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Dynamic Whole-Body Control of Unstable Wheeled
Humanoid Robots
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Abstract—Control of two-wheeled humanoid robots poses sev-
eral challenges due to the unstable dynamics of their mobile base
and the coupling between upper and lower body dynamics. The
problem is often faced in the literature with methods based on
linearized or simplified models that fail in exploiting the whole
body dynamic capabilities of the platform in use.

In this work we tackle the problem of whole-body dynamic
control for a mobile wheeled unstable humanoid robot.

Compared to existing approaches based on on-line optimiza-
tion to guarantee respect of the constraints, we propose a control
method that takes into account the nominal constrained dynamics
of the robot in the quasi-velocities through an internal model, thus
reducing the computational burden. A computed-torque control
law in the quasi-velocities is used to stabilize the robot around the
upper position. We report on preliminary experimental results
and on the method effectiveness in rejecting unknown external
disturbances.

Index Terms—Wheeled Robots; Underactuated Robots; Hu-
manoid Robots

I. INTRODUCTION

ROBOTS able to perform loco-manipulation tasks are
becoming more and more popular. Several solutions have

been implemented featuring different locomotion principles:
see [1] for a complete survey on two-wheeled robots, [2] for
ballbot robots, and the seminal work [3] for legged robots.

From the control point of view, these platforms can be
classified in statically stable and unstable ones. One of the
most relevant loco-manipulation control approaches suitable
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Fig. 1: ALTER-EGO - an underactuated wheeled humanoid
robot.

for robots of the former type has been presented by Diet-
rich in [4], where the whole-body control of Rollin’ Justin,
a wheeled humanoid robot, is treated with an impedance
method. Statically stable mobile platforms with large support
base (such as Rollin’ Justin) allow the control designer to focus
on task accomplishment. As soon as the size of the support
base is reduced, the balancing problem should also be taken
into account as one of the primary control objectives. This
is the case of biped robots. In [5], a quasi-static control tool
for whole-body loco-manipulation is proposed. This method
is used to find the contact force distribution that maximizes
robot stability. In [6], a dynamic control is proposed to achieve
compliant balancing for a humanoid robot utilizing multiple
contacts, while ensuring the passivity of the overall system.

Unstable mobile robot may offer more mobility compared
to the stable ones, at the price of a more complex control
system that should first guarantee balancing and then task
accomplishment.

Notice that several living beings present unstable dynamics.
A prominent and surprising example is the ankle stiffness
in humans that is the 80-90% of the value required for the
stability of the upper equilibrium [7].

One of the main challenges when dealing with unstable
platforms is the underactuation, which complicates the control
design.

Control of under-actuated systems is often performed via
approximate linearization about an unstable equilibrium, such
as LQR [8]. Partial feedback linearization can be applied to
achieve a larger region of attraction for a given equilibrium
exploiting the dynamics of the system [9], although in general
only external stability can be guaranteed.

Usually in wheeled humanoid robots the underactuation is
at the pitch joint, it affects the balancing of the robot and
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traditionally is tackled by decoupling the control laws used
to regulate the upper body and the mobile base motion. In
particular, in [8], a feedback control method is proposed and
applied to I-PENTAR, a wheeled inverse pendulum robot.
The motion equation of this robot is computed considering
the kinematic constraints on the wheeled base and an LQR
balancing control is applied, tacking into account the upper
body movement as a disturbance. In [10], the authors adopted
a pole-placement controller to control the mobile base. In
[11] a learning based method has been applied for dexterous
control of a mobile manipulator (uBot-5). In [12], inspired by
[13], the authors proposed a whole-body control framework
for Golem Krang [14]: they applied a hierarchical approach
where a Quadratic Programming low-level controller, taking
as inputs the centre of Mass targets (generated and controlled
by a Model Predictive high-level controller) and the task
references, is used to compute the joint torques ensuring the
robot balancing and locomotion, while performing other tasks
with the upper body.

The contribution of the paper is a novel whole-body control
for a wheeled humanoid robot (see Fig. 1). This approach aims
at making the robot upper body actively cooperate with the
mobile base for balancing. At the same time, our approach
guarantees the respect of kinematic constraints without per-
forming on-line optimization, as done in [12], but designing
the stabilizing control law directly on the constrained dynam-
ics of the robot.
The rest of the paper first presents the derivation of the
constrained dynamics equations of the robot. Later, we show
how the underactuated constrained mechanical system can be
controlled with a computed torque law in the quasi-velocities.
To the best of the authors’ knowledge, this is the first example
of the application of such approach to wheeled humanoid
robots in the literature.

We demonstrate the efficacy of the proposed method with
experimental validations and with simulation comparisons
with state-of-the-art LQR approach on a two-wheeled unstable
robot with a humanoid torso equipped with 5 degrees of
freedom on each arm. The reported experiments are aimed at
assessing the effectiveness of the proposed method in rejecting
static and impulsive disturbances, which might affect the
operation of unsupervised robots located in remote areas, or
in crowded ones. Finally, we apply a task-priority approach to
perform a task with unknown interaction with the environment,
namely to open and close a drawer.

II. ROBOT MODEL

In this section we present the method focusing the discus-
sion on the kinematic and dynamic models of a two wheeled
humanoid, moving on flat plane without rolling around its
sagittal axis. Let n be the actuated degrees of freedom (DoF).

A. Robot kinematics

With reference to Fig. 2, we define an inertial reference
frame attached to the world, {I}, and a base frame {B}
attached to the robot’s base link. In this way, given the pose

Fig. 2: Generic reference frames for a wheeled humanoid.

of {B} and known the joints configuration, we can define the
robot configuration space.

We indicate with nfb the number of independent variables
used to describe the position and orientation of the base frame
with respect to {I} and we define qfb ∈ Rnfb the passive free-
body linear and angular DoF of the base link.

Let qmp ∈ Rnmp be the vector which groups the DoF of
the mobile platform and qub ∈ Rnub the vector of the actuated
upper body joint angles (n = nmp + nub).

The Lagrangian coordinates needed to describe the robot
configuration and the generalized velocities are given by

q =

 qfbqmp
qub

 , q̇ =

 q̇fbq̇mp
q̇ub

 , q, q̇ ∈ Rn+nfb .

In particular, we take the origin of {B} at the centre of the
wheels’ axle, as shown in Fig. 2.
Moreover, we assume that the z-position of {B} does not
change and that the roll angle is equal to zero. Therefore, we
consider nfb = 4 and qfb = [x y θ φ]

T ∈ Rnfb , where x
and y describe the base link position on the ground, θ is the
yaw angle and φ is the pitch angle of the robot.
Regarding the mobile platform, that is composed by two
wheels, we indicate with θl and θr the yaw angles of the
left wheel and the right one. Therefore, nmp = 2 and
qmp = [θl θr]

T ∈ Rnmp .

B. Robot dynamics

A wheeled robot is characterized by pure rolling, non-
holonomic constraints for each wheel, described by

Jc(q) q̇ = 0

where, considering nc the number of independent equations
of the constraint, Jc ∈ Rnc×(n+nfb) is the so-called Pfaffian
matrix.
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The dynamic equation in the standard form used for con-
strained systems is then given by{

M(q)q̈ + C(q, q̇)q̇ +G(q) + JTc (q)λ = Uτ + Jf (q)
T f

J̇cq̇ + Jcq̈ = 0,

where
• M(q) ∈ R(nfb+n)×(nfb+n) is the inertia matrix;
• C(q, q̇)q̇ + G(q) = c(q, q̇) ∈ Rnfb+n is the generalized

force vector containing the Coriolis, centrifugal and grav-
ity terms;

• λ ∈ Rnc is a vector of Lagrange multipliers;
• τ ∈ Rn is the vector of actuated joints torques and U =

[0n×nfb
In]

T is the matrix that maps these torques to
the space of generalized forces;

• f ∈ Rnf is the vector of external forces and Jf (q) ∈
Rnf×(nfb+n) is the kinematic jacobian corresponding to
the point of application of the external forces.

As mentioned above, to find the Pfaffian matrix, we consider
the pure rolling constraint for each wheel. This constraint
requires that the point of the wheel in contact with the ground
is instantaneously at rest. This translates into

ωl × [0 0 − r]T + vl = 0
ωr × [0 0 − r]T + vr = 0,

(1)

where r is the wheel radius, wl and wr are the angular
velocities of the left and right wheel and vl and vr are the
linear velocities of the centre of the left and right wheel, all
expressed in the inertial frame {I}. From (1) six equations are
obtained: the ones relative to the vertical velocity of the contact
point are zero under all conditions, and the four remaining
equations can be written in matrix form as

A(q) [q̇Tfb q̇Tmp]
T = 0,

where A(q) ∈ R4×(nfb+nmp) and is equal to:

A(q) =


1 0 −acθ −rcθ −rcθ 0
0 1 −asθ −rsθ −rsθ 0
1 0 acθ −rcθ 0 −rcθ
0 1 asθ −rsθ 0 −rsθ


with a the semilength of the axle that connects the two wheels,
cθ = cos(θ) and sθ = sin(θ). Since the rank of this matrix is
three, nc = 3 and, indicating with Ã(q) the matrix composed
by the first three rows of A(q), the Pfaffian matrix becomes

Jc =
[
Ã(q) 0nc×nub

]
.

III. WHOLE-BODY DYNAMIC CONTROL

The proposed control law computes the actuation torques
τ so that the robot accelerations q̈ are equal to some desired,
constraints-consistent, accelerations q̈d.

To achieve this, let ν ∈ Rn+nfb−nc be the quasi-velocity
vector, i.e. a vector of velocities such that

q̇ = S(q)ν, (2)

where S(q) ∈ R(n+nfb)×(n+nfb−nc) is a linear operator that
satisfies the relation

Jc(q) S(q) = 0. (3)

We define the following quasi-velocity vector

ν =
[
v θ̇ φ̇ q̇Tub

]T
, where v ∈ R is the forward

velocity of the base link. Therefore, if we indicate with
Sfb(q) ∈ R(nfb+nmp)×nc the matrix that verifies the relation

[
q̇fb
q̇mp

]
= Sfb(q)

vθ̇
φ̇

 ,
the linear operator S(q) can be chosen as

S(q) =

[
Sfb(q) 0(nfb+nmp)×nub

0nub×nc
Inub

]
. (4)

Considering the definition of forward velocity and the pres-
ence of an axle between the wheels that allows to determine
a relation between the angles of the base link and the yaw
angles of the wheels, the matrix Sfb(q) is equal to

Sfb(q) =


cθ 0 0
sθ 0 0
0 1 0
0 0 1
1/r −a/r −1
1/r a/r −1

 .

Moreover, we indicate with νd the desired quasi-velocity
vector and with ν̇d and

∫
νd respectively the derivative and

the integral of νd, given as inputs to a computed torque control
law.

To find this law, we apply (2) to the dynamic model equation

M(q)q̈ + C(q, q̇)q̇ +G(q) = Uτ − JTc (q)λ+ Jf (q)
T f

left multiplying it for S(q)T , as in [8], and considering (3) and
nf = 0, i.e. Jf (q)T f = 0, the constrained dynamics becomes

M̃(q)ν̇ + c̃(q, q̇, ν) = Ũτ, (5)

where:

M̃(q) = ST (q)M(q)S(q);

c̃(q, q̇, ν) = ST (q)

(
M(q)Ṡ(q, q̇)ν + C(q, q̇)S(q)ν +G(q)

)
;

Ũ = ST (q) U.

Before designing the control law for the constrained system
(5), two assumptions have to be done:

• in VI-A we discuss the coupling between the pitch φ and
the forward displacement qforw, which allows the system
to be controlled in its upward position, despite being
underactuated;

• in VI-B we show how for this system the integrability
of the quasi-velocities holds, which is not true in general
for constrained mechanichal systems.

Once these two conditions have been verified, we illustrate the
control design idea in the following subsection.
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A. Control design

At this point, the control problem reduces to choose the
generalized torques τ that satisfy the following relation

ν̇d − ν̇ +Kd(ν
d − ν) +Kp

∫ t

0

(νd − ν) = 0, (6)

where the desired quasi-velocities and their time integral and
derivatives are chosen to stabilize the system around the
upward position, i.e., φd = 0, and any constant qdforw. Equation
(6) can be rewritten as

ν̇ = ν̇d +Kd(ν
d − ν) +Kp

∫ t

0

(νd − ν),

whose dynamics can be made exponentially stable with a
proper choice of the gain matrices Kp and Kd positive definite.

Applying this to (5), we obtain the following computed
torque control law:

τ̃ = Ũτ = M̃

(
ν̇d +Kd(ν

d − ν) +Kp

∫ t

0

(νd − ν)
)
+ c̃.

(7)
Notice that, with the selected quasi-velocities vector, the

matrix Ũ ∈ R(nfb+n−nc)×n is full column rank and equal to

Ũ = S(q)TU =

[
Ũfb 0nc×nub

0nub×nmp
Inub

]
,

where Ũfb ∈ Rnc×nmp is given by

Ũfb =

 1/r 1/r
−a/r a/r
−1 −1

 .
To find the actuated joints torques, since the first and the

third rows of Ũ are linearly dependent, the first row is deleted
and, indicating with Ũs the resulting submatrix, one has

τ = Ũ−1
s τ̃s,

where τ̃s ∈ Rn is the vector obtained neglecting the first
element of τ̃ , corresponding to the generalized forces acting
on the forward velocity.

IV. EXPERIMENTAL RESULTS

In this section we report on experimental results for the
proposed control method applied to the two-wheeled mobile
robot depicted in Fig. 3, namely ALTER-EGO. It is an
underactuated robot with two arms for a total of nub = 10
DoFs. Each arm is equipped with variable stiffness actuators
[15]. For the purpose of these experiments, the actuators are
controlled with a high level of stiffness and can be considered
rigid without compromising the validity of the results. For a
complete description of the platform see [16].

All experiments have been performed on a flat, non-slippery,
surface. We assume that the full robot state information is
available, which is obtained thanks to a state estimator which
is beyond the scope of this paper. The control law of the robot
has been implemented in C++ using ROS middleware. The
sample rate for the controller is Ts = 0.0025 s.

(a) (b)

Fig. 3: Experimental setup: the robot ALTER-EGO (a), and
its model reporting relevant reference frames (b).

It is worth noting that no disturbance estimator has been
used, and that the application point of the perturbation in the
different experiments was different.

The disturbances were applied by hand and not in a repeat-
able manner, and in this sense the reported results are to be
considered preliminary yet encouraging.

The gain matrices Kd and Kp have been selected with high
diagonal values (between 100 and 320 on all coordinates),
except for the linear displacement which was given a value
of 30. To do this, an experimental tuning has been done: at
first, we tuned the Kp and Kd gain relative to the pitch angle,
increasing them until the robot oscillates in resonance. Then,
once the resonance condition has been reached, we added a
damping contribution by increasing the linear velocity gain
(the first element of Kd) until the robot is in the upward
position without oscillating. In the end, we tuned the others
diagonal values to nullify the errors on the relative Lagrangian
coordinates and generalized velocities. Moreover, to fully
exploit the whole-body capabilities of the proposed method,
extra-diagonal terms were used in the gains to stress the
coupling between shoulder and pitch dynamics.

A. Experiments

1) Static disturbances: first, we tested the control system
by loading the robot with a series of increasing weights to
generate a static disturbance effect. The results are depicted
in Fig. 4a to 4e. The constraint equations (represented by
the value of Jc(q)q̇ rows) remain limited during the whole
evolution, while the error on the pitch angle remains limited
and reaches constant values for increasing payloads.

2) Dynamic disturbance (shoulder): to test for dynamic
disturbances, we pushed the robot at the shoulder level and
observed its reaction, see Fig. 5. The effect of the perturbation
is visible in its pitch angle error diagram. The constraint
equations remain limited during the experiment. In particular,
as evident from the attached video, the upper body motion
of the arms contributes visibly to the stabilization of the pitch
angle. Once the pitch angle is stabilized, the robot slowly goes
back to its initial sagittal displacement.
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(a) 1.5 kg (b) 2.5 kg (c) 3.5 kg (d) 4.5 kg (e) 6.5 Kg
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Fig. 4: Experiment 1 - Static disturbances.
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Fig. 5: Experiment 2 - Dynamic disturbance (shoulder).

3) Dynamic disturbance (arms): we applied disturbances
to the robot by holding one or both of its hands and pushing
them, see Fig. 6. The pitch angle displacement is reported
alongside with the constraint equation.

4) Interaction with the environment (opening/closing of a
drawer): in this experiment the robot references are calcu-
lated with a task-priority approach [17] using a second order
kinematic control law on the quasi-velocities, considering the
following priority hierarchy: base-link, pitch and yaw at the
same priority, upper-body motion at a lower priority. Results
are reported in Fig. 7. In particular, the constraint magnitude
remains limited, slightly increasing during the initial and
middle phase of the task, corresponding to the moments when
the robot has to overcome the static friction force of the

drawer.
In all these preliminary experiments, despite the unmodeled

dynamics in the robot arms, the results were satisfactory.
Further investigations will be conducted with a more precise
stimulus of disturbance of the robot in order to quantify the
entity of the disturbances that can be applied.

B. Methods Comparison

We compared our method with the traditional approach in
which the balancing is ensured by the mobile base only [8].
In the comparison we report the mobile base is commanded
through a LQR control. Simulations have been conducted
applying a disturbance on the shoulders of the robot, as done
in IV-A2.
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Fig. 6: Experiment 3 - Dynamic disturbance (arms).
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Fig. 7: Experiment 4 - Interaction with the environment (opening/closing of a drawer).

(a) T = 2.5 s (b) T = 3.645 s (c) T = 5.464 s (d) T = 26.2889 s

(e) LQR Control (Qqforw = 1.06 · 107)

(f) T = 2.5 s (g) T = 3.122 s (h) T = 3.803 s (i) T = 5.9281 s

(j) Dynamic Whole-Body Control

Fig. 8: LQR Control vs Dynamic Whole-Body Control (DWBC), simulation results.
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In particular, we apply a force of −50 N for 0.025 s on
each shoulder along the x-axis of the base frame (Fig. 8f
and Fig. 8a). For this reason, we choose to compare the
proposed method with a LQR control, designed on the mobile
base dynamics and where the Q element related to the qforw
variable (Qqforw ) changes. In particular, if we indicate with
x = [qforw θ φ v θ̇ φ̇]T the state vector, the chosen
Q matrix is equal to diag([Qqforw 1 7 · 105 104 1 1])
and, if we indicate with u = τmp, the R matrix is taken equal
to 0.15 Inmp .
The difference between the two approaches are already visible
from Fig. 8. The advantages introduced with the new approach
can be shown with the analysis the qforw error, the settling time
and the torques commanded at the wheels.

Therefore, indicating with eqforw the vector composed by the
qforw error of each simulation step, the Euclidean norm of eqforw

obtained with the proposed method, that is equal to 4.0604 m,
is smaller than the one obtained with the LQR, as shown in
Fig. 9.

1e-2 1 1e1 1e2 1e3 1e4 1e5 1e6 1e7
0

20

40

60

80
LQR
DWBC

Fig. 9: Comparison between
∣∣∣∣eqforw

∣∣∣∣
2

obtained with the
LQR control and the one obtained with DWBC

The settling time of our approach is better than the one
obtained with the LQR control, as we can already see in Fig. 8i
and Fig. 8d: in our case t = 3.4281 s that is much lower than
t = 23.7889 s that is the minimum value obtained with the
LQR method.

1e-2 1 1e1 1e2 1e3 1e4 1e5 1e6 1e7
0

10

20

30
LQR
DWBC

Fig. 10: Comparison between the settling time t obtained with
the LQR control and the one obtained with DWBC
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Fig. 11: Comparison between ||τwheels||F obtained with the
LQR control and the one obtained with DWBC

However, if we indicate with τwheels the matrix obtained
stacking at each simulation step the vector [τθl τθr ] , also the
Frobenius norm of τwheels obtained with our control approach
(51.0108 Nm) is smaller than the one of the LQR, (Fig. 11).

Therefore, with this comparison, we can conclude that the
performances of the proposed method, relative to qforw error
and the settling time, are superior than the ones reached
with the LQR traditional method. Moreover, since DWBC
requires less wheel torques, it could reject disturbances of
higher magnitude than the ones tolerated by LQR.

In the attached video we also added a qualitative comparison
between LQR and DWBC, where it is evident the whole-
body behavior of the proposed method. Due to the difficulty
of replicating the same disturbance applied to the robot, an
exhaustive experimental comparison will be addressed in the
future.

V. CONCLUSIONS
In this work we proposed a new method for whole-body

nonlinear control of wheeled humanoids. We derive a control
law for the constrained system as a computed torque in the
quasi-velocities. In the derivation, we show how two important
properties hold for this kind of robot, namely strong inertial
coupling between wheeled base and pitch dynamics and the
integrability of quasi-velocities when considering kinematic
unicycle constraints and flat motion. We illustrate the idea
behind the control design and show its effectiveness in several
experiments.

Future work will be devoted to a theoretical investigation of
the stability of the closed loop system and to the application
of the proposed method to several static and dynamic tasks.
Learning of feedback gains and feed-forward references to per-
form complex tasks in daily environments is of interest, as well
as the extension to other robotic platforms such as legged ones.
Moreover, a thorough analysis of the sampling time will be
performed, to correctly estimate the minimum sampling time
requested for the considered applications. Finally, to enable
experimental comparison with other control approaches, we
will consider to exploit benchmarking methods for robotics
applications (e.g. project Disturbance funded under the project
framework EUROBENCH [18]).

VI. APPENDIX
A. Controllability of the underactuated system

When designing a control law for this kind of system a
challenge arises due to the need of controlling two variables
(pitch angle and forward velocity) with a single input (sum of
wheel torques). We can overcome this issue thanks to the fact
that the property of strong inertial coupling [19] holds in an
interval around the upward position. This can be easily seen
considering the planar dynamics of the robot which is similar
to the one of a cart-pole system. In particular, the coupling
term in the inertia matrix is given by

Mφ̈,v̇ = M̂L cosφ− m̂r − 4k2Jm
r

where M̂ is the total mass of the robot, m̂ is the wheel
mass, L is the position of the centre of mass, k is the
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inverse of the gear ratio, Jm is the motor inertia. To guarantee
strong inertial coupling between φ and qforw it suffices to
have Mφ̈,v̇ 6= 0, which is true for φ ∈ (−p, p), with

p = arccos
(
m̂r
M̂L

+ 4k2Jm
rM̂L

)
that, for the robot described in

Section IV, has a value of around 88◦. Therefore, it is possible
to stabilize the robot around the point φ = 0, the robot upward
position (Fig. 2), by means of partial feedback linearization
or LQR control, or designing a new control law inspired
by composite feedback for singularly perturbed systems [20],
where the input variable is composed by two components: one
responsible for stabilizing slow dynamics of the system around
a reduced equilibrium manifold, and one responsible for
stabilizing fast dynamics around the slow, reduced manifold.
Composite feedback approach was previously applied to the
control of lightweight flexible manipulators in [21].

B. Integrability of quasi-velocities

The quasi-velocities cannot be integrated unless a one-to-
one correspondence between

∫
ν and q exists ([22]) and, if it

does exist,
∫
ν is called quasi-coordinates vector. Therefore,

to demonstrate the integrability of quasi-velocities, it must be
proved that it is possible to write

∫
ν as an explicit function of

q. In this case of study, to do this, it is necessary to consider
a subset of q̇, that is denoted with q̇red ∈ Rnfb+n−nc and is
equal to:

q̇red =

 φ̇
q̇mp
q̇ub

 = Sred ν, (8)

where Sred ∈ R(nfb+n−nc)×(nfb+n−nc) is obtained by remov-
ing the first three rows from S(q) given in (4):

Sred =

[
Sfbred 0nc×nub

0nub×nc Inub

]
,

with

Sfbred =

 0 0 1
1/r −a/r −1
1/r a/r −1

 .
As it can be seen, Sred is a square, constant matrix. Its inverse
exists and it is equal to:

S−1
red =

[
S−1
fbred

0nc×nub

0nub×nc
Inub

]
,

with

S−1
fbred

=

r r/2 r/2
0 −r/(2a) r/(2a)
1 0 0

 .
Therefore, it is possible to invert (8) and, as a result, it is
possible to compute

∫
ν as∫

ν = S−1
red

∫
q̇red = S−1

red qred.

In conclusion, in this case of study it is possible to integrate
the quasi-velocity vector since it can always be expressed as
an explicit function of a subset of the joint variables. It is
worth noting that, thanks to this property, a static feedback on
the measured quasi-coordinates can be applied.
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