8 - - - - - - - - - - - - 0 0 0
4.0 2.7±1.4 5.1±0.7 - 13.4±3.6 4.0±0.0 - 6.2±1.8 5.0±0.0 - 18±3.3 21±0.9 - 12 2 0
4.2 2.5±1.5 3.6±1.7 - 12.9±2.6 4.4±0.7 - 5.7±1.4 6.5±2.1 - 18±3.2 23±2.0 - 50 13 0
4.4 1.9±1.3 2.6±1.6 - 11.8±2.4 3.2±1.0 - 4.6±1.4 5.5±1.8 - 18±4.9 21±4.4 - 85 51 0
4.6 1.3±1.3 2.2±1.5 3.1±1.7 10.4±2.3 2.9±1.3 0±0 3.6±1.5 4.9±2.0 6.5±1.7 17±2.8 22±3.1 20±3.0 95 75 4
4.8 0.6±0.6 1.7±1.2 3.4±2.0 9.6±2.1 2.5±0.9 0±0 3.1±1.2 4.1±1.3 5.1±1.5 16±1.9 21±4.0 19±2.5 100 97 21
5.0 0.5±0.5 1.0±1.0 3.2±1.6 9.3±1.8 2.4±0.8 0±0 3.0±1.1 4.0±1.6 5.2±2.0 16±2.1 21±3.4 20±5.4 100 98 64
5.2 0.3±0.2 0.8±0.7 1.6±1.4 8.5±1.9 2.3±0.8 0±0 2.5±0.9 3.7±1.2 4.1±1.6 16±1.5 20±3.2 18±2.9 100 100 92
5.4 0.2±0.2 0.6±0.5 1.0±0.9 8.5±1.6 2.1±0.7 0±0 2.3±0.7 3.2±1.0 3.2±1.3 15±1.1 19±3.2 17±2.4 100 100 100

curvature at the beginning and at the end while still providing
the desirable characteristics of HC±± Steer in between.
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