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Abstract— In this paper, we introduce a novel regressor-
based observer method to adapt an initially erroneous dy-
namics model of serial manipulators for improving collision
detection sensitivity. Specifically, we assume that the robot joint
velocity and acceleration can be accurately estimated via our
previously introduced nonlinear estimator [1], [2] that fuses
Inertial measurement unit (IMU) measurements with the robot
proprioceptive sensing. Given the relatively high bandwidth of
nowadays IMUs compared to a standard robot sensorization,
the estimated kinematic joint variables support the prompt
detection of unpredictable collisions. Compared to the state
of the art, our algorithm notably improves collision detection
accuracy and sensitivity, surpassing traditional methods such
as the well established momentum based scheme. We support
our claims and demonstrate the performance of our algorithm
on a 7 degree of freedom (DoF) robot manipulator, both in
simulation and experiment.

I. INTRODUCTION AND STATE OF THE ART

Safe human robot interaction is becoming more important
as robotic systems pave their way into our daily lives.
Detecting unpredictable collisions is an important phase in
the collision event pipeline and, therefore, necessary for
creating a safe framework for human-robot interaction [3].
Detected collisions can be considered as actuator faults in
robotic systems [4], as it implicitly means that the actuator
fails to behave as expected. The expected actuator behavior
comes from an available dynamic system model. The most
common state-of-the-art collision detection methods, such
as the generalized momentum observer [4]–[8], the energy
observer [3] or the disturbance observer from [9] compare
some expected physical quantities such as the robot general-
ized momenta, energy or joint torque based on the available
dynamics model to available measurements. Therefore, the
robot dynamics models have direct influence on the collision
detection precision.
These models, however, are never perfect because of time-
varying coefficients such as motor coefficient and additional
uncertainties such as load, backlash and friction [10], [11].
Specifically, both external forces applied to the robot links
and modeling errors appear as the difference between the
expected and measured physical quantities. Thus, the main
challenge in today’s collision detection approaches is to
differentiate between modeling errors and externally applied
forces. A common practice is to use thresholds, which is a
simple strategy to avoid false collision detection. The main
disadvantage of this approach is the decrease in the overall
collision sensitivity and increase in detection delay. In other
words, more severe modeling errors result in larger threshold
selection and therefore, reduced sensitivity and responsive-
ness to collisions. In [12] a machine learning method is uti-
lized to reduce model uncertainties in collision detection. As
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a result, smaller thresholds are required. The main limitation
of the algorithm is that it can not be generally used for
all robot manipulators in every situation. Time consuming
data collection and training procedure is another drawback
of such methods. Alternatively, time-variant thresholds are
introduced in [13] in order to increase collision detection
sensitivity. The algorithm contains several parameters, which
need to be tuned. Since tuning the parameters requires large
amount of collected data, it can be time consuming. Some
of these parameters are related to the motor friction, which
implicitly means that the parameters need to be constantly
tuned. This, however, increase maintenance efforts.
Instead of using large thresholds, one can reduce model
uncertainties in order to increase the collision detection
precision. In [14] the physically-meaningful robot model
is replaced with a neural network one, which shows less
uncertainties. The algorithm is, however, dependent on the
controller and therefore, large tracking errors are misclas-
sified as faults or collisions. Moreover, due to the required
heavy filtering, the method bandwidth is very limited.
Model adaptation, which was originally used to reduce
trajectory tracking errors in robot manipulators [15], [16], is
also a means to reduce the modeling errors or uncertainties.
The robot dynamics model is adapted in [17] by estimating
the model unknown parameters with assuming the avail-
ability of direct acceleration measurement. The monitoring
signal is estimated based on the estimated robot manipulator
generalized momentum. It is, however, well known that the
momentum observers, despite clearly being the state-of-the-
art scheme, has limited bandwidth [2].
In this paper, we introduce a novel method to adapt and
improve the robot manipulator dynamics models in order
to increase collision detection reliability, while maintaining
high detection bandwidth and implementation simplicity.
The underlying idea of the method lies on the fact that
modeling errors and externally applied forces have different
frequency characteristics. Robot modeling errors are mainly
due to the simplification of dynamics expressions and/or the
uncertainties in the inertial parameters such as link mass or
inertia [18]. In this paper we account for the parametric un-
certainties, which intrinsically have slow dynamics. For this,
we introduce a Luenberger-like observer based on the robot
regressor dynamics, which compares the estimated joint
torques with the measured ones. First, in the transient time
of the observer the parametric errors are estimated. Then, the
estimated modeling errors are deducted from the monitoring
signal, which is the difference between the model-adaptive
computed torque and the measured one. As a result, high
transient signals indicate potential dynamic impacts [19].
Furthermore, since different types of sensors are fused to
generate high quality joint velocity and acceleration signals
based on our most recent work [2], the proposed method
shows high numerical stability, bandwidth and sensitivity
compared to the state-of-the-art.



The remainder of the paper is organized as follows. In
Section II, the problem of interest and the proposed solution
are explained. In Section III, we introduce the required basics
for solving the collision detection problem. In Section IV and
V, we validate the theory in simulation and experiment with
a 7-DoF robot, respectively. Finally, the paper concludes in
Section VI.

II. PROBLEM STATEMENT AND CONTRIBUTION

Improving or adapting robot dynamics models for collision
detection purposes has essentially been of lesser focus so
far. Typically, the expected torque is computed based on
the available robot dynamics model, which is essential to
the quality of the estimated external torque. Since no robot
model is perfect, the signal which carries the collision data
(also called the remainder signal) is erroneous in nature.
Moreover, joint velocity information is generally required
in existing collision detection algorithms. As there exist no
accurate measurement device for measuring joint velocity in
manipulators, it is normally computed by numerical differ-
entiation of the joint position. This causes additional noise to
the remainder signal due to the quantized nature of the joint
position measurement. Therefore, the traditional collision
detection methods normally suffer from poor signal to noise
ratio (SNR). In order to solve this issue, thresholds are
traditionally used to distinguish between errors and real col-
lisions in the remainder signal. This, however, will reduce the
system sensitivity to the applied external forces. Moreover,
as proprioceptive measurements have limited bandwidth, the
state-of-the-art collision detection algorithms have limited
bandwidth as well.

In our recent work [2], we fused IMUs with proprio-
ceptive sensing to increase collision detection bandwidth.
Furthermore, we introduced an observer which generates
joint velocity and acceleration estimates that are more ac-
curate than standard numerical differentiation and have large
bandwidth. This increases the SNR and results in smaller
required thresholds to detect collisions. In this paper, we
intend to further improve the remainder signal by adapting
the robot model online. Given that robot modeling errors
are characterized by slow dynamics, they are intrinsically
different from external forces. By exploiting this idea, we de-
signed a Luenberger-like observer, which takes the difference
between the expected and measured torques and separates
its slow- and fast-dynamics components. The fast-dynamics
components are then reported as collision. By doing so, the
remainder signal becomes cleaner and consequently its SNR
improves. As a result, smaller thresholds are required and the
collision detection sensitivity increases. Furthermore, since
the IMU data is fused with the available robot measurements,
the bandwidth is higher than the traditional collision detec-
tion methods. Figure 1 summarizes the improvements and
advantages of our proposed scheme in comparison to state-
of-the-art collision detection algorithms.

III. MODEL-ADAPTIVE COLLISION DETECTION

Let us assume the standard rigid body dynamics model of
a robot with n joints as

M̂(q)q̈ + Ĉ(q, q̇)q̇ + ĝ(q) = τm − τ̂ f + τ ext − τ e, (1)

where q, q̇, q̈ ∈ Rn denote the link side joint position,
velocity and acceleration, M̂(q) ∈ Rn×n the available
estimation of symmetric and positive definite inertia matrix,
Ĉ(q, q̇)q̇ ∈ Rn the estimation of centripetal and Coriolis

Fig. 1: Schematic comparison of the state-of-the-art with the proposed
solution

vector, ĝ(q) ∈ Rn the estimation of gravity vector, τ ext ∈ Rn
the external torque caused by unforeseen collisions, τm ∈
Rn the active motor torque, τ̂ f ∈ Rn the estimation of
friction torque and τ e ∈ Rn modeling errors. Please note
that since the exact dynamics model (M(·), C(·), g(·) and
τ f ) is not known in reality, the modeling error τ e appears
in the approximated dynamics model.
In this section we assume that no collision occurs during
model adaptation, i.e. τ ext = 0. Thus, system (1) can be
reformulated to linear in parameter (LIP) form as [20]

Y (q, q̇, q̈)θ̂ = τm − τ e, (2)

where Y (·) ∈ Rn×m is called regressor matrix and contains
the robot kinematics information. θ̂ ∈ Rm is the erroneous
robot inertial parameters vector which consists of each
link mass m ∈ Rn, center of mass c ∈ R3n, elements of
moment of inertia tensor I ∈ R6n and the coefficients of
friction. θ̂ comes with ·̂ to express that this parameter is not
exact, due to the modeling errors in (1). Therefore, if θ was
available, τ e = 0 would hold, i.e.

Y (q, q̇, q̈)θ = τm. (3)

Depending on the choice of linear joint friction model,
which may include either or both of viscous and Coulomb
friction, the number of corresponding coefficients in the
inertial parameters vector varies. However, in simulation and
experiment the friction effects are neglected for the sake of
clarity. Moreover, following the procedure proposed in [20],
there will normally appear linearly-dependent columns in the
regressor matrix. There exist different approaches such as the
ones in [21], [22] to remove these columns. Accordingly,
the elements of θ will turn into linear combinations of the
inertial parameters mentioned above. Therefore, the length
and structure of θ will be determined by the structure of the
regressor matrix.
Robot geometry information is normally provided with high
accuracy by the manufacturers. Moreover, various algorithms
for robot geometry calibration are known. Thus, we assume
that the regressor matrix is known. The modeling errors
are considered as parametric uncertainties in the inertial
parameters, i.e

τ e = Y (q, q̇, q̈)δθ, (4)

or
Y (q, q̇, q̈)(θ̂ + δθ) = τm, (5)

with δθ ∈ Rm being the constant (or slowly varying)
and bounded inertial parameter error. Please note that the



availability of θ̂ itself is not of this work’s concern. In
general, it is assumed that some non-accurate robot dynamics
model with the unknown bounded error δθ is available. From
a practical standpoint, a model can be of the form (1), (2)
(with unknown τ e and τ ext) or even numerical values of
M̂(·), Ĉ(·) and ĝ(·) provided by the robot interface.

a) Observer Design and Model Adaptation: In order
to estimate the robot modeling error τ e, we propose a
Luenberger-like observer. Given that the inertial parameters
deviation δθ is considered to be constant, the dynamics of
the modeling error is

τ̇ e = Ẏ (q, q̇, q̈)δθ, (6)

where Ẏ (·) is the derivative of the regressor with respect
to time. Given that one has smooth joint velocity and
acceleration such as [1], [2], Ẏ (·) can be calculated by
numerical differentiation. State space representation of the
dynamic of the modeling error is then given by

Ẏ (·)δθ = Ẏ (·)Inδθ = Ẏ (·)Y +(·)Y (·)δθ (7)

or more concretely

τ̇ e = Ẏ (·)Y +(·)τ e, (8)

with In being the identity matrix of size n and Y +(·) the
pseudo-inverse of the regressor matrix. As Ẏ (·) and Y +(·)
are both a posteriori known values, (8) is used to update the
state τ e. If we denote the estimated inertial parameter error
as δθ̂ ∈ Rm, the observer dynamics are given by

d
dt

(
Y (·)δθ̂

)
= Ẏ (·)δθ̂ + Y (·)δ ˙̂

θ (9)

One can define the adaptation law for δθ̂ as

δ
˙̂
θ = Y +(·)KY (·)

(
δθ − δθ̂

)
Y (·)δ ˙̂

θ = K
(
Y (·)δθ − Y (·)δθ̂

)
, (10)

where K = diag(K1 · · ·Kn) ∈ Rn×n is a positive diagonal
gain matrix. By replacing Y (·)δθ in (10) with (5), we get

Y (·)δ ˙̂
θ = K

(
τm − Y (·)(θ̂ + δθ̂)

)
. (11)

The commanded torque τm is assumed to be measurable.
Therefore, in the correction step the estimated τ̂m =
Y (q, q̇, q̈)(θ̂+δθ̂) is compared with the measured one. Now,
by reformulating (9), the observer dynamics are

d
dt

(
Y (·)δθ̂

)
= Ẏ (·)δθ̂ +K

(
τm − Y (·)(θ̂ + δθ̂)

)
.

(12)
Figure 2 shows the block diagram of this observer. Since
the joint variables q̂, ˆ̇q and ˆ̈q are initially estimated by a
nonlinear estimator, the regressor matrix Ŷ (·), its pseudo
inverse Ŷ +(·) and derivative ˙̂

Y (·) as well as the available
erroneous robot model Ŷ (·)θ̂ are denoted by .̂ symbol.
Furthermore, r is the remainder signal, whose characteristics
will be discussed later.
Take eO = Y (·)(δθ − δθ̂) as the observer error. According
to (8) and the adaptation law (10), the error dynamics are

ėO =
(
Ẏ (·)Y +(·)−K

)
eO. (13)

In the absence of external forces, the regressor matrix and
its derivative are bounded for any given trajectory [23].

Moreover, the regressor matrix is assumed to have full rank
along the given trajectories and therefore, its pseudo-inverse
is non-singular. Thus, the observer converges with large-
enough positive definite gain matrix K. In turn, it also
determines how fast the modeling error converges.

b) Observability: Since we are dealing with a nonlinear
system, we need to check the rank condition of the nonlinear
observability matrix

O =



∂
∂τ e
g(·)

∂
∂τ e

(Lfg(·))
∂
∂τ e

(L2
f g(·))

...
∂
∂τ e

(Ln−1
f g(·))


, (14)

where Lfg(·) is the Lie derivative of g(·) with respect to
f(·) [24]. The dynamics of τ̇ e = f(τ e, q, q̇, q̈) are given
by (8) and the measurement function g(τ e, q, q̇, q̈) by (5).
Since ∂g(·)

∂τ e
= In has full rank, the system is globally

observable with respect to τ e. Therefore, as long as τ e (or
equivalently δθ) is bounded, one will be able to estimate it.

c) Regressor Computation: So far, it is assumed that
the correct regressor matrix, its derivative and pseudo-inverse
are always available. The regressor is a complex function of
the robot kinematics, though. In other words, the regressor
can only be computed when the joint variables q, q̇ and q̈
are known. In our recent work [1] we introduced a method
to estimate joint velocity and acceleration by fusing the link-
side position measurements q with the Cartesian acceleration
Ẍ at the IMU location on the link. The link Cartesian ac-
celeration is measured by an accelerometer installed on each
robot manipulator link. IMUs are electrical devices which
are typically equipped with a 3-axis accelerometer and a 3-
axis gyroscope. Replacing the accelerometers with IMUs on
each robot link, we are able to fuse also the gyroscope data
in the estimator. This increase the accuracy and bandwidth
of the estimated joint velocity and acceleration [2]. Once the
highly-accurate estimated joint variables are at hand, one is
able to obtain the regressor matrix and its components (e.g.
Ẏ (·) and Y +(·)).

d) External Torque Detection: So far the external
torque was absent in the calculations. However, detection
of the externally applied torques on the robot links at the
observer steady state via the remainder signal r is elaborated
here. Given the true inertial parameters (θ̂+δθ), the external
torque is

τ ext = Y (·)(θ̂ + δθ)− τm. (15)

with the remainder being defined as

r = Y (·)(θ̂ + δθ̂)− τm. (16)

Deducting (15) from (16), we get

r − τ ext = Y (·)(δθ̂ − δθ). (17)

Differentiating both sides w.r.t time leads to
d
dt

(r − τ ext) =
d
dt

(Y (·)(δθ̂ − δθ))

= Ẏ (·)(δθ̂ − δθ) + Y (·)δ ˙̂
θ

= −Ẏ (·)Y +(·)Y (·)(δθ − δθ̂) + Y (·)δ ˙̂
θ. (18)
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Fig. 2: Model-adaptive collision detection block diagram

As mentioned earlier, δθ is assumed to be constant. A mo-
ment before the impact and at its steady-state, the observer
error Y (·)(δθ − δθ̂) is at minimum. Given that the impact
time is practically very small [19], Y (·)(δθ − δθ̂) ≈ 0
can also be assumed during the collision. Please note that
even though the observer error is considered to be small
during the impact, with large values of K, Y (·)δ ˙̂

θ 6= 0 is
not negligible in (18). Furthermore, Y (·)δ ˙̂

θ is given by the
adaptation law (11). With the help of (11) and (16), (18)
simplifies into the linear form

r(t) = −K
∫ t

τ=0

r(τ)dτ + τ ext(t). (19)

As a result, the transfer function from the actual external
torque τext,i of the i-th link to the signal ri is of the form

ri

τext,i
=

s

s+Ki
. (20)

This shows that the observer acts in first approximately as
a high-pass filter on the external torque with the cutoff
frequency Ki, during the impact incident.

IV. SIMULATION EXPERIMENTS

In this section the collision observer is simulated for
a 7-DoF robot manipulator. The dynamic model of the
manipulator is provided by Gaz et al. [25] and accessi-
ble from http://diag.uniroma1.it/~gaz/panda2019.html. One
IMU (BMI055 [26]), with all parasitic effects such as noise,
bias, quantization and sensitivity and bias change due to
temperature, is assumed to be mounted on each robot link.
An internal low-pass filter with 1 kHz cutoff frequency trun-
cates the sensor noise. Moreovers, encoders are simulated as
12-bit sensors with 3 LSB affected by noise. For the sake
of simplicity, we do not model the entire joint dynamics
and assume that the link-side position and joint torque are
measurable at 100 Hz −3 dB bandwidth, in this section. We
initially investigate the performance of the inertial parameter
error estimation (δθ̂ ∈ R43). Given the observer state τ̂ e, the
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Fig. 3: The largest relative error among estimated inertial parameters with
model-adaptive collision detection (left) and model-adaptive control (right)

estimated inertial parameter error can be computed via

δθ̂ = Y +(q, q̇, q̈)τ̂ e, (21)

where Y +(·) is the exact regressor pseudo-inverse. The
inertial parameter error is chosen to be

δθ = U(−0.1θ, 0.1θ), (22)

where U denotes uniform distribution. In other words, the
inertial parameters error is uniformly distributed between
±10% of the true values. The minimal inertial parameters
vector θ (and consequently δθ) is assumed to be fully
excitable with our excitation trajectory. This Fourier-like
excitation trajectory respects the joint torque, velocity as
well as position limits of the considered system and lasts
for 20 seconds. The observer gain is set to K = 100I7.
We compare our method performance in estimating the true
inertial parameters with a somewhat related model adaptive
control system introduced in [27]. Similar to our method,
the algorithm is regressor-based. However, the joint accel-
eration measurement is not required. We picked this sliding
mode adaptive controller mainly due to its implementation
simplicity and promising stability properties as well as its
popularity. The adaptation law for the available erroneous
inertial parameters is given by

˙̂
θ = −Γ−1Y T (q,∆q/∆t, q̈r)s,

q̈r = q̈d −Λ(∆q/∆t− q̇d),

s = ∆q/∆t− q̇d + Λ(q − qd), (23)

where Γ−1 ∈ Rm×m is a symmetric positive definite matrix
which determines the adaptation rate. Also, the eigenvalues
of the Λ ∈ Rn×n are strictly on the right-half complex plane.
Furthermore, qd, q̇d, q̈d ∈ Rn denote the desired trajectory
and ∆q/∆t is the numerical differentiation of the measured
link-side position q.
Figure 3 depicts the largest estimated inertial parameters
vector relative error, max

(
δθ−δθ̂
δθ

)
estimated by both meth-

ods. It shows that even with a rich excitation trajectory,
some of the inertial parameters do not converge to their
true values. As can be seen, our solution has in general
smaller relative error, as it benefits from more accurate
joint velocity and acceleration signals. Furthermore, Fig. 4
depicts the estimated external torque error of the second link
(τext,2− τ̂ext,2) in the absence of collision. This value (which
is the largest one among the seven links) is relatively close
to negligible, considering the large maximal torque in the
second joint. Thus, it becomes clear that even though not
all inertial parameter errors are fully identified, the observer
satisfactorily rejects the modeling errors.
At this point, one might argue that instead of using the

observer, which requires computation of the regressor matrix,
we could simply use a high-pass filter to eliminate the mod-
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Fig. 4: The largest estimated external torque error (2nd link) with model-
adaptive collision detection

eling errors from the remainder signal. As a result, no IMU
needs to be installed and the computational costs decrease.
However, the main advantage of our method lies in the
higher bandwidth, brought by the IMUs and consequently,
the estimated joint variables. Therefore, the next simulations
aim at investigating the effect of the observer gain on the
external torque estimation at different frequencies with and
without IMUs. The modeling error (22) as well as the motion
trajectory remains the same as in the previous simulation. In
order to further simplify the results, the external force is
assumed to be applied to the first link only. The external
torque is modeled as a step that is filtered via a first-order
low-pass filter with cutoff frequency f .
Figure 5 depicts the system block diagram without IMU.
ωLP refers to the low-pass filter cutoff frequency and is
chosen to be fLP = 100 = ωLP/2π Hz. Here, the signs are
flipped, when comparing the measured and expected torques
to generate the signal τ̂ext. Therefore, no negation will be later
needed. Please also note that without the high-pass filter, the
system reduces to the direct method for collision detection
with numerical differentiation, fully covered in [2].
Figure 6 (a-d) depict the signal rD. Due to limited mea-
surement bandwidth, the high-frequency components of the
external force are already eliminated from rD. As a result,
the high-pass filter channels mainly noise. According to
Fig. 6 (c) and (d), which are more similar to real impacts,
the method works for very limited gains around K ≈ 1 rad.
Larger gains reduce the amplitude of rD, such that the
impact is not distinguishable from the severe noise. Smaller
gains, on the other hand, do not effectively reject modeling
errors. Since only narrow range of K can deliver somewhat
useful results, the setup is essentially impractical. In conclu-
sion, high-pass filters may reduce the parametric modeling
errors however, fast and proper detection of impacts is neither
guaranteed nor robust in this setup.
Figure 6 (e-h) show the estimated external torques with
different observer gains K for the model-adaptive collision
detection. With high K, slow dynamics external forces are
more difficult to detect. As mentioned before, one of the
main advantages of the proposed solution is its large esti-
mation bandwidth, which allows high-pass filtering actions
on the remainder signal. We further discuss the real-time
computation aspects of the algorithm in Sec. V. Please note
that, the purpose of the method is not to estimate the exact
external torque/force applied to the robot, but to quickly
detect and report failures in the form of impacts. Thus,
detecting only parts of the impact spectrum suffices the
desired specification. As a result, K can always be chosen as
K >> 10. Thus, given the observer error dynamics (13), the
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Fig. 5: Collision detection with direct method and high-pass filtering block
diagram

observer error (eO) reaches 10% of the initial error (eO,0)
in approximately less than a second.

V. EXPERIMENTAL EVALUATION

The method introduced in Sec. III, is now examined with
a 7-DoF robot manipulator. The experiment is carried out
in two different setups namely, offline and online modes. In
the offline mode, based on the real robot trajectory, one IMU
per robot link is simulated. In the online case on the other
hand, one IMU is installed at the robot end-effector and the
collision is detected under real-time conditions.

a) Traditional Collision Detection Methods: Before
proceeding to the experiments, three traditional collision
detection methods namely, the generalized momentum ob-
server, observer-extended direct method and the adaptive
momentum observer are briefly introduced. Subsequently, the
performance of these methods is compared with the new
technique.
In the momentum observer, the robot manipulator general-
ized momentum p = M(q)q̇, with the dynamics [3]

˙̂p = τm − τ f − β̂(q, q̇) + rM

β = g(q) +C(q, q̇)q̇ − Ṁ(q)q̇

ṙM = KO(ṗ− ˙̂p), (24)

is observed with diagonal observer gain KO ∈ Rn×n. Please
note that β is only an auxiliary variable. The solution of the
remainder signal rM and the output of the observer are given
by

rM(t) = KO

(
p(t)−

∫ t

τ=0

˙̂p(τ)dτ − p(0)
)
, (25)

which implies

ṙM = KO(τ ext − rM). (26)

In other words, the momentum observer leads to a first-order
low-pass filter estimation of the applied external torques.
The observer-extended direct method on the other hand,
solves (1) algebraically, given the estimated joint velocity and
acceleration provided by the nonlinear estimator. Because
of rich sensory fusion, the method shows better bandwidth
and accuracy compared to the momentum observer [2]. Both
methods, however, neglect modeling errors and assume a
perfect robot dynamics model.
In the last traditional collision detection algorithm introduced
in [17] however, the robot dynamic model is adapted using
gradient correction. The technique is basically a general
momenta observer (24) combined with an adaptive finite
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Fig. 6: Collision detection with direct method with high-pass filtering (a-d) compared to model-adaptive collision detection (e-f) (our proposed solution)
performance against different external torque reference signals. Both setups contain the same modeling error, measurement bandwidth and trajectory.

impulse response (FIR) filter for reducing the modeling
errors. Along with the model adaptation, some dynamic
threshold for separating the false alarms from collisions are
also estimated. The filtered residual rF ∈ Rn is given by

rF = HrM, (27)

where H ∈ Rn×n is the adaptive FIR filter and rM the
remainder obtained by momentum observer (24). For detailed
explanations on the adaptation laws and threshold estimation,
please refer to [17]. For the sake of simplicity, the technique
is referred to as adaptive momentum observer, in this work.

Offline mode: Complex motion trajectories may intro-
duce highly nonlinear modeling errors that might be more
challenging for the observer to estimate. Here, we investi-
gate the modeling error rejection as well as the detection
sensitivity of our method when the collision happens while
executing a Cartesian motion.
To the best of the authors knowledge, there exist no robot
manipulator, which is fully equipped with IMUs as of today.
In the offline mode however, the robot motion is recorded
and one IMU per link is simulated subsequently. Specifically,
the IMUs are simulated based on the BMI055 [26] datasheet,
indicating all relevant parasitic effects. Accordingly, noise
power spectral density is 150 µg/

√
Hz for the accelerometer

and 0.014◦/s/
√

Hz for the gyroscope. The full scale is cho-
sen 1 g for the accelerometer and 1000◦/s for the gyroscope.
Both sensors report the measurements in 12 bits. The cutoff
frequency of the internal second-order low-pass filters is
250 Hz for the accelerometer and 64 Hz for the gyroscope.
The advantage of the offline-mode experiment is that all
joints can be actuated during the experiment, without needing
to install real IMUs on all links. The robot moves linearly
in Cartesian space from the start configuration and collides
perpendicularly with a force plate in this experiment (Fig. 7).
The force plate contains high-bandwidth high-accuracy force
sensors, which return the contact wrench at the contact
position. The trapezoidal Cartesian joint trajectory has three
cruise velocities, namely low (0.2 m/s) and normal (0.5 m/s)
and high (2 m/s) velocities. Since the external torques can be
observed at all joints and for the sake of clarity, the external
force at the contact is compared via

f c = J−Tr, (28)

with f c ∈ R6 being the exerted wrench at the contact point,
J ∈ R6×7 and r ∈ R7×1 the remainder signal computed

by any suitable algorithm. Therefore, the contribution of
the detected external torque at all joints can be summed
up and compared. Furthermore, since the impact direction
is nearly perpendicular to the force plate, we only report
and compare the third element of f c (fz = [0 0 1 0 0 0]f c),
which is the force in the direction of the motion. Figure 8

Fig. 7: Offline collision monitoring experimental setup with force plate

depicts the estimated f̂z by different methods. As can be seen
in all figures, the model-adaptive collision detection rejects
the modeling errors with satisfactory accuracy. The smaller
modeling errors allow smaller detection threshold selection,
leading to higher detection sensitivity. The other meth-
ods, however, output large modeling errors, which makes
it especially difficult to detect short-impact low-amplitude
collisions. In fact, the dynamic threshold of the adaptive
momentum observer (with adaptive FIR filter of length 32)
has such a large error that the collision at 0.2 m/s is not
detected, at all. The modeling error in the model-adaptive
collision detection method never exceeds 1 N, in Fig. 8
(a). Therefore, we may take 5 N as the highly conservative
detection threshold. According to Fig. 8 (c), the detection
delay is less than 5 ms for the low velocity (smallest τext)
motion, which shows excellent performance. In the next
section, we attached a real IMU to the robot end-effector
and further developed the experimental evaluations.

Online mode: The online experiment setup (Fig. 9) is
similar to our previous work in [2]. An IMU is installed at
the robot end-effector. The numerical robot dynamics model
is also provided by the robot interface at each sampling
time (1 ms). The data obtained from the robot (including
numerical robot dynamics model and proprioceptive sensing)
and the IMU are fed to an Intel Core i7-7700 with 8 GB
memory processor. The remainder signal is computed in a
Simulink model, running on this processor. The regressor
matrix Y (·) ∈ R43×7 and its components are obtained based
on the geometrical information provided online by the robot
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Fig. 8: Comparison of traditional collision detection methods with model-
adaptive collision detection. Adaptive Momentum DT refers to the dynamic
threshold computed by the adaptive momentum observer. Also momentum
and Direct with OE stand for the momentum observer and the observer-
extended direct method in this figure, respectively. fz refers to the external
force measured by the force plate. The time window specified in the
right column indicates the model-adaptive collision detection delay with
a conservative threshold of 5 N, which is the detection threshold for the
method.

manufacturer. Compared to our previous experiments, we
have decreased the magnitude of the contact force in order
to underline the sensitivity advantage of our method.

The joint velocity and acceleration nonlinear estimator

Fig. 9: Online collision monitoring experimental setup against force plate
requires at least one IMU per link. Since we only use one
IMU in this experiment, we move one joint (6th joint) only.
The robot moves slowly from the start configuration in Fig. 9
to the collision pose and gently touches the force plate. This
contact wrench is then rotated and transformed to the robot
6th joint frame as the ground truth. KO of the momentum
observer is 25, which guarantees the method’s robustness in

practice. For the model adaptive collision detection method,
K = 100 rad is chosen empirically. Figure 10 depicts
the estimated τ̂ext before and during collision. As can be
seen from Fig. 10 (a), the adaptive momentum observer
has relatively large dynamic thresholds. As a result, the
monitoring signal never violates the threshold and therefore,
the algorithm fails to detect such a small-amplitude external
force. Furthermore, according to Fig. 10 (b), the momentum
observer and the observer-extended method have slow drift
due to the modeling errors. On the other hand, τ̂ext estimated
by the model-adaptive collision detection method oscillates
around 0 with relatively small amplitude, which implies
satisfactory modeling error rejection. Moreover, when the
robot collides with the force plate (Fig. 10 (c)), the momen-
tum observer and the observer-extended direct method have
errors as large as the impact amplitude, which makes the
detection unreliable. It is due to this error that the collision
threshold is typically set to 1 Nm in the momentum observer.
In other words, collision will not be reported unless its
amplitude is greater than 1 Nm at the joint in momentum
observers. While, the error of the proposed solution does
not exceed 0.1 Nm. Meaning that small amplitude external
forces (≥ 0.1 Nm) can be effectively detected. With such
0.1 Nm threshold, the collision is detected within 1.2 ms.
Even with the presence of modeling errors, the observer-
extended direct method detects the collision faster and more
accurately than the momentum observer. The model-adaptive
collision detection method, however, follows the measured
τext with relatively accurate amplitude. In the observer-
extended direct method and model-adaptive collision detec-
tion method the bandwidth is determined by the IMU and
the nonlinear estimator. Therefore, both methods follow a
roughly similar curvature for the estimated signal τ̂ext. Since
the model-adaptive collision detection acts as a high-pass
filter, the estimated external torque tends to zero, quickly
after the peaks.
Furthermore, as we have shown in our previous works, due
to the extended Kalman filter that is used as the nonlin-
ear estimator, the estimated joint variables are smooth and
numerically stable. Therefore, the numerical differentiation
of the regressor signal is not even possible but relatively
accurate, as the experiments also confirm. Calculating large
matrices such as the pseudo-inverse of the regressor (in our
simulation and experiment, Ŷ

+
(·) ∈ R43×7) might be com-

putationally expensive, though. However, we would argue
that with today’s powerful, yet relatively cheap computers
calculating such a matrix is a matter of micro seconds.
Specifically, the average computation time of the remainder
signal (which includes the estimation of the joint variables
and computation of the full-size regressor matrix, its pseudo
inverse and derivative) with model-adaptive collision detec-
tion is approximately 415 micro seconds at each time step
(1 ms), in our experimental setup.

VI. CONCLUSIONS

Modern collision detection methods are typically depen-
dent on the available robot model. Therefore, the limited
quality of the available model reduces the detection reliability
and sensitivity, leading to an increase in collision detection
delay. In this paper a novel method for estimating the robot
manipulator modeling errors for improving collision detec-
tion accuracy was introduced. The regressor-based observer
monitors and rejects modeling errors from estimated external
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Fig. 10: Remainder signal in the 6th joint estimated online by four methods
for a very light collision at t ≈ 7.5 s. The legends across the figure are the
measured/estimated torques by i.) the force plate s (ground truth), ii.) model-
adaptive collision detection with experimental observer gain K = 100 (the
proposed solution), iii.) observer-extended direct method, iv.) momentum
observer with observer gain KO = 25, v.) adaptive momentum observer,
with with dynamic thresholding. Our model-adaptive collision detection
shows smallest modeling error (< 0.1 Nm). Taking 0.1 Nm as detection
threshold, the impact is detected after ≈ 1.2 ms in comparison to the other
methods that hardly can detect at all.

torques. The main idea behind the method is based on the
fact that the former have slow dynamics compared to abrupt
collisions. In turn, both effects can be separated according
to their dynamics, ultimately leading to very low detection
thresholds and high-bandwidth detection. The simulations
and experiments conducted on a 7-DoF robot manipula-
tor show excellent results against available state-of-the-art
methods. It is worth noticing that the introduced algorithm
relies on the robot dynamics regressor with according joint
velocity and acceleration information, a necessity that was
intentionally avoided in previous methods. However, in our
recent work we showed that these quantities can indeed
be estimated with satisfactory precision and bandwidth by
fusing link-side position information with modern IMU
measurements installed on the robot links.

Overall, our presented work is a significant step forward
in bringing robot collision detection to its practically feasible
performance.
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