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Abstract— We propose a method based on a non-linear
transformation for non-rigid alignment of maps of different
modalities, exemplified with matching partial and deformed 2D
maps to layout maps. For two types of indoor environments,
over a data-set of 40 maps, we have compared the method to
state-of-the-art map matching and non-rigid image registration
methods and demonstrate a success rate of 80.41% and a mean
point-to-point alignment error of 1.78 meters, compared to
31.9% and 10.7 meters for the best alternative method. We
also propose a fitness measure that can quite reliably detect
bad alignments. Finally we show a use case of transferring
prior knowledge (labels/segmentation), demonstrating that map
segmentation is more consistent when transferred from an
aligned layout map than when operating directly on partial
maps (95.97% vs. 81.56%).

I. INTRODUCTION

The ability to build a map is a prerequisite for many

robotic applications such as environment surveying whether

it be for industrial automation or search and rescue, and

service robots from home-care to industrial transportation.

Such maps are the robot’s internal representation of the

world, an essential element of their autonomy. However these

maps are sometimes partial, deformed or do not contain

sufficient information for elaborate task planning. The ability

to autonomously establish an association between different

sources can considerably improve a robot’s knowledge. A

layout map (blueprint), for instance, carries prior knowl-

edge that could be leveraged to improve the performance

of Simultaneous Localization And Mapping (SLAM) upon

architectural/structural information, or enable an elaborate

task planning based on the semantic labels, and provide a

mutual frame of reference for alignment and merging of

partial maps in case of multi-agent mapping. Construction

of a hybrid map by merging maps of different modalities,

enables the robot to access all available modalities through

individual maps.

Problem description: The focus of this work, as shown

by the general flow of our proposed method in Fig. 1, is

the alignment of robot (sensor) maps and layout maps. The

different types and sizes of maps and their partial coverage

are among the most important challenges in autonomous

alignment of sensor and layout maps. Further challenges

This work was supported by the Swedish Knowledge Foundation.
1Saeed Gholami Shahbandi is with the Center for Applied Intelligent

Systems Research, Halmstad University, Sweden saesha@hh.se
2Martin Magnusson is with the Center for Applied Au-

tonomous Sensor Systems (AASS), Örebro University, Sweden
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Fig. 1: In this work we present a method for optimizing the
alignment, and show an example of using the alignment for
transferring the prior knowledge from layout map to sensor map.
Sensor maps are acquired with a Google Tango tablet as 3D meshes,
and converted to 2D occupancy-like maps. This example is from
Halmstad Intelligent Home [1].

arise when the robot map is erroneous and not globally

consistent (i.e deformed). A globally consistent map is a

map that could be aligned with the ground truth with a

similarity matrix, i.e. only rotation, translation and uniform

scaling. It is desired to use the global consistency of the

layout map to rectify deformation of the robot map, and

therefore the solution must support nonlinear transformation.

To that end, we use a decomposition-based map alignment

technique from our previous work [2] to estimate an initial

alignment, after which the problem becomes an optimization

problem. Our method assumes that: i) the target map (layout)

is globally consistent, ii) the source map (sensor) covers a

subset of the target map, and iii) deformations of sensor maps

are continuous, i.e. there is no “brokenness” in maps.

Our approach: Although 2D grid maps can also be seen

as images, we argue that the locations of occupied cells is

more prominent information than the image intensity values.

This argument will be further discussed in Sec. II-B and III-

B. Accordingly, in this work, occupied cells are adopted as

the basis of interpretation for data association. The occupied



cells of the source map are sampled to an almost uniformly

distributed point set, representing the structural outline of

the environment. The target map underlies a fitness function

that is highest at occupied cells and decreases by distance.

Pinning down the representations to a point set and a fitness

function, the formulation of data association simplifies to a

local optimization over the fitness of the points. Additionally

we impose a coherency condition to maintain the local

consistency of the maps, A piece-wise affine transformation

is employed to represent the solution. Sec. III presents the

method in detail. The contributions of this work are:

• A method is proposed for the optimization of an

alignment with a non-linear transformation, in order

to simultaneously fine-tune the alignment and correct

sensor map deformation.

• A simple and reliable measure of assessing the align-

ment quality is proposed.

• Finally a novel strategy for improving the consistency

of region segmentation of partial maps is presented.

II. RELATED WORK

Those works most relevant to the objective of this paper

are map matching from robot mapping (Sec. II-A), and image

registration from the broader image processing topic (Sec. II-

B.) In each category we present a few notable methods

as examples that perform robustly in their related context,

and review their shortcomings in solving the map alignment

under the conditions specified in Sec. I.

A. Map matching

Two of the sub-problems in graph theory that are most

relevant to map alignment are the Maximal Common Sub-

graph, and the error-tolerant sub-graph isomorphism. Some

interesting map alignment methods based on graph theory

have been proposed by Huang and Beevers [3], Wallgrün [4],

Schwertfeger and Birk [5], Mielle et al. [6], and Kakuma

et al. [7]. Hough/Radon transform-based map matching

methods find the alignment by decomposing it into rotation

and translation estimation. Such approaches are often deter-

ministic, non-iterative, and fast, thanks to this decomposition.

Carpin [8], Bosse and Zlot [9], Saeedi et al. [10] presented

some inspiring work with this approach. In our previous

work [2], we showed the challenges that most map alignment

methods face in dealing with noisy maps, different scales,

and maps of different types. Park et al. [11] proposed a

map matching method for maps with uncertainties in scale,

but assume that the maps have the same type. We proposed

a decomposition-based map alignment method [2], and its

advantages in handling noisy maps, supporting similarity

instead of a rigid transformation, and handling discrepancy in

representations, make the method suitable for aligning sensor

maps with layout maps. Map deformity is another challenge

in map alignment, that requires a non-linear transformation

model. Addressing this challenge in particular is the main

objective of this work. Bonanni et al. [12] perform a 3D map

merging with pose graphs with a non-linear transformation,

to account for distortions of the maps. However, their method

would not be applicable when a pose graph is not available,

as it is the case for layout maps.

B. Image registration

Image alignment methods such as Lucas-Kanade [13] and

Enhanced Correlation Coefficient (ECC) Maximization [14]

are from a category of image processing methods with linear

transformation models. These methods fall short of solving

the map alignment due to the discrepancy in data repre-

sentation, i.e. different map types, and a lack of sufficient

local information. Point set registration is another category,

and they can be either shape-based such as Iterative Closest

Point (ICP) [15] and Coherent Point Drift (CPD) [16], or

feature-based such as Scale-Invariant Features Transform

(SIFT) [17]. Active Models such as Active Shape Models [18]

and Active Appearance Models [19] are examples of using

domain knowledge to simplify the harder problem by build-

ing statistical shape models. This approach is not suitable for

map alignment, since they require a distinct and consistent

pattern to be represented by a model (as in faces, or leaves),

and expects sufficient information in the images for training

their statistical models.

Free Form Deformation (FFD) field [20], often based on

B-spline curves, is another approach to image registration

that supports a nonlinear transformation model. These are

most frequently used in medical image processing [21].

By supporting non-linearity, this category of methods takes

on a very challenging problem with many parameters to

estimate. As a consequence of this considerably big search

space, these methods require a lot of local information for

a successful convergence. Image registration methods based

on FFD field [20] seem to be the most suitable alternatives to

this work, since they locally optimize the alignment of two

images, and support a non-linear transformation. We have

studied some of the state-of-the-art “nonrigid image registra-

tion” techniques from the field of medical imaging [22]. The

outcomes have been consistently unsatisfactory, with severe

local deformations of the source maps 1. Fig. 2 exemplifies

the performance of such methods on occupancy maps, based

on an implementation from the ITK library [23]. This is

not an isolated example, and represents the general behavior

of methods with the FFD field approach. The outcomes

of operating on distance transform of the maps have been

similar. The reason, we believe, is the fact that an image

intensity-based optimization, in conjunction with a complex

“non-rigid” transformation model, requires a higher level of

local information. From an image processing perspective, oc-

cupancy maps are mostly patches of low information (open-

space and unexplored areas), unlike most other vision signals

(e.g. medical images) where the information is distributed

more uniformly over the image. This makes the biggest

challenge for employing most of the aforementioned image

1 BSplineTransform and DisplacementFieldTransform

for transformation model, Correlation, MeanSquares and
MattesMutualInformation for similarity metric, and Exhaustive,
Gradient Descent and L-BFGS-B for optimizer are some of the
examples we studied.



(a) initial alignment (b) FFD field (c) this work

Fig. 2: Comparison between this work and an FFD field-based
method [22], [23] on optimizing an initial alignment. Over-
sensitivity of the FFD field-based method to representation dis-
crepancy and lack of sufficient local information can be observed
in Fig. 2b.

processing techniques for map alignment. This also explains

the appeal of abstract representations in map matching, such

as Hough-spectra, Voronoi graphs and region decomposition,

that benefit from the global structure of the maps.

III. METHOD

The main objective of this paper is to optimize an ini-

tial alignment between two maps. This initial alignment is

provided via a decomposition based map alignment tech-

nique [2], which is outlined in Sec. III-A. This alignment

approach, like most others [8], [10], is global and cannot

guarantee a locally accurate solution in the presence of

noise and map deformation. In Sec. III-B we present an

optimization process, which provides a non-linear solution

to the problem in form of a piece-wise affine transformation.

A. Model based alignment (decomposition-based)

Aligning sensor maps to layout maps includes the addi-

tional challenges of different map sizes, coverages and types.

The decomposition-based map alignment method [2] specif-

ically addresses the problem under those circumstances. The

idea behind this method is to decompose the map into

regions, and represent the decomposition with a Doubly-

Connected Edge List (DCEL) data structure. The alignment

solution is the best fitting hypothesis among all hypotheses

generated from matching each region in one map to all

regions in the other map. For the details of the decomposition

process, the DCEL representation, the hypotheses generation,

and the selection of best fitting hypothesis, please see our

previous work [2].

B. Signal based optimization (occupancy map)

As the examples in Fig. 3 show, the initial alignment could

be off from the optimal value, or the optimal alignment

of a deformed sensor map is not achievable with a linear

transformation. We remedy these deficiencies by optimizing

the initial alignments and correcting the global inconsistency

of the sensor map. The underlying problem which this opti-

mization intends to solve involves data association, and the

choice of data representation is crucial. The representations

are expected to capture local information with highest level

of fidelity from the environment that are mutual between

layout and sensor map. Abstract models often lack details

(a) slight misalignment (b) map deformity

Fig. 3: Two examples where the initial alignments are correct, but
suffer from minor defects.

of the maps, Voronoi graphs are sensitive to clutter, and

Hough-space does not have an explicit local representation.

Accordingly, we base the objective function on the occupied

cells of the maps, as they best satisfy the requirements.

Map interpretation: As shown with an example in

Fig. 4, a collection of control points X are detected by the

“Good Features to Track” [24] from the occupied cells of the

source map (i.e. sensor map). The occupied cells of the target

map (i.e. layout map) underlie a fitness function (map) Mf ,

as illustrated in Fig. 5, and the gradient map Mg is computed

from Mf for the gradient ascent optimization

Mo
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transform
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where σf defines the neighborhood of the fitness map, and

DT (Mo) is a distance transform of the occupancy map

which represents the distance of each open cell to its closest

occupied cell. The fitness map Mf is a Radial Basis Function

(Gaussian) applied to the distance value of each pixel in

Md, i.e. the farther a cell is from occupied points the lower

its fitness value is. Fig. 5 shows an occupancy map with

its distance, fitness, and gradient maps. The optimal value

of σf depends on the structure of the environment, and

more specifically the size of the open spaces. Based on our

empirical observation, a value in the range of σf = 1± 0.4
meter yields satisfactory results for home and office maps.

Optimization of the alignment: The control points of the

source map X together with the fitness function of the target

map Mf form the objective function of the optimization

dX = argmax
dX

K
∑

i=1

Mf (xi + dxi) | x ∈ X, dx ∈ dX

where K is the number of control points. The solution to

this optimization is a motion matrix dX , where each row

is a 2D motion vector corresponding to control points X .

Like most conventional implementations of gradient ascent,

at each iteration the control points are displaced according

to incremental steps of dX which is computed by indexing

the gradient map with the latest location of each point.



(a) control points X (b) X aligned with target map

Fig. 4: Interpretation of the source map (sensor) is a collection of
points X , representing occupied cells.

(a) occupancy map Mo (b) distance map Md

(c) fitness map Mf (d) gradient map Mg

Fig. 5: Interpretations of the target map (layout), from occupancy
to gradient.

Transformation model: The model to represent the op-

timized alignment is a piece-wise transformation. According

to this model, the area enclosed by the convex hull of

all the points is tessellated with a Delaunay triangulation.

Each simplex of the tessellation is then assigned an affine

transformation, that is estimated from the motion of its three

vertices.

Coherency condition: The presented formulation of the

optimization only incentivises the fitness of X with respect to

Mf without any regard to the patterns of X . Fig. 6a shows

an example of this optimization resulting in an incoherent

motion of X . To assure the coherency of the motions, we

modify the incremental dX by adjusting the motion of each

control point to accord with its neighbors. To this end,

the coherent motion of each control point is defined as a

weighted average of its own and its neighbors’ uncorrelated

motions that are obtained directly from the gradient map. The

averaging is weighted by a Gaussian function of the distance

between two control points. Fig. 6 demonstrates the effect

of this coherency adjustment. The coherent motion can be

expressed as

dx′
i =

1

K

K
∑

j=1

dxj .wij

where dxj is the motion of point xj obtained directly from

the gradient map, and wij is the correlation between pairs

(a) independent motions dX (b) coherent motions dX
′

Fig. 6: Motion dX is enforced to be coherent among neighboring
points. Background image shows the magnitude of the gradient
map. The result is from a completed optimization, not a single
iteration.

of points according to their distances

dxi = Mg(xi) | xi ∈ X
wij = exp(− ‖xi, xj‖2/2σ2

n) | xi, xj ∈ X

where
∥

∥

∥

∥ is the Euclidean distance between a pair of

points. The parameter σn determines the locality scope of

the coherency condition, where σn = 0 means no coherency

and σn = ∞ means strict coherency resulting in a rigid

transformation (translation and rotation). The optimal value

of σn depends on the size of the map and its deformity. We

expect a neighborhood of roughly 8 meters for our collection

of maps, based on empirical observation, and any value in

the range of σn = 8 ± 4 is acceptable. The optimization

procedure, including the coherency condition, is presented

in Alg. 1.

Optimization termination criteria: Apart from the

max iteration that safeguards the process against infinite

loops, min motion is the only termination criterion that is

a lower bound for the motions in dX ′. Suggested values for

these parameters are min motion = 10−3 (1 millimeter),

and max iteration = 104. As we will see in Fig. 7a from

Sec. IV, the optimization of 3/36 alignments fails with these

parameters. However, the reason is that they converge to

local minima (starting from poor initial alignments), which

suggests that they would not have succeeded even with

different values of termination parameters. We do not base

any criterion on the fitness values, as the maximum fitness by

definition results in motionless points (i.e. Mg = 0). On the

other hand, the fitness will not be maximized when points

become motionless due to the local minima from a wrong

initial alignment (i.e. Mf = 0,Mg = 0). When the process

converges to such an equilibrium, the process should be

terminated even though the equilibrium does not correspond

to the optimal solution. Therefore fitness based criterion can

be subsumed by min motion.

IV. EXPERIMENTAL RESULTS AND VERIFICATION

This section presents the data that we collected for the

verification of the method’s performance. An experiment that



Algorithm 1 Optimization

function OPTIMIZE(Mg , Mf , XN×2, WN×N )

X ′ = X
for iteration ∈ {1, 2, . . . ,max iteration} do

dX = Mg(X
′)

dX ′ = WEIGHTEDAVERAGE(dX,W )

X ′ = X ′ + dX ′

if max(‖dx′‖|∀dx′ ∈ dX ′) < min motion then

break

end if

end for

return X ′

end function

function WEIGHTEDAVERAGE(dXN×2, WN×N )

/* (A ◦B): “Hadamard-Schur” product */

P = [dX, dX, ..., dX]N×N×2 ◦ [W,W ]N×N×2

dX ′
N×2

= mean(PN×N×2)along 2
nd dimension

return dX ′

end function

shows a strong correlation between fitness and alignment

success, is presented in Sec. IV-A. We present the perfor-

mance of map alignment in comparison with other techniques

in Sec. IV-B. Finally, we present a use case of transferring

prior knowledge (region segmentation) in Sec. IV-C, that

improves segmentation consistency over sensor maps.

Setting of the parameters: All the parameters were set

the same for all the experiments, home and office alike, with

theses values: σf = 1, σn = 8 and min motion = 10−3,

all in meter, and max iteration = 104.

Data collection: We collected maps of four environ-

ments, two homes and two office buildings2. There are 36

sensor maps in total, 14 for each office and 4 for each

home environment. Layout maps were obtained from CAD

drawings, and there is a layout map for each environment.

Sensor maps, most of them partial, were collected by a

Google Tango tablet and the Tango Constructor application

from Google. The 3D meshes were converted to occupancy-

like maps through a ray-casting process. Due the absence

of sensor’s trajectory in 3D meshes, the locations of ray-

casting are interactively chosen by the user. Each 3D mesh

was sliced horizontally at different heights, to reflect the

structural elements of the environment better, and avoid most

of the overhanging objects (e.g. lamps) and clutters on the

ground (e.g. chairs). A discrete representation that underlies

the occupancy map, is constructed from a projection of most

frequently sliced vertices.

A. Fitness and confidence metric

We define two variations of the fitness, namely forward

and reverse, as an alignment quality measure

fitness := mean([Mf (x, y) | ∀(x, y) ∈ X]N×1)
forward : Mf ← layout map, X ← sensor map

reverse : Mf ← sensor map, X ← layout map

2 https://github.com/saeedghsh/Halmstad-Robot-Maps/

(a) corresponding sensor/layout (b) all sensor to all layout

Fig. 7: The comparison of success and failure according to [forward
and reverse] fitness. Blue and red markers represent the success and
failure of the alignments. Circle and cross markers represent correct
and wrong correspondence between sensor maps and layout maps.
The failure and success classes are almost linearly separable by
comparing our proposed forward and reverse fitness measure.

For the fitness function to better represent the quality of the

alignment, Mf is computed with a stricter neighborhood of

σf = 0.1 meter instead of that 1 ± 0.4 of the optimization

process. This is because in the optimization process Mf

requires a wider scope as it acts as a membership function

of occupied cells, and underlies the gradient map. As an

alignment quality metric, Mf evaluates the fitness of X
with respect to the structure of the target map, and it is set

narrower to penalize even minor deviations. Fig. 7a shows

the fitness values of aligning each sensor map against their

corresponding layout maps. Three failures are marked red.

The one failing case that resides among successful points is

a case were only one room from the source map (∼ 10% of

the map) is stretched and covers two rooms in the layout,

resulting in a partial misalignment. Fig. 7b also includes

the fitness of aligning each sensor map with the layouts of

other environments, marked with red crosses. The wrong

alignments in the margin between success and failure, are

cases where the sensor maps are from homes and they

easily fit into sub-regions of office layouts. Despite these

few degenerate cases, a strong correlation between success

and fitness value can be observed.

B. Map alignment comparison

Our proposed optimization method assumes that the target

map (layout) is globally consistent, and a super-set of the

source map (sensor). This assumption cannot be guaranteed

for sensor maps as target, and therefore our method is only

viable for optimizing alignments of sensor maps to layout

maps. On the other hand, most other map alignment tech-

niques operate exclusively on sensor maps. Consequently,

to establish a common ground for comparison, we use

the decomposition based alignment [2] coupled with the

proposed optimization method, and find the alignments of

all sensor maps to their corresponding layout maps. Then a

layout’s frame of reference can be used as a link between

sensor maps. The alignment of sensor maps to layout map,

however, is not free of challenges. We have shown, in our

previous work [2], the difficulties of most common map

alignment approaches in dealing with maps of different types,

scales and noise levels.



success rate (in %) error (meter) average time (and variance) in seconds
method implementation home office total RMS home office

Coherent Point Drift [16] Python 0 6.04 5.6 10.02 NA NA
Voronoi diagram-based [10] Matlab 25.55 11.53 12.4 34.77 4.91(1.42) 50.20(19.84)
SIFT [17] Python 8.33 23.07 22.1 124.8 0.20(0.05) 0.67(0.14)
Hough-based [8] C++ 91.66 23.07 27.31 13.06 3.07e−4(9.28e−5) 2.65e−4(6.72e−5)
ECC maximization [14] Python 8.33 32.96 31.9 10.7 32.79(28.24) 73.46(85.46)
Decomposition-based [2] Python 91.66 59.34 66.5 5.89 8.86(2.13) 41.86(41.92)
this work Python 100 79.12 80.41 1.78 21.20(4.16) 49.63(20.62)

TABLE I: Success rates, RMS error, and computation times of different methods on aligning sensor maps. There are 182 and 12 pairs of
sensor maps for two office buildings and two home environments respectively.

The experiment in this section compares the performance

of the proposed map alignment through the layout map, with

six other approaches. Three of these are image processing

techniques adapted to the map alignment problem, namely

i) image alignment with Enhanced Correlation Coefficient

(ECC) Maximization [14], ii) image registration with Scale-

Invariant Feature Transform (SIFT) [17] in combination with

Fast Approximate Nearest Neighbors [25] for feature match-

ing, and iii) treating each map as a set of occupancy points

and employing the Coherent Point Drift (CPD) [16] for Point

Set Registration. The other three are methods specifically

designed for robot map alignment, namely i) map merging

based on Hough-transform by Carpin [8], ii) map merg-

ing based on probabilistic generalized Voronoi diagram by

Saeedi et al. (PGVD) [10], and iii) decomposition based map

alignment from our previous work [2]. All methods work

better and have been tested with Mo, except for ECC which

achieved better results and has been tested using Md.

The performance results are presented in Tab. I, where the

success rate was measured by manually labeling successful

alignments from visual inspection. For a more objective

analysis, we annotated the maps with key points and their

corresponding associations for measuring the accuracy of the

alignments. The Euclidean distance between associated key

points under an alignment is regarded as the error of the

alignment. The Root Mean Square (RMS) errors of methods

are presented in Tab. I, and Fig. 8d shows the distribution of

this error for four of the best performing alignment methods.

From these results, we note that the Hough-based method [8]

is substantially faster than others, although compared to our

method it has a lower success rate (27.31% vs. 80.41%)

and a higher RMS error (13.06 vs. 1.78 meter). SIFT-based

registration is similarly fast with low success rate. Closest

to this work, in terms of success rate, is the decomposition-

based method. Nevertheless, it still falls short in comparison

to this work in terms of both success rate (66.5% vs. 80.41%)

and RMS error (5.89 vs. 1.78 meter).

RMS error vs. success rate: It is important to note that

the performance of each method must be evaluated with

both the success rate and the RMS error. While success

rate could be influenced by the subjective manner of visual

inspection, RMS is also sensitive to the failure manner of

each method. Different methods fail differently due to their

different natures. For instance CPD will always keep the

whole body of the source map inside the boundary of the

target map, even in the failed cases as demonstrated in

(a) CPD failure (b) SIFT failure
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This work Decomposition Hough-based PGVD SIFT CPD ECC

(c) distribution of RMS error of each method for all the 194 pairs
of sensor maps
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(d) histogram distributions of sensor to sensor map alignments of
four best performing methods (based on success rate)

Fig. 8: Error analysis of the alignment result. Figures. 8a and 8b
compare the failures of CPD and SIFT methods in map alignment.
While both are failed alignment, one has much higher impact on
the RMS error. Fig. 8c shows the distribution of RMS error of each
method for all the 194 pairs of sensor maps. Histogram distributions
of all sensor to sensor map alignments of four best performing
methods are presented in Fig. 8d. The error in Figures 8c and 8d is
the Euclidean distance (in meters) between all pairs of associated
key points from annotated ground truth.

Fig. 8a. Failure of SIFT as is Fig. 8b, however, can easily

return wild solutions, where control points are moved very

far with no bounds. However, by visual inspection of all

alignments we can see that SIFT is more successful than

CPD (∼ 22% vs. ∼ 6%), while the RMS error from Fig. 8c

suggests that CPD performs better than SIFT, due to failure

type and bounded error of CPD. In conclusion, it should be

noted that the RMS error can be misleading if the success

rates of the methods are disregarded.

Computation times: All the experiments were carried

out on a computer with an Intelr Core™ i5-3340M CPU

@ 2.70GHz ×4, and 8GiB SODIMM DDR3 Synchronous
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Fig. 9: “DuDe-2D” [28] is very robust in region segmentation,
specifically for rooms. However, its results can be inconsistent over
different noisy sensor maps. Segmented maps on the sides cover
the same location, and they correspond to the left part of the layout
(with 90◦ rotation). These results demonstrate the inconsistency of
the region segmentation over the same corridor. The inconsistencies
of border lines are quantified by a hit parameter (marked red in the
layout), defined as the number of its appearance in segmentations
divided by the number of sensor maps that cover this region.

1600 MHz of memory, running Ubuntu 14.04. Our method

has to perform two alignments for aligning one pair of

sensor maps, which doubles its computation time. The time

for each alignment is therefore the sum of decomposition-

based alignment and optimization. The average time for

optimizing one alignment is 1.31 seconds with a standard

deviation of 1.08 (for both home and office maps). We

replaced the original match score function from our previous

work [2] with the fitness function in this work for hypothesis

selection. This substitution yields better and faster results

for sensor map to layout alignment, but performs worse for

sensor map to sensor map. As this work is only concerned

with sensor map to layout alignment, we benefit both in

time and performance by this substitution. Please note that

because of the different implementations used, the timings in

Tab. I should only be taken as a rough indicator of relative

computation time.

C. Segmentation transferring

Here we present an example of using alignments for

transferring prior knowledge from layout to sensor maps,

in which the prior knowledge is the region segmentation

and regions’ semantic labels. Fig. 1 shows the outline of

transferring this knowledge from a layout map to the 2D

sensor map and all the way to the 3D map, from which we

obtained the 2D sensor maps.

State of the art in region segmentation: Bormann et

al. [26] presented a very interesting review and comparison

of the most common region segmentation methods, which

covers four different approaches: morphological, distance

transform-based, Voronoi graph-based, and feature-based. In

a more recent work, Fermin-Leon et al. [27] has successfully

applied the “Dual-Space Decomposition” (DuDe-2D) by Liu

et al. [28] to robot maps. Region segmentation is often

subjective, and the results vary depending on the definition

of a region, the employed method and its settings. For

instance, DuDe-2D [28], which has been shown to perform

quite robustly on robot maps [27], results in an inconsistent

segmentation with partially explored maps, as in Fig. 9.

Our strategy: In this work, we present a different

strategy of region segmentation rather than a novel tech-

Transfer
Segmented

Sensor Maps

Sensor Maps

DuDe 2D Segmented
Sensor Maps

Direct Segmentation

Map of Border Lines

Alignment

DuDe 2DLayout Map

Map of Border Lines

Transferred Segmentation

Fig. 10: Two ways of direct and transferred region segmentation. A
list of border lines (marked red in the layout) is compiled for each
method separately for measuring the consistency of each approach.
They are compiled from the segmented sensor maps and not the
segmented layout.

nique. As shown in Fig. 10, the idea is to perform region

segmentation on the prior map (layout) and transferring the

results to sensor maps through the estimated alignment. This

approach has two main advantages, i) the sensitivity of the

segmentation techniques to noise becomes irrelevant as they

would operate on clean layout maps, ii) relying on a unique

segmentation of the layout improves the region segmentation

consistency across different sensor maps, regardless of their

coverage and noise level. We use a region segmentation

method to minimize human intervention. In a general setting,

however, such information could be provided manually and

as accurate and subjective as desired.

On the technical level, transferring the region segmen-

tation could be achieved with different approaches, such

as transforming region contours or boundary lines between

regions from one map to the other. However, we noticed

these approaches are not robust to noise and minor defects

in sensor maps and alignments. Instead we realized the most

robust approach is to detect transition points between regions

from the Voronoi graphs of the layout map, transform them

to the sensor map according to the alignment, and employ

them as heuristic cues in junction with a morphological

segmentation method [26]. The heuristic step works by

padding the sensor map (Mo) with black disks (augmenting

occupancy) at the position of each transition point with the

radius being equal to the value from Md at each transition

point. This will enforce separation of regions based on prior

knowledge, and fetching the radius from the distance map

of the sensor map improves the robustness against noise.

Experiment: In the absence of a ground truth, the

consistency, and not the quality, of region segmentation of the

sensor maps is the object of comparison. To that end, for each

segmentation approach, all border lines between segmented

regions from each and all sensor maps are marked in the

layout map, as in Fig. 9. Those border lines corresponding

to the same segmentation (gauged by visual inspection) are

grouped together. It should be noted that the segmentation of

layout is irrelevant for measuring the consistency. That is to

say, the border lines are compiled only from the segmentation

of the sensor maps, and not the layout. A consistency

measure is proposed based on the appearance consistency

of these border lines. We define a hit number h for each

border line as the number of its appearance in segmentations

divided by the number of sensor maps that cover this region.

For instance, consider a doorway that is covered in ten out



of twenty partial maps. A border line corresponding to that

doorway has a hit value equal to h = 0.8, if it is segmented

in eight maps. A border line is least consistent when it has

a hit value of h = 0.5, and most consistent for a hit value of

h = 1 and h = 0. Although, hit can never be zero, as h = 0
indicates that such a border line has never emerged in any

of the segmentations. Accordingly we define the consistency

of each border line as c = |1 − 2h|. The consistency of a

region segmentation is defined as

consistency = 1

N

N
∑

i=1

|1− 2hi|

where N is the number of border lines, i.e. red lines in the

layout map. According to this measure, direct region seg-

mentation and transferring region segmentation are 81.56%

and 95.97% consistent respectively.

V. CONCLUSION

In this work we present a method for optimizing a

2D alignment between a robot (sensor) map and a layout

(blueprint) map. The optimization method proposed in this

works fine-tunes an initial alignment, and simultaneously

corrects potential deformations of the sensor map. The opti-

mization of the alignment is achieved through an objective

function that measures the alignment quality. Based on the

assumption that the target map (layout) is globally consistent,

and thanks to a non-linear transformation model, deformities

of the sensor maps are also rectified through this process. The

local consistency of the sensor map is maintained through

the optimization by means of a coherency condition. We

demonstrate that our method’s result in aligning partial and

deformed sensor maps to layout maps, could not be matched

by any existing method. A simple and fast-to-compute fitness

function is devised for the optimization, which is shown

to strongly correlate with the quality the alignment. Finally

we show an example of utilizing the optimized alignment

for transferring prior knowledge, from the layout map to

sensor map. For this example we employ a state-of-the-

art region segmentation method for segmenting the layout

map, and transfer the result to all aligned sensor maps. We

show, through experimental results, that the consistency of

the region segmentation could be improved by transferring

the segmentation from the layout, in comparison to applying

region segmentation directly on noisy sensor maps.

Future work: Assuming an initial alignment is pro-

vided, our method performs an optimization of that align-

ment based on only local information. An interesting feature

would be to enable the method to measure the quality

of the initial alignment on a structural level, so that the

method becomes robust to errors in the initial alignment.

We aim to detect and quantify errors in the initial alignment,

which in turn requires the detection and quantification of

errors in the maps. The motivation behind this feature rose

from three failed optimization cases from Fig. 7a where the

initial alignments were wrong. We are investigating means of

incorporating the abstract models from our previous work [2]

with the fitness measure presented in this work, into a unified

framework of map and alignment quality measure.
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