
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019 1

Time-Optimal Path Tracking for Jerk Controlled
Robots

Alessandro Palleschi1,2, Manolo Garabini1,2, Danilo Caporale1,2, Lucia Pallottino1,2

Abstract—This paper presents a new approach to solve the
Time-Optimal Path Tracking under limited joint range and
bounds on velocity, acceleration and jerk. To obtain smooth and
continuous accelerations, with beneficial effects for the load and
wear on the actuators but a limited impact on performance, we
state the minimum-time path tracking problem with the jerk
as the control input. The main contribution of this paper is a
formulation that includes the jerk constraints in the optimization
problem and that, even if the resulting Non-Linear Programming
(NLP) problem is non-convex, allows to perform an efficient
and reliable convex relaxation using McCormick Envelopes.
Simulations and experimental tests on two 7-DoF manipulators
have been carried out to show the benefits of the proposed
approach and to compare it to state-of-the-art techniques.

Index Terms—Motion and Path Planning; Optimization and
Optimal Control; Motion Control

I. INTRODUCTION

IN recent years, in a wide range of industries, a fast transi-
tion towards automation has been driven by the request of

greater flexibility, efficiency and speed in industrial processes.
This desire for high performance has to practically deal with
the structural and operational limitations typical of a robotic
system. Robot operational limits are defined by bounds on
joint space variables, namely range, velocity, acceleration,
torque and torque derivative. Additional constraints could be
included to characterize limits on the operative region of some
geometric part of the robot, dictated by the characteristics
of its workspace, e.g., the presence of obstacles. Although
motion capabilities are easily expressed as bounds on joint
space variables, the task specifications are generally given
in terms of a set of reference Cartesian poses for the end-
effector. Solving the generalized time-optimal motion planning
problem is complex since it is typically a constrained non-
convex NLP problem. Due to the complexity of the problem,
a common approach is to split it into two subproblems. Using
a decoupled approach, a path planner is used to compute a
geometric path accounting for high-level geometric aspects
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Fig. 1. KUKA LWR IV+ Manipulator used for the experimental tests
executing the desired trajectory

and a dedicated kinematics inversion stage is used to map
the obtained path into a reference joint space trajectory,
accounting for the geometric constraints of the robot (see,
e.g., [1], [2], [3]). The inclusion of velocities, accelerations
and torques constraints directly at this stage could lead to the
formulation of a constrained IK problem (see, e.g, [4] and [5]),
which is complex and usually non-convex. A more attractive
approach consists in placing a path tracking stage right after
the inversion stage. It deals with the constraints mentioned
above and finds the minimum time needed to track the given
joint space path. (see, e.g., [6],[7]). If the accelerations or
the torques are employed as the control input, this approach
leads to the formulation of a convex optimization problem
[6]. However, a significant drawback for this torque-based
control is the high rate of change of the optimal solution.
A discontinuous, or at least non-smooth, acceleration profile
has a noticeable impact in terms of stress on the actuators
and vibrations. An additional term can be included in the
optimization problem to address this, as in [6]. Other than the
lack of an evident physical meaning of the introduced term and
problems on its weight in the cost function, the solution could
still be discontinuous. The main contributions of this paper are:
(1) to present a formulation that, using the jerk as constrained
control input, allows obtaining smoother acceleration profiles,
reducing the wear and load on the actuators [8], (2) to show
that even if this formulation results in a non-convex NLP
problem, it is possible to obtain the globally optimal solution
by performing an efficient convex relaxation of the non-
convex constraints. The outline of this paper is as follows.
Section II discusses current state-of-the-art methods to include
constraints in motion planning, while Section III introduces
our jerk-based formulation for time-optimal path tracking. This
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particular formulation and the numerical solution are discussed
in Section IV. Eventually, simulations and experimental tests
on a real 7-DoF manipulator are presented in Section V, while
considerations about the inclusion of the dynamics of the
robots are presented in the Appendix.

II. RELATED WORKS

The task specifications for a robot are given as a set of
reference poses for the end-effector, hence expressed in the
Operational (Cartesian) space, and local inversion of differen-
tial kinematics (IK) is used to map the reference trajectory
to the joint space [1], with the possibility of controlling
the robot up to the torque-level. Recently, some methods
have been presented to deal with the limited capabilities of
redundant robots. These bounds are usually expressed in terms
of limited joint ranges, velocities, accelerations and torques.
Many of the currently used solutions suffer from the presence
of singularities, both kinematic and algorithmic, which affect
tasks execution. A novel IK solver based on a Reverse Priority
approach (RP), largely unaffected by algorithmic singularities
has been presented in [9], and later extended to include unilat-
eral geometric constraints in a nice fashion in [2]. To the best
of the authors’ knowledge, RP-based approaches are yet to be
extended to include dynamic constraints, such as velocities and
accelerations. Several approaches (see, e.g., [6],[7]) transform
the problem as an optimal tracking problem over a fixed
path. These methods for the time-optimal path tracking under
actuators constraints exploit the fact that the motion along a
fixed path is described by a single path coordinate s and its
time derivative ṡ (see, e.g., [10], [11]). As a result, the multi-
dimensional state space of a robotic system can be reduced
to a two-dimensional state space. This reduction has been
widely described in [6] applied to robotic manipulators and
has been extended for more general systems, see, e.g., [12]
for quadrotors and [7] for a wide range of vehicles, such
as space vehicles, car models and aircraft. Thanks to the
use of a nonlinear change of variables already recognized in
[10], it is possible to transform the problem into a convex
optimal control problem [6]. A numerical solution can be
obtained efficiently using a direct transcription method [13].
In these works jerk or torque rate limits are not considered.
A formulation able to include limits on jerk and/or torque
rate of change is of great interest, despite leading to increased
time needed to complete the task, in order to reduce actuator
loads for the demanded torque and robot wear potentially
expanding its life-span [14]. Since constraints on the rate of
torque change, τ̇(s), make the problem non-convex [6], it is
possible to constrain the variations of the control input, so a
bound on ∆u(s), in order to reduce acceleration/torque jumps
while maintaining convexity of the problem. This would still
result in discontinuous, or at least non-smooth, acceleration
commands, still piecewise constant and theoretically with an
infinite jerk. Torque rate and jerk can also be limited by
inclusion on the cost function (see, e.g., [15],[16],[17]), but
they are not limited to a specified value. Inclusion of jerk or
torque rate constraints is possible by extending the state space
to three variables, as stated in [18], where the constructed

optimization problem is however still time-dependent. Given
the appealing properties and the advantages of a smooth, jerk-
limited solution, a method to rewrite the problem combining
a nonlinear transformation of the optimization variable similar
to [6] with a jerk-level control strategy has been investigated.
Since the resulting NLP is non-convex, the complexity of this
formulation, presented in the next section, is higher than the
classical acceleration-bounded approaches and requires using
a solver able to perform global optimization.

III. PROBLEM FORMULATION

Unlike the torque-constrained model presented in [6], in this
paper a kinematic approach has been investigated, where the
dynamics of each joint is modelled as a triple integrator. In the
appendix, the formulation is extended to include the dynamics
of the robot. This section is organized as follows. First, a
presentation of the transformation of the multi-dimensional
state space of the robot in a three-dimensional state space
is presented in III-A. Secondly, the jerk-level formulation of
the problem, along with the exploited nonlinear change of
variables, is presented and discussed in III-B.

A. Path Coordinates Parametrization
Given a path in joint space coordinates, q(t) ∈ Rn, it can be

expressed as a function of a scalar path coordinate s ∈ R. This
coordinate determines the geometry of the path, whereas the
timing of the trajectory is expressed by the relation between
the path coordinate and the time, i.e., s(t). Without any loss
of generality, it is assumed to be s(0) = 0 ≤ s(t) ≤ 1 =
s(T ), which means the trajectory starts at t = 0 and ends at
t = T . Moreover, ṡ(t) ≥ 0 everywhere and ṡ(t) > 0 almost
everywhere.
In this formulation, the joint velocities, accelerations and jerks
are rewritten using the chain rule:

q̇(s) = q′(s)ṡ

q̈(s) = q′(s)s̈+ q′′(s)ṡ2
...
q(s) = q′(s)

...
s+ 3q′′(s)ṡs̈+ q′′′(s)ṡ3

(1)

where ṡ = ds/dt, s̈ = d2s/dt2, ...s = d3s/dt3, q′ = ∂q(s)/∂s,
q′′ = ∂2q(s)/∂s2 and q′′′ = ∂3q(s)/∂s3.

B. Minimun-Time Problem Formulation
Since the proposed formulation needs the jerk to be used

as the control input of the system, i.e., u(t) =
...
q(t), the time-

optimal path tracking problem can be written as:

min
T,s( · ),u( · )

T

subject tou(s(t)) =
...
q (s(t))

s(0) = 0 and s(T ) = 1

ṡ(0) = ṡ0 and ṡ(T ) = ṡT

ṡ(t) ≥ 0

s̈(0) = s̈0 and s̈(T ) = s̈T

¯
q̇ (s(t)) ≤ q̇ (s(t)) ≤ ¯̇q (s(t))

¯
q̈ (s(t)) ≤ q̈ (s(t)) ≤ ¯̈q (s(t))

¯
u (s(t)) ≤ u (s(t)) ≤ ū (s(t))

for t ∈ [0, T ].

(2)
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Similar to [6], a nonlinear variable change is used in order
to drop the time dependency and transform the optimization
problem. First, the objective function is rewritten as:

T =

∫ T

0

1 dt =

∫ s(T )

s(0)

1

ṡ
ds =

∫ 1

0

1

ṡ
ds. (3)

Then the following variables are introduced as optimization
variables with differential constraints:{

b(s) = ṡ2 , a(s) = s̈, c(s) =
...
s/ṡ

b′(s) = 2a(s) , b′′(s) = 2c(s)
(4)

and the problem (2), along with (3) becomes:

min
a( · ),b( · ),c( · ),u( · )

∫ 1

0

1√
b(s)

ds

subject to u(s) =
√

b(s)(q′(s)c(s) + 3q′′(s)a(s)+

+q′′′(s)b(s)) (∗)
b(0) = ṡ20 and b(T ) = ṡ2T
b(s) ≥ 0

b′(s) = 2a(s) and b′′(s) = 2c(s)

b′(0) = 2s̈0 and b′(T ) = 2s̈T

b(s) ≤ b̄(s) (∗∗)

¯
q̈ (s) ≤ q′(s)a(s) + q′′(s)b(s) ≤ ¯̈q(s)

¯
u (s) ≤ u (s) ≤ ū (s)

for s ∈ [0, 1]

(5)

where (**) is used to include velocity constraints as in [6].
Clearly, the presented change of variables is not defined in
ṡ = 0, hence some precautions have to be taken in order to
avoid such singularity. The resulting problem is non-convex,
due to (*), and, at first glance, it is not possible to easily assert
whether a nice convex relaxation for this kind of problem
exists. From this perspective, if the change of variables v(s) =
u(s)/

√
b(s) is used, it is possible to rewrite (*) as:

v(s) = q′(s)c(s) + 3q′′(s)a(s) + q′′′(s)b(s),

that is linear in the optimization parameters, and the jerk
bounds

¯
u (s) ≤ u (s) ≤ ū (s) in (5) as:

¯
u (s) ≤ v (s)D(s) ≤ ū (s),

where a new function D(s) is included with following con-
straints:

D2(s) = b(s), D(s) > 0.

The advantages resulting from this formulation become clear
once direct transcription is used to solve the problem numer-
ically, as shown in the next section.

IV. NUMERICAL SOLUTION

If we use direct transcription, discretizing the path coor-
dinate s on N + 1 grid points s0 = 0 ≤ sk ≤ 1 = sN
and modeling the functions b(s), a(s), c(s), D(s) and vi(s)
by a finite number of variables bk, ak, ck, Dk and vki , the
optimal control problem can be discretized to obtain a large
sparse optimization problem. Since c(s) can be treated as the
control input for the problem, it is reasonable to model it as

piecewise constant. Then, functions b(s), a(s) are piecewise
quadratic and piecewise linear, respectively. All the variables
are assigned on the grid points. The piecewise quadratic
function b(s) is computed using for each interval [sk, sk+1]
a quadratic Lagrange polynomial to interpolate bk, bk+1 and
bk+2:

b(s) = bk
(s− sk+1)(s− sk+2)

(sk − sk+1)(sk − sk+2)
+

bk+1 (s− sk)(s− sk+2)

(sk+1 − sk)(sk+1 − sk+2)
+

bk+2 (s− sk)(s− sk+1)

(sk+1 − sk)(sk+2 − sk)
, (6)

with k = 0, · · · , N − 1. Since for the last interval only two
points are available, the Lagrange polynomial through bN−2,
bN−1, bN is used for [sN−1, sN ]. The following large scale
optimization problem is obtained:

min
ak,bk,ck,Dk,vk

∑N−1
k=0

∫ sk+1

sk
1√
b(s)

ds (∗)

subject to vk = q′(sk)ck + 3q′′(sk)ak + q′′′(sk)bk

b0 = ṡ20 and bN = ṡ2T
bk > 0 and bN > 0 (∗∗)
(bk+1 − bk) = 2ak∆sk

a0 = s̈0 and aN = s̈T

ak+1 − ak = ck∆sk

aN − aN−1 = cN∆sN−1

bk ≤ b̄(sk)

(Dk)2 = bk and (DN )2 = bN

Dk > 0 and DN > 0

¯
q̈ (sk) ≤ q′(sk)ak + q′′(sk)bk ≤ ¯̈q(sk)

¯
u (sk) ≤ vkDk ≤ ū (sk) (+)

(7)

where constraint (**) is used to avoid the aforementioned
singular condition ṡ =

√
b = 0 and ∆sk = sk+1 − sk has

been defined. The objective function (*) is a sum of integrals
over [sk, sk+1], each of which can be computed analytically
or using numerical approximations like Simpson’s Rule.

A. Convex Relaxation

Spatial Branch-and-Bound (sBB) is commonly used for
the solution of NLPs to global optimality. This requires the
computation of a lower bound of the solution, usually obtained
by solving a convex relaxation of the problem [19]. An upper
bound can be obtained by solving the original non-convex
problem using values obtained from the relaxed problem and
then checking for feasibility. Even if it is generally possible to
form a convex relaxation of any NLP, tight convex underesti-
mators have been studied for particular types of constraints
[20]. Problem (7) has a bilinear constraint, (+), which is
non-convex, but can be relaxed using McCormick Envelopes
[21]. A new variable replaces the bilinear term and linear
inequality constraints representing the convex envelope of this
term are added to the problem. McCormick Envelopes provide
an envelope that retains convexity while minimizing the size
of the new feasible region. The lower bound solution obtained
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(a) Cartesian Path

0 0.2 0.4 0.6 0.8 1
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-0.5

0
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(b) Normalized Joint Path

Fig. 2. Cartesian and Joint Path. All the joints respect the limits.

solving the relaxed convex problem (see, e.g., [22] as a general
reference on convex optimization) is closer to the true solution
than if other convex relaxations were used.

V. EXPERIMENTAL RESULTS

In order to verify our formulation, simulations and tests on
a KUKA LWR robot, a 7-DoF manipulator, have been carried
out. This section is organized as follows. First, a numerical
solution of the proposed formulation for a given joint space
path is presented. This solution is then compared with the
solutions of three different strategies for the same path, namely
a velocity control with constrained speed (A - Bounded
Velocity), an acceleration control with constrained speed and
acceleration (B - Bounded Acceleration) and an acceleration
control with additional constraints on control input variations
∆u(s) (C - Bounded Acceleration Variation). Note, that
strategy (B) uses the same formulation presented in [6],
neglecting the dynamics. These results are presented in V-B,
while a discussion about the generation of the joint space path
and the robot kinematics and dynamics bound is presented in
V-A.

A. Robot Constraints and Path Generation

The bounds on the 7-DoF robot motion capabilities, later
used during optimization, are assumed to be symmetric (q̄ =
−
¯
q, ¯̇q = −

¯
q̇, ¯̈q = −

¯
q̈,
.̄..
q = −

¯

...
q ) and have been set as:

q̄ = [170◦, 120◦, 170◦, 120◦, 170◦, 120◦, 170◦]
¯̇q = [110◦/s, 110◦/s, 128◦/s, 128◦/s,

204◦/s, 184◦/s, 184◦/s]
¯̈qi = 2860◦/s2 i = 1, . . . , 7
.̄..
qi = 17200◦/s3 i = 1, . . . , 7

(8)

The task to be executed has been first designed in the Cartesian
space, defining a path for the 7th link of the robot. A 6th order
polynomial to interpolate from the initial pose to the final
pose through an intermediate way-point is used to design the
positions to follow, Fig. 2(a), while the orientation part of the
path is designed using quaternion SLERP [1] from initial to
the final configuration. The corresponding joint path, shown
in Fig. 2(b) normalized to the upper and lower bounds of each
joint, is obtained using the RP algorithm [9] where the desired
position and orientation of the end-effector are considered
together as a single task, while joint limits are introduced as
higher priority tasks, like in [2].

0 0.4 0.8 1.2 1.8 2
0

T
(B)

4

8

Fig. 3. Optimal Time for different bound on ∆u(s). The value T(B) = 1.57 s
represents the optimal time obtained using strategy (B).

B. Numerical Results

Here are presented numerical results for the given path
for the three strategies defined beforehand (A, B and C) and
our jerk-level solution with constrained zero initial and final
acceleration along the path (D). All the optimization problems
have been implemented in MATLAB using YALMIP [23]
and solved using SCIP solver [24] provided by Opti Toolbox
[25]. The path coordinate is discretized using N = 100. The
results and the worst-case performance with respect to the
given constraints for each strategy are summarized in the table
below:

Time (s) maxi |q̇i|/¯̇qi maxi |q̈i|/¯̈qi maxi |
...
qi|/

.̄..
qi

A 1.4866 1.000 21.57 656.9
B 1.5547 1.000 1.000 29.96
C 1.5700 1.000 0.900 2.810
D 1.7476 1.000 1.000 1.000

As expected, with strategies A, B and D there is at least
one joint that saturates one among velocity, acceleration or
jerk and only D respects the bound on the jerk. Using C, the
acceleration profile does not reach saturation since bounds on
the acceleration variations have been included. The resulting
profiles for each strategy are displayed in Table I, where
all the quantities have been normalized to their upper and
lower bounds and displayed with variable s on the x-axis. For
strategy D, it can be seen that a smoother acceleration profile
is obtained and the jerk is correctly within the bounds. The
total time needed to complete the task is larger for strategy D,
as expected. Some considerations have to be made for strategy
C and the imposed bounds on the acceleration variations. It is
not straightforward to understand how to impose this bound
in order to limit acceleration jumps while not affecting the
performance considerably. To quantify how much these bounds
can affect the performance, the optimization problem has been
solved for different values of the bounds on the acceleration
variation, i.e., ∆u(s) = −∆u(s) ∈ [0.1, 2¯̈q(s)] and the results
are reported in Fig. 3. As expected, too small values of the
upper bound degrade the performance considerably, while
for high values the performance become closer to the ones
obtained with B. Moreover, using strategy C, we are able to
limit the jerk but we can not guarantee that is limited to a
specified value.
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TABLE I
NUMERICAL RESULTS FOR DIFFERENT STRATEGIES APPLIED TO THE SAME PATH

Strategy and Time Joint Velocities Joint Accelerations Joint Jerks

Bounded Velocity - (A)
Time = 1.4866 s

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Bounded Acceleration - (B)
Time = 1.5547 s

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Bounded Acceleration Varia-
tion - (C) Time = 1.5700 s

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Bounded Jerk - (D)
Time = 1.7476 s

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

C. Tests on a real manipulator

The proposed formulation has been tested on a KUKA LWR
IV+ robot, a 7-DoF manipulator shown in Fig. 1. The opti-
mization is used to plan the motion of the robot, i.e., generating
the optimal jerk-limited trajectory q(t) which is then sent to
the robot. The manipulator has been controlled using its ROS-
based interface [26]. To show the quality of our solution, our
approach has been compared to the three strategies presented
beforehand. For each strategy the maximum jerk is reported.
Moreover, further analyses have been carried out to compare

the smoothness of the acceleration profiles. To do so, we have
defined a function to evaluate the jerk profile of all the seven
joints. To do so, we introduce the function S : R7×N → R+,
with N number of samples:

S(
...
q) =

1

tf
·

√√√√ 7∑
i=1

|...qi|2 (9)

where tf is the total trajectory time and |...qi| is the L1− norm of
the jerk profile of the joint i. The results are reported in Table
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TABLE II
EXPERIMENTAL RESULTS FOR DIFFERENT STRATEGIES APPLIED TO THE SAME PATH

Joint Velocities Joint Accelerations Joint Jerks IMU Measurements

A

0 0.5 1 1.5 2

-3

-2

-1

0

1

2

3

4

0 0.5 1 1.5 2

-50

0

50

0 0.5 1 1.5 2

-1500

-1000

-500

0

500

1000

1500

2000

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

B

0 0.5 1 1.5 2

-3

-2

-1

0

1

2

3

4

0 0.5 1 1.5 2

-50

-25

0

25

50

0 0.5 1 1.5 2

-1500

-1000

-500

0

500

1000

1500

2000

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

C

0 0.5 1 1.5 2

-3

-2

-1

0

1

2

3

4

0 0.5 1 1.5 2

-50

-25

0

25

50

0 0.5 1 1.5 2

-1500

-1000

-500

0

500

1000

1500

2000

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

D

0 0.5 1 1.5 2

-3

-2

-1

0

1

2

3

4

0 0.5 1 1.5 2

-50

-25

0

25

50

0 0.5 1 1.5 2

-1500

-1000

-500

0

500

1000

1500

2000

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

III. The velocity, acceleration and jerk profiles are reported in
Table II, where it can be seen how the jerk is considerably
lower for strategy D, while it can reach considerably high
values for strategies A and B. Moreover, in order to show
how jerk-limited trajectories can contribute to reducing the
vibrations of the overall system, we used an IMU placed on
the same structure where the manipulator is mounted, a cube of
2m×2m×2m with Misumi aluminum beams, as highlighted
in figure 4(a), to measure the accelerations due to the motion
of the manipulator. The data provided by the IMU reported in

Table II highlights the stated reduction of structural stresses if
a jerk-limited trajectory is used, clearly at the expense of the
task accomplishment time. Statistics about these measurements
are reported in the Table III, where we have a 62% reduction
on the peak value between our approach and strategy A and
overall improvements with respect to the other strategies.
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TABLE III
NUMERICAL RESULTS FOR EACH STRATEGY

maxi |
...
qi| S(

...
q) max∆aIMU ∆aIMU σ(∆aIMU)

A 1918.1 20788 0.7475 0.0864 0.0926
B 959.80 15610 0.4309 0.0703 0.0654
C 641.19 14275 0.3530 0.0658 0.0622
D 252.45 9201 0.2816 0.0577 0.0477

The results show that using our approach, it is possible to reduce the maximum jerk and
obtain lower value for the introduced function S. Values for the maximum value, mean
and standard deviation of the IMU measurements are also reported.

(a) KUKA LWR Setup (b) Franka Emika Setup

Fig. 4. Placement of the IMU on the structure using KUKA LWR robot (a)
and experimental setup using Franka Emika Panda Robot (b)

D. Experimental Results on a Franka Emika Panda 7-DoF
Manipulator

Further experiments have been conducted using a Franka
Emika Panda 7-DoF Manipulator. We tested four different
trajectories using strategies B, C and our approach D. We set
the velocity and acceleration limits as 60% of their maximum
values, while for the jerk we set a constraint equal to 0.6%
of its maximum allowed. In these the tests we wanted to
compare the average performance in terms of reduced jerk
and smoothness for strategy C and D. The numerical results
obtained are reported in Table IV, where we compared the two
strategies to strategy B, which does not include any type of
jerk limitation/reduction. We can see how our approach has
better performance in terms of peak jerk and lower values of
function S, at the expense of a larger time needed to complete
the tasks. Results for Strategy A are not reported since the
robot would stop due to violations of the acceleration limits.
The accompanying video shows the execution of all presented
trajectories.

VI. CONCLUSIONS

In this paper, we presented a motion planning techniques
to generate optimal jerk limited trajectories. Based on the
formulation of a minimum-time path tracking problem with
the jerk as control input, it has been stated that the resulting
non-convex NLP problem can be transformed in a way to allow
an efficient and reliable convex relaxation using McCormick
Envelopes. The simulations and experimental tests carried out
on two real 7-DoF manipulators demonstrate the improve-
ments of the stated approach compared to other state-of-the-
art methods. The tests showed how, using SCIP as solver, the
time needed to compute the solution depends on the number
of points used and on how tight the constraint on the jerk
is, with times that vary from a minimum of 1.3 seconds to

TABLE IV
RELATIVE CHANGES FOR A SET OF TRAJECTORIES USING STRATEGY C

AND D TO REDUCE JERK COMPARED TO STRATEGY B

Peak Jerk S(
...
q) Trajectory Duration

C −13.2% −7.42% +7.23%

D −44.6% −33.9% +22.3%

Using our approach, the peak Jerk is considerably reduced, at the expense of an
increased time needed to complete the task.

a maximum of 5467.6 seconds using a Laptop PC equipped
with Intel Core i7 Processor (4x2.80 GHz) and 32 GB DDR4
RAM. Experiments with different and powerful solvers are
deferred to future works. Further investigation will be carried
out, in order to apply this approach to Soft-Robots, extending
the formulation for the case where jerk derivatives are used as
control inputs in the time-optimal path tracking problem.

APPENDIX

The formulation stated in Section III neglects the robot
dynamic model. In this section, a way to model the problem
including robot dynamics is carried out, discussing a formula-
tion of the non-convex NLP that allows an appealing convex
relaxation, similar to the one proposed in this paper.

A. Including the Robot Dynamic Model

The equation of motion of a n−DoF robot with configura-
tion vector q ∈ Rn can be written as [1]:

τ = M(q)q̈ + C(q, q̇)q̇ + G(q), (10)

where M(q) ∈ Rn×n, C(q, q̇) ∈ Rn×n and G(q) ∈ Rn
are the positive definite mass matrix, the Coriolis matrix and
the gravity vector, respectively. Following the same procedure
reported in Section III, we use the torque rate, τ̇ , as limited
control input, since we want to obtain a continuous and smooth
torque profile. This rate is expressed as:

τ̇ = M(q)
...
q +

(
n∑
i=1

∂M(q)

∂qi
q̇i

)
q̈ + C(q, q̇)q̈+

Ċ(q, q̇, q̈)q̇ + Ġ(q, q̇). (11)

Using (1) to highlight the dependency from s and knowing
that:

C(q, q̇)q̇ =

(
n∑
i=1

∂M(q)

∂qi
q̇i

)
q̇− 1

2
q̇T

∂M(q)

∂q
q̇ (12)

after some algebraic manipulation, (11) can be written as:

τ̇ (s) = K1(s)
...
s+K2(s)ṡs̈+K3(s)s̈+

K4(s)ṡ3 +K5(s)ṡ2 +K6(s)ṡ, (13)

where Ki(s) are functions of the path coordinate s and the
path q(s) and its derivatives with respects to s; their analytic
forms are not reported for the sake of brevity. Using the same
nonlinear change of variables stated in (4) we can obtain:

τ̇ (s) = K1(s)c(s)
√
b(s) +K2(s)a(s)

√
b(s)+

K3(s)a(s) +K4(s)b(s)
√
b(s)+

K5(s)b(s) +K6(s)
√
b(s). (14)
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which is clearly nonlinear. Introducing three auxiliary func-
tions and the associated constraints:

D(s) =
√
b(s), v(s) =

τ̇ (s)

D(s)
, M(s) =

a(s)

D(s)
, D(s) > 0,

the new control input v(s) is now affine in the expanded
optimization variables set. Using direct transcription to solve
the resulting NLP problem numerically we obtain:

min
ak,bk,ck,vk,Dk,Mk

∑N−1
k=0

∫ sk+1

sk
1√
b(s)

ds

subject to
vk = K1(sk)ck +K2(sk)ak +K3(sk)Mk +K4(sk)bk+

K5(sk)Dk +K6(sk)

b0 = ṡ20 and bN = ṡ2T
bk > 0 and bN > 0

Dk > 0 and DN > 0

(bk+1 − bk) = 2ak∆sk

a0 = s̈0 and aN = s̈T

ak+1 − ak = ck∆sk and aN − aN−1 = cN∆sN−1

bk ≤ b̄(sk)

(Dk)2 = bk and(DN )2 = bN

MkDk = ak and MNDN = aN (∗)

¯
τ (sk) ≤ m̃(sk)ak + c̃(sk)bk + g̃(sk) ≤ τ̄ (sk) (∗+)

¯
u (sk) ≤ vkDk ≤ ū (sk) (+)

where in (∗+) the formulation presented in [6] for τ(s) has
been used. It can be noted that the non-convex constraints are
the bilinear ones, (+) and (*), as for the problem stated in
Section IV. The considerations made about convex relaxation
for these types of constraints still hold.
Using this formulation is, therefore, possible to write a non-
convex NLP problem with torque rate as bounded control
input. A convex relaxation of the nonlinear constraints can be
efficiently performed, and the globally optimal solution can be
computed.
Applying the same considerations made in [7], this analysis
can be extended to systems with dynamics:

R(q)u = M(q)q̈ + C(q, q̇)q̇ + G(q),

where R(q) ∈ Rp×n is the control matrix of the system and
p is the dimension of the control vector.
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