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Abstract
In many applications of autonomous mobile robots the following problem is encountered. Two maps of the same environment
are available, one a prior map and the other a sensor map built by the robot. To benefit from all available information in both
maps, the robot must find the correct alignment between the twomaps. There exist many approaches to address this challenge,
however, most of the previous methods rely on assumptions such as similar modalities of the maps, same scale, or existence
of an initial guess for the alignment. In this work we propose a decomposition-based method for 2D spatial map alignment
which does not rely on those assumptions. Our proposed method is validated and compared with other approaches, including
generic data association approaches and map alignment algorithms. Real world examples of four different environments with
thirty six sensor maps and four layout maps are used for this analysis. The maps, along with an implementation of the method,
are made publicly available online.

Keywords Mobile robots · Mapping · Map alignment · Decomposition · 2D · Sensor map · Robot map · Layout map ·
Emergency map · Region segmentation · Similarity transformation

1 Introduction

There are many applications in which it is beneficial for a
robot to merge its map with any of a number of existing
maps. For example, in environment surveying, a blueprint
layout map could be introduced to give the robot a head
start in terms of exploration. Such a prior map could also
improve global consistency of SLAM algorithms by exploit-
ing the global consistency of the prior map. Another example
is to integrate semantic information or traffic flow data into
a central map that a single agent could not obtain alone. Fur-
thermore, a hybrid map constructed from merging maps of
different modalities, enables access to all included modali-
ties through each individual map. For instance assume that
the semantic labels are provided by one map and the robot
can localize itself using another sensor modality. The robot
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can become aware of each region’s semantic label merely
by localizing itself in one map and exploiting the association
betweenmaps. All the aforementioned applications share the
need for amap alignment procedure. Solving theautonomous
map alignment problem has interesting upshots. A seamless
map alignment procedure improves the autonomy of robotic
services by reducing the demand for human intervention.

A scenario in which the map alignment is of particular
interest is where a robot is expected to employ a prior map
of the environment in addition to its own capacity to create
maps. In this example, an important challenge is the differ-
ence in map formats (Fig. 1). In such cases the prior map of
the environment is a blueprint, and the robot maps are often
discrete such as occupancy grid maps. This paper addresses
2D map alignment where the maps share no frame of refer-
ence, overlap only partially, have different amounts of clutter,
and have different modalities.

1.1 Problem description

We define the map alignment as a data association prob-
lem across two representations of the same environment (two
maps). The solution to this problem is a transformation func-
tion between the coordinate frames of the input maps. The
objective is then to find the optimal transformation under
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Fig. 1 An example of a pair of layout and sensor maps. Sensor maps
are acquired with a Google Tango tablet as 3D meshes, and later are
converted to 2D occupancy-like maps. This example is from the Halm-
stad Intelligent Home (Lundström et al. 2016). Other maps also include
office environments (see “Appendix”)

which the distances between corresponding elements in the
two representations are minimized. The challenges of map
alignment we intend to address in this work are:

– Multi-modality and representation discrepancy between
the maps (e.g. blueprint versus sensor map),

– Scale mismatch between input maps (e.g. due to different
modalities),

– Repeating patterns and the associated problem of local
minima in the alignment objective function
(auto-isomorphic graphs in a topological sense, and shape
correspondence problem in a geometric sense).

By the following set of assumptions we contain the prob-
lem description to a more specific application domain:

– The environments are:

– Well-structured, that is to say their maps could be
modeled (abstracted) with a set of 2D geometric
curves,

– Composed of meaningful regions that can be seg-
mented (e.g. room, corridor, etc.,).

– The maps are:

– Spatial, geometric and 2-dimensional (or could be
represented in a 2D plane),

– Globally consistent (not “broken”) and uniformly
scaled.

The restrictions and limitations caused by these assump-
tions are further discussed in Sect. 5.

1.2 Approaches

In this general formulation, the map alignment problem
proves to be more challenging than the relaxed versions
such as scan matching or image alignment problems. When
the displacement between two frames (maps or scans) are
small, optimization based algorithms such as point set reg-
istration (Besl and McKay 1992; Gold et al. 1998; Tsin and
Kanade 2004; Myronenko et al. 2007; Myronenko and Song
2010) or image registration (Baker and Matthews 2004) are
suitable solutions. However, these algorithms are vulnerable
to local minima, especially in the absence of an initial guess.
This pitfall is exacerbatedwhen the inputmaps contain repet-
itive patterns that increase the number of local minima.

Another approach is to employ the Hough transform to
structure the search space and decompose the transformation
into separate operations of rotation and translation (Carpin
2008; Saeedi et al. 2012). However, these approaches are
limited to rigid transformations (i.e. Euclidean transforma-
tion that includes translation, rotation and no scaling) and
expect homogeneity of the input signal (same modality).

A more common approach to the map alignment problem
is to interpret the input maps with an abstract representa-
tion that enables a search on the similarity of instances. For
example, graphs capture the canonical points of the open
space as vertices, and the connectivity of the open space is
represented by the edges between vertices (Huang and Beev-
ers 2005; Schwertfeger and Birk 2013; Kakuma et al. 2017).
Consequently, geometric and/or topological similarities of
the vertices and/or edges are used to find amatch between two
maps. When maps are of different types, such an interpreta-
tion plays an important role. This interpretation abstracts the
input maps into a shared instantiated representation, which
makes the search for similarities between maps feasible.

A more thorough review of related work is presented in
Sect. 2, after which detailing our method and the experimen-
tal validation of it are presented in Sects. 3 and 4.

1.3 Our approach

In this work, we propose a method based on the afore-
mentioned concept of shared instantiated representation.
The underlying representation of our method is a geomet-
ric decomposition that outlines the segmentation of regions,
namely “arrangement” (Agarwal and Sharir 2000) in 2D.
When modeling the occupied regions of the maps (corre-
sponding to the physical elements in the environment), the
2D arrangement explicitly represents both the boundaries
and the regions of the open-spaces. In addition, it implic-
itly captures the connectivity of the open-spaces through
the regions’ adjacency. Our proposal is to (i) abstract input
maps via region decomposition into a shared geometric rep-
resentation, i.e. 2D arrangement, (ii) search for all potential
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alignments that match the regions of the maps, (iii) select the
best alignment according to a proposed quality measure. The
details of themethod, the 2D arrangement, and further details
are provided in Sect. 3. The differentiating characteristic of
our method is its representation and the consequent search
approach. Most approaches generate hypotheses from some
initial cues and follow along the progress of those cues. In
contrast, we exhaust the search space to avoid missing the
correct answer. This is crucial in the case of noisy maps and
maps of differentmodalities. To our knowledge, no algorithm
has been developed for solving the alignment problem in this
manner. The main contributions of this work are as follows:

– An algorithm for map alignment that does not rely on
rigid transformations, available initial guess or similar
representation between maps.

– An abstract representation (2D arrangement), which is
capable of interpreting maps of different modalities.
We use this interpretation for region segmentation, and
for solving the alignment problem. This interpretation
results in a hierarchical representation of maps, where
the abstract models on the top level are readily available
for other geometric processing and manipulations after
alignment.

– A publicly available collection of maps, containing forty
maps of four different environments. The source code to
our implementation of the proposed method is also made
available online. For the links to these online repositories
please see Sect. 4.

2 Related work

Themain underlying problem inmap alignment is data asso-
ciation, which manifests in a variety of forms according to
the application context. Few examples are image registration
(e.g. stereo vision correspondence, optical flow, and visual
odometry), laser scan matching and point cloud registration
in simultaneous localization and mapping (SLAM), and the
correspondence problems in SLAM such as loop closure
and partial map merging. While above-mentioned problems
share the underlying challenge of data association, differ-
ent methods formulate their underlying problem differently
depending on the context of their application, data type, and
prior assumptions. While we try to point out some of the
seminal works with formulations other than those related to
our work, we turn the focus of the literature review to those
closest to ours, i.e. map alignment.

Motivations of sensor to prior map alignment There are dif-
ferent motivations for fusing prior maps and sensor maps.

For instance, Sanchez and Branaghan (2009) argue that
abstract maps are easier to learn, and accordingly, Georgiou
et al. (2017) state that a correspondence between an abstract
human readable map and robot’s sensor map is desired to
facilitate collaborative tasks between humans and robots.
Bowen-Biggs et al. (2016) claim that sensor maps are not
“natural” for many high level tasks, especially those includ-
ing semantics or with human in the loop. In their work, they
present a method of fusing two sensor and floor maps, and
using the combination for accomplishing elaborate tasks.
However, in their work the map to map correspondence
is established manually. In other examples, the prior map
is exploited towards improving the performance of SLAM
algorithms, either through exploiting the structure of the prior
map, or by aligning local maps to build a global map. Geor-
giou et al. (2017) formulated the “structural information from
architectural drawings” as “informative Bayesian mapping
priors” in order to improve the performance of the SLAM
algorithm. Although, this work does not address the map
alignment problem per se. Instead the SLAM output is struc-
tured according to the prior information embedded into the
SLAM algorithm. Vysotska and Stachniss (2017) proposed
an approach to improve SLAM performance by generating
constraints from the correspondence between the building
information from OpenSteetMap and the robot’s perception
of its surroundings. They also benefit from the “localizabil-
ity” information available in the OpenSteetMap. Mielle et al.
(2017a) proposed a method for applications with extreme
conditions (e.g. with dust or smoke) where the information
from a “rough prior” is incorporated in order to improve the
SLAM performance, and enhance the quality of the rough
prior map by fusing it with sensor map.

2.1 Graphmatching approaches

Topological structure of the open spaces is one of the most
salient information in themaps, and it is natural that the graph
representation of the aforementioned structure draws much
attention as a fitting representation. Two of the sub-problems
in graph theory that are most relevant to map alignment are
the maximal common sub-graph (MCS) problem, and the
error-tolerant sub-graph isomorphism (Huang and Beevers
2005).

Huang andBeevers (2005) proposed amethod formerging
partial maps based on the embedded topological maps. Their
approach is based on a graph matching process inspired by
maximal common sub-graph (MCS) and image registration,
followed by a second stage in which the geometric consis-
tencies of the match hypotheses are evaluated. The vertices
of the topological map are embedded in ametric space, along
with a minimal amount of metric information (e.g., orienta-
tion of edges at each vertex and path length for each edge).

123



Autonomous Robots

Therefore, their method benefits from both the geometric and
topological information of the open spaces.

In another work with a similar approach, Wallgrün (2010)
proposes a map alignment technique with a graph match-
ing method based on the Voronoi graph of the maps. The
objective of his work is localization and mapping, and the
underlying data association model of his method is based
on an inexact graph matching with graph edit distance, over
annotated graphs generated from the Voronoi graphs. Nodes
are annotated with the radii of the maximal inscribed cir-
cles used to generate the Voronoi graph, and the edges are
annotated with their relative length, the shape of the Voronoi
curve beneath the edge, and the edge’s traversability. By
assigning such attributes to the elements of the graph, he
incorporates geometric constraints into the matching pro-
cess.

In order to develop an automated process for map quality
assessment, Schwertfeger and Birk (2013) have developed
an interesting method for map alignment. Their method cap-
tures the high-level spatial structures of the maps through
Voronoi graphs, and represents with topological graphs that
contain the angles between edges and the length of edges.
The map alignment is done by finding similar vertices of
the graphs and “identification of sub-graph isomorphisms
through wave-front propagation” (Schwertfeger and Birk
2013). With experimental results, they show the robust-
ness of their method by detecting brokenness in sensor
maps.

In another intriguing work, Mielle et al. (2016) proposed
a map alignment method based on graph matching, which
enables robots to follow navigation orders specified in sketch
maps. Their method converts theVoronoi skeleton to a graph,
where vertices are the bifurcation and ending points of the
skeleton. Vertex type (dead-end or junction) and an ordered
list of edges are attributed to the graph’s vertices in thematch-
ing process. To find the error-tolerant maximal common
sub-graph (ETMCS), they developed a modified version of
(Neuhaus and Bunke 2004) graph matching algorithm based
on the normalized Levenshtein edit-distance (LED) (Yujian
and Bo 2007). By skipping the absolute position values, the
interpretation becomes insensitive to noise and inconsistency
of themap. Consequently theirmethod doesn’t require global
consistency and uniform scaling of the maps.

In order to benefit from semantic information available in
floormaps for high level task execution,Kakuma et al. (2017)
proposed a graph matching based method for the alignment
of sensor maps to floor plans of the buildings. Their method
constructs a graph from segmented regions of the occupancy
map.Graphmatching is carried outwithminimizing amatch-
ing cost function based on a variation of graph edit distance
(GED) (Sanfeliu and Fu 1983; Hu-Moments Hu 1962).

2.2 Hough/Radon transform approaches

Hough(/Radon) transform maps the input signal from the
Cartesian to a parametric space. This parametric space has
the advantage of capturing the salient, thought maybe latent,
structure of the maps. The core of those methods based on
Hough transform is to decompose the alignment problem
into rotation and translation estimation. Such approaches
are often deterministic, non-iterative, and fast, thanks to this
decomposition. However, methods in this category are lim-
ited to rigid transformation, andwork best onmapswith same
modalities.

For merging partial maps in a multi-robots application,
Carpin (2008) proposed a method that first finds the rotation
alignment via a correlation between the Hough spectra of
the two maps. After the orientation alignment, the transla-
tion parameters are estimated from a x–y projection of the
maps. One of the interesting features of this method is that
the estimated transformations are weighted and such weights
could be treated as uncertainties.

With a conceptually similar approach, Bosse and Zlot
(2008) tackle the problem of global mapping by merging
local maps. Their method also decouples the rotation and
translation estimations, but with some twists in their trans-
formation techniques. They use an “orientation histogram
of the scan normals” (yields an output similar to a Hough
transform) to determine the orientation alignment. Then a
“weighted projection histograms created from the orthog-
onal projections” (somewhat equivalent to radiography) is
used for estimating the translation between the orientation-
ally aligned data.

Saeedi et al. (2012, 2014a, b) proposed a novel tech-
nique to represent the topology of the open space with a
probabilistic Voronoi graph. Even though they employ a
graph representation, they do not solve the matching prob-
lemby graphmatching techniques. First a Radon transform is
employed to find the relative orientation between maps, fol-
lowed by an edge matching technique based on a 2D cross
correlation over graphs’ edges to find the translation. One of
the very interesting features of their method is the propaga-
tion of the uncertainty from input map to the Voronoi graph,
and accounting for this uncertainty in the fusion process.

2.3 Optimization approaches

One of the most popular categories of techniques for data
associations in robot mapping is based on optimization. A
famous example is the iterative closest point (ICP; Besl
and McKay 1992) which is a point set registration and
finds a rigid transformation between two point sets. Such
an approach is inherently susceptible to the problem of
local minima. They are only suitable to problems where
a [rough] initial estimate of the displacement between
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input data is available. While this is a reliable assump-
tion in incremental mapping, it is not a valid assumption
in map alignment. Furthermore, such methods work on same
modality input data. Other similar approaches in image align-
ment, such as Lucas–Kanade algorithm (1981), Baker and
Matthews (2004) and enhanced correlation coefficient (ECC)
Maximization (Evangelidis and Psarakis 2008), also work
under similar assumptions and consequently they are prone
to similar pitfalls.

One example of optimization based method applied to
the map merging problem is presented by Carpin and Birk
(2005), Birk and Carpin (2006), and Carpin et al. (2005).
Their approach minimizes a dissimilarity function (overlap-
ping quality index) over the transformation parameters, with
a stochastic process (random walk), used for the optimiza-
tion. An interesting feature of this method is its ability to
robustly handling unstructured environments.

What else? It is good to mention some other interesting
approaches, even though we did not find them particularly
relevant in order to investigate them in detail and experiment
with them. Among those are methods from the multi-robot
mapping applications where the alignment of individual
maps are determined by localizing each robot in the par-
tial maps of other robots. Works by Thrun (2001), Dedeoglu
and Sukhatme (2000), and Williams et al. (2002) are good
examples in this category. These methods are based on the
assumption that the input maps are from the same modality.
With a similar application, i.e. multi-robot exploration, some
researchers have developed methods to determine the rela-
tive transformation between robots’ partial maps when the
robots can physically meet in the environment. Examples of
the methods based on “rendezvous” or “mutual observation”
are proposed by Howard et al. (2006), Howard (2004), Fox
et al. (2006), Zhou and Roumeliotis (2006), and Konolige
et al. (2003). These methods are based on the robots’ abil-
ity to meet and generate transformation hypotheses from a
rendezvous, which is unfeasible for off-line methods. Erinc
et al. (2013) proposed a method to annotate heterogeneous
mapswithWIFI signal that provides cues for data association
between maps. This means two essentially different maps
are annotated by a shared landmark, which provides a seam-
less data association cue. Boniardi et al. (2015) developed
a method for localizing and navigating directly in a sketch
map, without the map alignment. Partial map alignment is
an essential component of map merging. Saeedi et al. (2016)
provided a thorough review of the multi-robot SLAM field
which covers a broad range of such methods. However, most
of these methods, being specifically developed to improve
multi-robot mapping applications, are dependent on sources
of information that are specific to robot map and not acces-
sible for any arbitrary map (e.g. layout maps). The work by
Bonanni et al. (2017) on merging 3D maps, and its earlier

version on 2D maps targeting the problem of merging “par-
tially consistentmaps” (Bonanni et al. 2014), require the pose
graph to be available (or computable) for both maps. Jiang
et al. (2017) proposed a method based on “motion averag-
ing” for merging multiple local maps. Their approach is to
find transformation between all local map, construct a graph
of the inter-map “motion” and optimize such motions for
optimal alignment. However, the core of this method is the
optimization of alignment between several local maps, and
therefore not suitable for aligning a pair of maps.

3 Method

The essence of ourmethod, as depicted in Fig. 2, is to abstract
the representation of input maps in order to facilitate the
search for alignment. This abstraction consists of modeling
the physical entities of the environment with 2D geometric
objects (such as lines and circles.) These models are then
used to partition the map into separate regions with a 2D
arrangement. We have shown in our earlier works (Gho-
lami Shahbandi et al. 2014, 2015), how this representation
could be used for semantic annotation and place categoriza-
tion of occupancy grid maps. Section 3.1 describes the 2D

(a)

(b)

Fig. 2 The outline of our method in a, and a concrete example demon-
strating the process on real maps in b. a The orange blocks represent
inputs and output, blue blocks are the intermediate representations, and
the green blocks are the alignment processes. b An example of the
process on a pair real world maps (Color figure online)
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Algorithm 1 Map Interpretation
function Interpret(Map)

T = DetectGeometricTraits(Map)
A(T ,P,F) = Arrangement(T )
/* Pruning */
// Md : normalized Distance Transform of Map
// Np(e): neighboring cells (pixels) to an edge e
// V (e) = 1

si ze(Np(e))

∑
p∈Np(e) Md (p)

// thre: wall/gateway detection threshold (∼ 0.075)
E(P) = E(P) − {e | e ∈ E(P) ∧ V (e) < thre}
Update(A(T ,P,F))
return A

end function

function Arrangement(T = {ti })
/* construct prime graph P from traits T */
V (P) : {vi (x, y) | (∃t j , tk ∈ T )[vi ∈ t j ∧ vi ∈ tk ]}
E(P) : {ei (tk , vis , vie) | (�vm ∈ ei )[vm �= vis ∧ vm �= vie]}
/* identify irreducible faces F in P */
F : { fi := {e j } | (∀e j ∈ fi )[∃!ek ∈ fi | v

j
s = vke ]}

N (F) : {( fi , f j ) | (∃ek)[ek ∈ fi ∧ ek ∈ f j ]}
return A (T ,P,F)

end function

arrangement representation. Furthermore, we explain how
this representation is adjusted to capturemeaningful regions,
i.e. adjusting the structural decomposition to region segmen-
tation. Section 3.2 describes the alignment procedure, that
is the matching of regions in the maps and estimation of
alignment transformation for each match, resulting in a pool
of plausible hypotheses. While each hypothesis is estimated
frommatching only two regions, they are evaluated based on
how well they align the two maps as a whole. We introduce
a “match score” in Sect. 3.3, that is used for comparing the
quality of alignments, which in turn is used to pick the best
hypothesis.

3.1 Map interpretation

First step towards map alignment is the modeling of maps
with an abstract representation, i.e. arrangement (Agarwal
and Sharir 2000). Algorithm 1 outlines the process of this
abstraction, composed of geometric trait detection, decom-
position (arrangement), and pruning of the arrangement from
a structural decomposition to a region segmentation. An
arrangement partitions a 2D plane according to a set of geo-
metric objects (such as, but not limited to, lines and circles),
referred to as geometric traits and traits for short. A set of
geometric traitsT will result in a unique arrangement A iden-
tified by a prime graph P , and a set of faces F . The prime
graph P is the result of intersecting all traits T , and faces
are irreducible closed-regions (“Jordan Curve”) bounded to
edges from the prime graph V (P). Neighborhood N (F) is
an attribute associated with the set of facesF , defined as a set
of tuples of faces where each tuple identifies a pair of neigh-

(a) (b) (c)

Fig. 3 An arrangement A := (T ,P,F). This example involves
straight lines and circles to demonstrates the ability to handle geomet-
ric traits beyond straight lines. However, due to the nature of buildings
in our maps, our map interpretation with arrangement only relies on
straight lines. a Geometric traits, b prime graph, c faces

boring faces. Figure 3 demonstrates an arrangement and its
components on a toy example. For technical details of the
arrangement algorithm, see Agarwal and Sharir (2000).

3.1.1 Geometric traits

We model the physical elements of the buildings (e.g occu-
pied pixels in occupancy maps) with geometric traits, which
represent the boundary between open spaces and occupied
(or unexplored) areas. Accordingly, an arrangement mani-
fests a dual characteristic: (i)F is a geometric representation
of the open-space and its boundaries, and (ii) N (F) captures
the topology of open-space. The detection of the geometric
traits from 2D maps could be achieved by common algo-
rithms such asGeneralized Hough Transform (Ballard 1981)
and Radon Transform (Radon 1986). Given that all maps
used in our experiments could be modeled with only straight
lines, in this work we use radiography, which is a variation
of the aforementioned algorithms. Radiography operates as
a Radon transform that is filtered by the oriented gradient of
the image. That is, the projection of each point is weighted
by the magnitude of the image’s gradient at that point, multi-
plied by the difference between the orientation of the image’s
gradient and the direction of the Radon projection. We have
shownpreviously (GholamiShahbandi et al. 2014) that radio-
graphy is more robust in modeling physical elements of the
environment (e.g walls) that suffer from a discrepancy in
their continuity or too much noise. Nonetheless, the arrange-
ment representation is neither limited to straight lines, nor
dependent on the trait detection technique.

3.1.2 Abstraction compatibility and arrangement pruning

Despite its merits in detecting discontinuous traits in noisy
maps andcapturing theglobal structure of environments (Gho-
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(a) (b)

(c) (d)

Fig. 4 An Occupancy Map in a, its original decomposition in b, and
a cleaned-up version of the arrangement (pruned) in c, based on the
distance map Md in d. a Occupancy map, b arrangement, c distance
image, d after pruning

lami Shahbandi et al. 2014), radiography detects unbounded
traits (e.g. infinite lines instead of line segments). Conse-
quently the partitioning of the space is not equivalent to a
plausible region segmentation, due to over-decomposition of
areas that are conceptually a single region (e.g. a kitchen
or an office). Figure 4 demonstrates the over-decomposition
of a real map. This inconsistency of region segmentation is
non-deterministic, depends on the noise, partiality and incon-
sistencies of the maps, and could vary from sensor maps to
layout maps. Since the essence of our alignment method is
to match corresponding regions, it is crucial for the maps to
have representations on the same level of abstraction (regions
segmentation), what we call abstraction compatibility. That
is to say, if a single face represents a room in one map,
the same room must be represented by a similar face in
the other map. Based on empirical observations, the suc-
cess rate of our method seems to be most sensitive to this
compatibility assumption. However, the sensitivity of the
alignment method to abstraction compatibility is not criti-
cally obstructive, and not every corresponding region should
have compatible abstraction in the maps.

We remedy this challenge by pruning the arrangement to
a more plausible region segmentation, presented in the func-
tion Interpret in Algorithm 1. This pruning is the process
of removing all face boundaries (i.e. ei ∈ E(P)) which do
not correspond to a wall or gateway, followed by merging
all adjacent faces whose shared boundaries are removed. As
described in Algorithm 1, an edge is considered a gateway
or wall if the average value of the pixels V (e) from the dis-
tance map Md (Fig. 4c) within a neighborhood of the that
edge Np(e) is below a certain threshold thre. Since the dis-
tance map Md is normalized (scaled to [0, 1]), the threshold
thre over the averaged pixel values V (e) is independent of
the map scale. The result of a pruning process applied to the
over-decomposed example of Fig. 4b, is presented in Fig. 4d.

Our pruning of an over-decomposed arrangement to
region segmentation is a variation of “Morphological Region
Segmentation” as presented in the “Room Segmentation”
survey by Bormann et al. (2016). In more elaborate scenar-
ios, one could employ other region segmentation methods
presented in Bormann et al. (2016), or more recent works by
Fermin-Leon et al. (2017) and Mielle et al. (2017b). Nev-
ertheless, we observed that the arrangement pruning, along
with an approximation of faces with Oriented Minimum
Bounding Boxes (details in Sect. 3.2), satisfies the abstraction
compatibility assumption.

3.2 Alignment procedure

A hypothesis in the context of this work is a transforma-
tion function between the coordinate frames of the two
maps.Hypothesis generation is the process of proposing such
plausible transformations. According to the uniform scaling
assumption stated in Sect. 1.3, the transformations estima-
tion is restricted to “similarity” (i.e. translation, rotation and
uniform scaling.)

To propose hypotheses, faces of the open space regions
with similar shapes are associated and a transformation is
estimated for each pair of faces with similar shapes. The
shape descriptor is an ordered sequence of vertex-edge tuples

D( f ) := ((vi , el), . . . , (v j , ek))

in which, all the entries (vertices and edges) are ordered
counter clock-wise from an arbitrary reference point. Since
the choice of reference point in each face is arbitrary, the
descriptor also contains all its “cyclic shifts”. For example,
the descriptor for face f1 of the arrangement from the Fig. 3
with all its s-step shifts are

D
(
f s=1
1

) = ((v2, e9), (v1, e1), (v3, e5))

D
(
f s=2
1

) = ((v3, e5), (v2, e9), (v1, e1))

D
(
f s=3
1

) = ((v1, e1), (v3, e5), (v2, e9))
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(a) (b) (c)

Fig. 5 Examples where a missing feature results in wrong matches.
In the absence of edge length ratio those faces in a could have three
matches instead of one, and the faces in b could have four matches
instead of zero. In the absence of corner angle those faces in c could
have five matches instead of none

In the context of the shape descriptor, vertices denote cor-
ners, where corners are defined as vertices with any internal
angles other than π . The features of the descriptor are the
internal angles of vertices (i.e. corner angle), and the length
of edges normalized to the perimeter of the face (i.e. edge
length ratio). Figure 5 demonstrates the necessity of these
features, through examples where the absence of these two
features would result in false matches. Descriptor size equiv-
alency is the first necessary condition for a potential match.
A match is then identified as a s-step “circular shift” of one
descriptor, so that all corresponding entries in the descriptors
of the faces are equivalent. After a correspondence between
the two point sets (face corners) is proposed via face match-
ing, a transformation between the two point sets is estimated
based on the “Least-squares estimation” method proposed
by Umeyama (1991), which uses the singular value decom-
position of a covariance matrix of the data points.

Algorithm 2 presents the map alignment procedure in
pseudo-code, and Fig. 2b depicts two examples of correct
(in green) and wrong (in red) association and their conse-
quent transformation.

Simplified Alignment Procedure In the presence of too much
noise in a map, the pruning of the arrangement might not
return clean-cut shapes desired for facematching.Onewrong
corner missed in the pruning process will render the shape
of that region useless for matching, if the same error does
not occur in the other map for the corresponding region. One
example of missed corners is visible at the bottom of Fig. 4d.
Alternatively, due to such cases,we simplify shapeswith their
Oriented Minimum Bounding Boxes (OMBB). This counts
as an interpretation of the “well-structured environments”
assumption stated in Sect. 1.3. This substitution of the shapes
with OMBB renders the descriptor size and corner angles

Algorithm 2Map Alignment Procedure
Input: Map1, Map2
Output: Alignment (similarity transformation)

/* Map Interpretation */
A1(T1,P1,F1) = Interpret(Map1)
A2(T2,P2,F2) = Interpret(Map2)

/* Face Matching & Hypotheses Generation */
// f .c : corners of the face f
// D( f ) : shape descriptor of face f
// f s := s-step circular shift of corners and D( f )
H = ∅
for fi ∈ F1, f j ∈ F2 | Size( fi .c) = Size( f j .c) do

for s := 1 to Size( fi .c), step=1 do
if D( f si ) = D( f j ) then

H = H ∪ {EstimateTransform( f si .c, f j .c)}
end if

end for
end for

/* Selecting The Best Hypotheses */
Alignment = argmaxh∈H MatchScore(h, A1, A2)

Algorithm 3 Map Alignment Procedure with simplified
hypotheses generation
/* Input, Output (see Algorithm 2)

/* Map Interpretation (see Algorithm 2) */

/* Generate Hypotheses (without face matching) */
// f̂ = OrientedMinimumBoundingBox( f )
H = ∅
for fi ∈ F1, f j ∈ F2 do

for s := 1 to 4, step=1 do
H = H ∪ {EstimateTransform( f̂ si .c, f̂ j .c)}

end for
end for

/* Reject False Positives Hypotheses */
// h.sx , h.sy : scales of transformation in x/y directions
// thrs : acceptable ratio between scales (∼ 1.2)
for h ∈ H | ¬(1/thrs < (h.sx/h.sy) < thrs) do

reject h
end for

/* Selecting The Best Hypotheses (see Algorithm 2) */

redundant, and consequently, the only relevant shape feature
would be the aspect-ratio of the OMBBs (i.e. edge length
ratio). We have noticed that it is computationally cheaper to
replace this feature (i.e. edge length ratio), with an equiv-
alent process of False Positive rejection which is based on
the uniform scaling assumption. Accordingly, the uniform
scale assumption is relaxed, where all the transformations
are estimated with an affine model, and then any transfor-
mation that does not qualify as a similarity transformation
is rejected. Algorithm 3 is the modified version of the align-
ment procedure,which reflects the simplification of the shape
descriptor and the rejection of non-uniformly scaled transfor-
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mations. The result of the False Positive rejection can be seen
in Table 2, where ∼ 90% of initial hypotheses are rejected.
We have carefully monitored the hypotheses pools of cases
where themethod failed to find the correct alignment.We can
report that a correct alignment was never generated. In other
words, we can safely assure that a rejection of potentially
correct hypotheses has never been a cause of failure.

3.3 Alignment match score

To select the winning hypothesis, each hypothesis is evalu-
ated based on how well the arrangements of the two maps
(A1 and A2) are aligned under that transformation. To this
end, an arrangement match score (SA) is defined to measure
the alignment quality of each hypothesis. The arrangement
match score between two arrangements A1 and A2, under the
transformation 1T2, is defined as

SA(A1, A2,
1T2) =

∑

fi∈F1
f j∈F2

min(w( fi ), w( f j )) × s f ( fi , f j )

where w( f ) is a weight assigned to individual faces, and s f
is the face match score. The weight is defined as the rela-
tive surface area of faces to the surface area of the whole
arrangement they belong to:

w( fi ) = area( fi )

area(A)
, area(A) =

∑

fk∈F
area( fk)

The larger a face is, the higher impact it will have in the
arrangement match score. The face match score s f is defined
as:

s f ( fi , f j ) =
⎧
⎨

⎩

e

(
fi∩ f j
fi∪ f j

)

−1
e−1 i f ( fi , f j ) ∈ association

0 otherwise

where fi ∩ f j is the surface area of the faces’ intersection
and fi ∪ f j is the surface area of the faces’ union. The match
score of a face with itself (perfect match) equals one, and the
match score of two non-intersecting faces equals zero. The
exponential expression rewards slight improvements close to
perfect match more than the slight improvements close to a
bad match.

The association represents pairs of faces from two
arrangements that are associated (not just overlapping) under
the transformation.Wedefineassociation based on three con-
ditions:

association : {( fi , f j ) | ∀ fi ∈ F1, f j ∈ F2, c1 ∧ c2 ∧ c3}
c1 : center( fi ) ∈ f j ∧ center( f j ) ∈ fi

c2 : � fk ∈ F2 | center( fk) ∈ fi , d( fi , f j ) > d( fi , fk)

c3 : � fk ∈ F1 | center( fk) ∈ f j , d( fi , f j ) > d( f j , fk)

where center( fi ) is the center of fi and d( fi , f j ) is the differ-
ence in surface area of fi and f j . First, for the two faces fi and
f j to be associated, theymust enclose each other’s center.We
define the center of a face as the “centroid” (geometric cen-
ter) of the vertices of the face. Condition number two assures
a one to one association where a face overlaps with multiple
faces from the other arrangement. In such cases, among all
faces of F2 with their centers enclosed by fi ∈ F1, the face
( f j ∈ F2) with most similar size (surface area) is associated
with fi . And the third condition is symmetric to the second
condition, i.e. vice versa for fi to f j .

This match score is devised only for the comparison of
different hypotheses for a single pair of maps. That is to say,
the alignment of different sensory maps over a layout map
could not be compared with this score, nor is it suitable to
detect the layout to which a sensor map belongs (i.e. layout
recognition), and neither is it suitable as a quantified match
accuracy measure. This matter is better observed in Figs. 8
and 9 from Sect. 4, where it is discussed with experimental
observations.

The challenge of face centerThe center points of the faces can
be defined differently according to the context of the appli-
cation, such as “center of gravity”, “Chebyshev centers” and
“polygon centroid”. However, it proves to be very hard to lay
down a definition that guarantees to be enclosed by the region
and unique. If a face is non-convex as in Fig. 6a, there is no
guarantee that the center of gravity would be enclosed by the
face. Chebyshev centers are defined as the center of either
(i) the minimal-radius circle enclosing a region, or (ii) the
maximal-radius inscribed circle inside the region. The exam-
ple of Fig. 6a shows that the minimal-radius enclosing circle
is susceptible to the same problem as the center of gravity,
and Fig. 6b presents an example where the maximal-radius
inscribed circle is not necessarily unique. Another example
of tackling this challenge that we have explored, is to extract
the Generalized Voronoi Diagram, and picking a point on
the skeleton of the influence zone (SKIZ) that has the min-
imum sum of distance to all other points. This definition is
also prone to degenerate cases, such the example in Fig. 6c
shows. A variety of definitions could be considered for the
center of a region that guarantee to be enclosed by the region.
Alas, they would ultimately depend on the interpretation of
“center point” with respect to the domain of application, and
most are prone to degenerate cases where such a point is
not unique. Ultimately, we have observed that in the setting
of our problem such degenerate cases are not so frequent to
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(a) (b)

(c) (d)

Fig. 6 Examples where “center of gravity”, “Chebyshev centers” and
“Voronoi-based” definitions fail to identify a center point of a region
that is both enclosed by the region and unique. a, b and c highlight the
failures of each definition under different circumstances. While those
three may not seem probable in a real world scenario, d presents the
failure of such definitions in a more realistic example

disturb the performance of the method. Either of these defi-
nition would satisfy the requirements of our method as long
as it guarantees uniqueness, and we chose the centeroid of
the vertices.

4 Experimental results and verification

In this section we present the results from a series of experi-
ments, on a data-set of forty maps collected specifically for
this task. The experiments are designed to show themethod’s
performance, under different circumstances and in compari-
son with other methods. All the experiments are based on
an implementation of the method in Python, using many
libraries (Jones et al. 2001; van der Walt et al. 2011, 2014;
Hunter 2007;Meurer et al. 2017; Bradski 2000; Rädler 2015;
Hagberg et al. 2008). The source code to our implementation
is also available online.1

4.1 Data collection

To evaluate our method, we collected maps of four different
environments in twomodalities, ofCADdrawings and sensor

1 https://github.com/saeedghsh/Map-Alignment-2D/.

maps. All the maps are available online,2 and presented in
“Appendix”.

Modalities A series of sensor maps were collected by a
Google Tango tablet, and the Tango Constructor applica-
tion from Google. The 3D meshes were sliced horizontally
and converted to an occupancy-like bitmap, where all the
space is open except for the vertices of the mesh. From there,
we generated a pseudo-occupancy map through an interac-
tive ray-casting process. Detection of the geometric traits
from foregoing maps were done via a variation of the Radon
transform, namely radiography (Gholami Shahbandi et al.
2014).

As for the other modality, the layout maps were obtained
from CAD drawings in portable document format (PDF).
These CAD drawings had to be manually simplified before
further processing, due to the presence of furniture and other
common appliances. The process involved removing all ele-
ments of the drawings, except for the building’s elements (i.e
mainly walls). This simplification can be observed in Fig. 2b
from Sect. 3. It should be mentioned that the simplified ver-
sion of the layout map is not tailored to accurately reflect
the real layout and what is captured by the sensor map, with
no intention to benefit the alignment method. For instance,
walls are represented with single lines in layout maps (width
=∼ 1–2 pixel), while they are muchwider in the sensor maps
(∼ 5–10 pixels). The drawings were converted to scalable
vector graphics (SVG) and the geometric traits were obtained
directly by parsing the SVG files (Port 2017). In order to
acquire segmented regions and for the sake of convenience,
the SVG files were converted to bitmap format (PNG) and
the same process of decomposition and arrangement pruning
based on distance transform has been employed. However, if
CAD drawings of the layouts are accessible in a richer for-
mat (e.g. DXF or DWG), the process of simplification and
parsing could also be automated. Furthermore, if the regions
are accessible in such formats, there would not be a need
for conversion to bitmap and distance transform for region
segmentation.

While all the sensor maps have the same scale, that is, they
could be correctly alignedwith each other under a rigid trans-
formation, layout maps have different scales compared to the
sensor maps, and a rigid transformation could not correctly
align sensor maps to layout maps.

Environment types We collected data from four different
environments, two of which are homes and the other two
are office buildings. Table 1 lists the number of available
maps for each environment, and all the maps can be found in
“Appendix”. In total there are forty maps, four of which are

2 https://github.com/saeedghsh/Halmstad-Robot-Maps/.
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Table 1 A list of all maps of four different environments

Environment Type # Sensor maps # Layout maps

HH_E5 Office 14 1

HH_F5 Office 14 1

HIH Home 4 1

KPT Home 4 1

(a) (b) (c)

Fig. 7 Examples of correct, defected, and wrong alignments. Both cor-
rect and defected are considered as successful alignments. a Correct, b
defected, c wrong

layout maps and the rest are sensor maps. Most sensor maps
are partial and vary in their coverage of the environment.

Maps that violate our assumptions The map collection con-
tains maps that violate some of the initial assumptions.
For instance, maps HH_E5_2, HH_E5_3, HH_E5_4 and
HH_F5_2 only cover corridors and halls and do not contain
any room, and therefore there are not enough segment-able
regions for hypotheses generation. Other examples include
HH_E5_12 and HH_F5_1 which are bent (deformed) and
violate the global consistency assumption. There exist fur-
ther minor defects in some other maps. Consequently, the
performance results presented here are not the representa-
tive of the method’s performance under all the assumptions.
Nevertheless, we include these maps to better observe the
dependency of the method on the aforementioned assump-
tions, and provide a more inclusive performance result under
different conditions.

Evaluations are based on success rate The performance of
each method is provided as success rate, which is a percent-
age of successful alignments. We skip a quantified accuracy
measure for the alignment. It proved very hard (impossible
for our data) to provide a per map alignment accuracy, due
to: (i) the lack of ground truth for the sensor maps, (ii) the
inaccuracy of layout maps, and (iii) the presence of noise and
global inconsistency of the sensor maps. Figure 7 illustrates
our quality assessment of the alignments.

4.2 Experiments and results

The performance of the method is evaluated under three dif-
ferent experimental setups:

– Sensor map to layout map alignment, which is the main
objective of the proposed method.

– Sensor map to sensor map alignment, where we observe
how partial coverage, noise and inconsistency of sensor
maps affect the performance.

– Evaluation of alignment match score, where the match
score is studied for the alignments of intra and inter envi-
ronment maps. Accordingly every sensor map is aligned
to all other layout maps, whether from the same environ-
ment or not.

4.2.1 Sensor map to layout map alignment

Table 2 presents the performance of the method in aligning
sensor maps to layout maps (within the same environment).
The column initial represents the number of initial estimated
transformations, after rejection represents the number of
remaining hypotheses after rejecting non-uniformly scaled
transformations (∼ 90% are rejected), and the last column
marks the success of each alignment. In total, the method
has successfully aligned all maps of the home environments,
and yielded 83% in success rate for the office buildings.
According to our investigations, failures aremainly due to the
violation of the prior assumptions, such as global inconsis-
tency and not enough segment-able regions in sensor maps.

4.2.2 Sensor map to sensor map alignment

Table 3 compares the success rate of the method in aligning
sensor maps to sensor maps, versus aligning sensor maps
to layout maps. It can be observed that the success rate of
the method drops in aligning sensor maps to sensor maps.
There are two main reasons for this drop; (i) many sensor
maps are partial and consequently they overlap with each
other marginally, (ii) the violation of initial assumptions. In
the presence of layout map there is one source of noise and
global inconsistency, but in case of aligning two sensor maps
the noise and inconsistencies are amplified.

4.2.3 Evaluation of the alignment match score

Figure 8 represents thematch score of thewinninghypotheses
for all pairs of sensor maps (includes pairing sensor maps of
different environment). Gray-scale encodes the value of the
match score (0 ≤ SA ≤ 1). The cells on diagonal (marked
with blue borders) represent the alignment of sensor maps
versus the layout maps, and the red lines separate different
environments. Green and red dots mark the success and fail-
ure of the alignments respectively. The squares on diagonal,
corresponding to intra environment alignments, are slightly
brighter compared to the rest of the matrix which corre-
sponds to inter environment alignments. However, this is not
conclusive enough to employ this measure across different
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Table 2 Performance of the method in aligning sensor maps to layout
maps

Map Number of hypotheses Result

Initial After rejection

HIH_01 24 6 �
HIH_02 48 8 �
HIH_03 24 6 �
HIH_04 36 4 �
KPT_01 256 14 �
KPT_02 128 10 �
KPT_03 144 10 �
KPT_01 160 10 �
HH_E5_01 9152 726 �
HH_E5_02 5280 458 ×
HH_E5_03 6688 704 ×
HH_E5_04 5984 458 ×
HH_E5_05 5808 368 �
HH_E5_06 2992 178 �
HH_E5_07 3696 214 �
HH_E5_08 4400 352 ×
HH_E5_09 9152 616 �
HH_E5_10 9152 794 �
HH_E5_11 5808 470 �
HH_E5_12 8624 644 �
HH_E5_13 4928 336 ×
HH_E5_14 3344 328 �
HH_F5_01 1292 128 �
HH_F5_02 1088 82 �
HH_F5_03 816 86 �
HH_F5_04 680 70 �
HH_F5_05 544 56 �
HH_F5_06 408 28 �
HH_F5_07 476 26 �
HH_F5_08 3604 158 �
HH_F5_09 952 78 �
HH_F5_10 680 56 ×
HH_F5_11 680 264 �
HH_F5_12 680 46 �
HH_F5_13 1020 92 �
HH_F5_14 1088 158 �

The column initial represents the number of initial estimated transfor-
mations, after rejection represents the number of remaining hypotheses
after rejecting non-uniformly scaled transformations (∼ 90% are
rejected), and the last column marks the success of each alignment

environments and to identify a layout map to which a sensor
map belongs. Under scrutiny it can be seen that maps of a
smaller environment (KPT) align with a maps of a bigger
environment (HH_E5) with a high score. Also, some maps
of the same environment have low match score due to the
small overlap, even though some are successfully aligned.

Table 3 The success rate of the method in aligning sensor maps to
sensor maps, versus aligning sensor maps to layout maps

Environment Sensor versus layout Sensor versus sensor

HH_E5 64.28% (9/14) 50.54% (46/91)

HH_F5 92.85% (13/14) 68.13% (62/91)

HIH 100% (4/4) 100% (6/6)

KPT 100% (4/4) 83.33% (5/6)

Fig. 8 Thematch score of thewinning hypotheses for all pairs of sensor
maps (includes pairing sensor maps of different environment). Gray-
scale encodes the value of the alignmentmatch score (0 ≤ SA ≤ 1). The
cells on diagonal (marked with blue borders) represent the alignment of
sensor maps versus the layout maps, and the red lines separate different
environments. Green and red dots mark the success and failure of the
alignments respectively (Color figure online)

Figure 9 presents a box plot of the alignment match score
for all hypotheses in aligning sensor maps to layout maps.
Thewinning hypotheses aremarked red and green, represent-
ing the failure and success of each alignment. There seems
to be a cut-off point on the match score value across all maps
(∼ 0.15), which separates successful alignments from fail-
ures. However there is no reliable margin to this cut-off to
be used as a threshold between success and failure. The take
away message here is that the value of match score is not a
reliable indicator of the alignment success.

In conclusion we can say, even though the match score
has proven useful in selecting the winning alignment among
all hypotheses, yet it is not conclusively reliable to detect to
which layoutmap a sensormap belongs, nor to autonomously
detect a successful alignment.
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Fig. 9 The alignment match score for all hypotheses in sensor maps to layout maps alignments. The winning hypotheses are marked red and green,
representing the failure and success of each alignment (Color figure online)

Table 4 Success rates (in %) of different methods on map alignment

Method Sensor to layout Sensor to sensor

HH_E5 HH_F5 HIH KPT Total HH_E5 HH_F5 HIH KPT Total

ECC
maximization (Evangelidis
and Psarakis 2008)

0.0 7.14 0.0 0.0 2.77 37.36 29.67 0.0 16.67 31.9

SIFT (Lowe 1999) 21.43 50 0.0 0.0 27.7 17.58 28.57 16.67 0.0 22.1

CPD (Myronenko et al. 2007;
Myronenko and Song 2010)

0.0 0.0 0.0 0.0 0.0 8.79 3.3 0.0 0.0 5.6

Saeedi et al. (PGVD, 2012) 0.0∗ 0.0* 25* 0.0* 2.77∗ 10.98 12.08 33.33 16.66 12.4

Carpin (2008) 0.0∗ 7.14* 0.0* 0.0* 2.77∗ 16.48 29.67 100 83.33 27.31

Our method 64.28 92.85 100 100 83.3 50.54 68.13 100 83.33 66.5

Numbers marked with an asterisk (*) refer to the methods that are not able to handle scaling. In those cases, the experiments were performed on
manually scaled maps

Table 5 Average (and standard deviation) of the computation times (in seconds) of different methods, separated to home and office environments

Method Implementation Time in seconds

Home Office

ECC maximization (Evangelidis and Psarakis 2008) Python & C++ 32.79 (28.24) 73.46 (85.46)

SIFT (Lowe 1999) Python & C++ 0.20 (0.05) 0.67 (0.14)

Saeedi et al. (PGVD, 2012) Matlab 4.91 (1.42) 50.20 (19.84)

Carpin (2008) C++ 3.07 × 10−4 (9.28 × 10−5) 2.65 × 10−4 (6.72 × 10−5)

Our method Python 8.86 (2.13) 41.86 (41.92)

4.3 Comparison with other methods

Our initial investigation and experiments towards map align-
ment lead to methods which we categorize into two groups.
First the generic approaches in data association, such as
image alignment, image registration and point set registra-
tion. And second themap alignment methods, such as Hough
transform-based algorithms. The performance of all methods
in terms of success rate is available in Table 4. And finally,
a brief account of computational costs, presented in Table 5,
will follow the performance evaluation.

4.3.1 Generic data association methods

Here the performances of three generic data association
methods inmap alignment are presented: (i) image alignment
with enhanced correlation coefficient maximization (ECC)
(Evangelidis and Psarakis 2008), (ii) image registration with
scale-invariant feature transform (SIFT) (Lowe 1999), and
(iii) point set registration with coherent point drift (CPD)
(Myronenko et al. 2007; Myronenko and Song 2010). All the
performance results are available inTable 4.Weobserved that
the methods based on ECC and SIFT perform slightly better
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when they are applied to the distance transform of the maps,
instead of the occupancy maps. Accordingly the presented
results are based on distance images of the maps.

ECC maximization performs worse on aligning sensor
maps to layouts, due to its higher sensitivity to data-level
similarity. A detailed review of the failed cases in aligning
sensor maps to sensor maps reveals that the main causes of
failure are the global inconsistencies of the sensor maps and
small overlaps between the maps.

Image registration with SIFT (Lowe 1999) was tested in
combination with fast approximate nearest neighbors (Muja
and Lowe 2009) for feature matching. This method works
best on maps with unique patterns represented by a unique
constellation of “key points”, and consequently has a slightly
better performance on bigger maps with more key points.
Although the data-level similarity between sensor maps is in
favor of resultingmore similar features, however, thismethod
yields better results in aligning sensor maps to layouts of
bigger environments thanks to higher overlaps.

For the experimentswith CPD, point sets have been gener-
ated from the occupied cells of the maps. CPD is superior to
iterative closest point (ICP) as it supports affine transforma-
tions. However, it is computationally expensive and memory
demanding, so that the original point sets had to be sub-
sampled. This in turn conceals the structural patterns of the
maps, and becomes more sensitive to local minima.

4.3.2 Map alignment methods

We have chose the works by Carpin (2008) and Saeedi et
al. (PGVD) (2012) as the representatives of this category.
Implementations of both methods are made publicly avail-
able by the authors. The performances of these methods are
presented in Table 4.

One interesting aspect of these methods is their indepen-
dence from the assumption of maps’ “segmentable regions”.
Therefore they could be considered to have a broader tar-
get applications. For instance, we have observed that such
methods perform better on maps that mostly contain corri-
dors, which is a challenge for the region segmentation phase
of our method. Also, thanks to the underlying decoupling of
rotation and translation estimation, they could be relatively
faster than other methods, specifically the method proposed
by Carpin (2008). However, these advantages come with a
price in performance, while these methods perform better
on particular cases, they do have a lower overall success
rate over our collection of maps. By inspecting individual
results, we observed that many of the failures were due to
a wrong orientation alignment. And many of those cases
which survived the orientation estimation, they still failed
at the translation estimation. Fundamentally, these methods
exploit the structural similarities in maps, by finding simi-
larity is Hough spectra and cross correlating the maps after

orientation alignment.We believe the noise, the global incon-
sistencies, and the repetitive patterns of our maps are the top
challenges for such methods.

Thesemethods are limited to rigid transformation, and as a
result they could solve only the alignment of sensor to sensor
map. Therefore, we manually adjusted scales of the layout
maps, so that these methods could be evaluated over the
alignments of sensor to layout maps. These results (manually
adjusted scales) are marked with asterisks in Table 4. They
score very low, which we believe is due to the significant dis-
parity in the representations (i.e. different modalities). When
contrastedwith ourmethod, this is an interesting result. Com-
pared to the alignment of sensor to layout maps, our method
scores lower when bothmaps are sensormaps. This is mainly
due to the amplification of noise, inconsistency and partial
coverage when both maps are sensor maps. On the other
hand, these methods (Carpin 2008; Saeedi et al. 2012) per-
form worse when aligning sensor maps to layouts, due to
their sensitivity to representation disparity.

On a final note, it is important to note that due to a lack
of proper insight to the implementations of these methods,
we could not fine-tune them, tomaximize their performances
in the setting of our experiments. Therefore we would like
to point out, that the success rates of the methods presented
in Table 4 might not represent their best performances, but
rather they provide an insight into advantages and drawbacks
of each method.

4.3.3 Computation time

The timings of all methods are provided in Table 5. All
the experiments were carried out on a computer with an
Intel� CoreTM i5-3340M CPU @ 2.70 GHz × 4, and 8
GiB SODIMM DDR3 Synchronous 1600MHz of memory,
running Ubuntu 14.04. The timings of experiments are sep-
arated into home and office building, which provides a sense
of methods’ scalability with respect to the size of maps. The
average map size for home environments is 2.2×105 pixels,
and it is 1.0×106 pixels for office buildings (roughly 5 times
bigger).

SinceCPD is expensive and not scalable, the original point
sets were reduced from 1.2× 104 points on average in small
maps and 3.3 × 104 points in bigger maps, to 500 (close to
memory limit of the algorithm on our hardware.) Therefore
a meaningful computation time could not be provided here.

In comparison, our method falls behind some other
approaches in terms of computational cost. Specifically,
those methods designed for real-time applications such
as Carpin’s method (2008) for multi-robot mapping, are
extremely fast and hard to beat. Our method is based on the
decomposition of the space and requires an interpretation
through abstract models, which is in general computation-
ally more expensive than signal based interpretations such

123



Autonomous Robots

as Hough-spectra. However, if one intends to exploit the fast
speed of theHough transform-basedmethods in combination
with our method, there is a trade-off between thoroughness
of the hypotheses generation and computational time. In con-
clusion we speculated that, under certain assumptions (such
as orthogonally structured environments), one can create a set
of constraints imposed on the hypotheses generation to nar-
row down the search space. Although, a better understanding
of such potential combination requires further development
and more experiments.

At the end, we would like to emphasize that the timings
of each method provided here can portray a rough scale,
and should not be taken as an accurate computational cost
comparison. This is mainly due to the heterogeneity of the
implementations (C++, Python, Matlab). Furthermore, some
of the algorithms are borrowed from other context (e.g.
CPD, ECC) and applied to map alignment problem. Some
are intended for offline applications with not much con-
cern for computational time, while others were specifically
designed to be fast for real-time applications. As a result,
these computation times are not sufficient to generalize on
the performance of each approach.

5 Conclusion

In this paper, we present our work and findings on solving the
map alignment problem, for 2D spatial maps. Many interest-
ing approaches have been proposed to address this problem.
However, existing algorithms hinge on assumptions that are
not valid in (a number of) interesting use cases, such as align-
ing partial maps of different modalities. Most often they are
designed to performmap merging where maps are from sim-
ilar modalities, hence they rely on sensor level similarity of
the input maps, and consequently are sensitive to noise and
inconsistencies of sensormaps. In addition, maps of the same
modality have similar scale, and as a result, such methods
are limited to rigid transformations. Such assumptions do
not hold where maps of different modalities, such as sensor
maps and layout maps, are to be aligned. Also, the scaling
from onemap to the other adds a new dimension to the search
space and the desired solution becomes a similarity transfor-
mation rather than a rigid transformation.

We have shown, with experimental results, the insuffi-
ciency of generic data association methods (e.g. SIFT, ECC),
and some map alignment methods (designed for aligning
maps of samemodalities) in solving the problem in our exper-
imental setup. We have compared the performance of our
method with that of other methods both for sensor to sensor
map alignment and sensor to layout map alignment. Except
for few examples of similar performance, ourmethod outper-
forms other methods. In aligning sensor to sensor maps, we
observed that the presence of noise and global inconsistency

has been the main challenge for most other approaches. The
representation disparity between maps of different modali-
ties has been even more challenging for those methods in
aligning sensor to layout maps. For the latter experiment,
the layout maps were manually scaled to match the sensor
maps in size, since other map alignment methods are lim-
ited to rigid transformation. Our method relies on the notion
thatmost human built environments are composed of regions.
Accordingly, ourmethod finds the correct alignment by asso-
ciating regions and selecting the best hypothesis among all
candidates. By exploiting the notion of regions and founding
our method on spatial decomposition, our alignment method
operates on a higher level of abstraction. As a consequence,
the method is more robust to dissimilarity and heterogeneity
of the sensor-level data. Furthermore, the approach of align-
ing regions rather that associating sensor-level data enables
our method to handle the scaling factor like any other trans-
formation parameter.

5.1 Discussion

In the result section we tried to provide a thorough perfor-
mance comparison between our proposed method and other
approaches to solve the map alignment problem. We do
not claim, or believe, that our method is superior to other
approaches in a generic problem formulation of data asso-
ciation and map alignment. Rather, we tend to emphasize
the particular characteristics and advantages that this method
offers over alternatives in specific challenges, namely align-
ingmaps from differentmodality, severe data level noise, and
maps of different scales. However, there might be some other
objectives close to the core of the map alignment problem
that our method falls short of. Examples of such applications
are, aligningmaps of unstructured environment and real-time
applications.

Advantages Apart from the higher success rate of our pro-
posed method, we would like to point out some other
interesting features of it. One important aspect, and one of the
mainmotivations behind thiswork, is the ability to alignmaps
of different modality, and specifically sensor maps to layout
maps. As stated earlier, such a task demands a method that
is indifferent to heterogeneity and different scales of input
maps. Our proposed method shows a considerable perfor-
mance for such cases (success rate 83.3% compared to the
best alternative 27.7%). We have developed a region seg-
mentation method based on the arrangement representation
and distance transform, but the general framework of our
alignment method is not dependent on any specific region
segmentation technique. Our decomposition based algorithm
would be able to find the alignment as long as the input
maps are effectively interpreted by the arrangement of the
2D plane. That is to say, as long as the input maps are spa-
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tial and could be segmented into meaningful regions, the
proposed method in this work could be employed to find
the alignment. We speculate that an improved region seg-
mentation will have a positive effect on the performance
of this alignment approach. It is worth mentioning that the
implementation of our proposed method, and the accompa-
nied experiments presented in this paper, convert both maps
to occupancy-like bitmaps in advance. However it is not a
requirement of the proposed alignment algorithm, but rather
it was a convenient choice. And finally, the intermediate rep-
resentation that is constructed for alignment, by itself is a
useful representation for different objectives (Gholami Shah-
bandi et al. 2015, 2014), and it is not alignment-specific.

Drawbacks and limitations The main disadvantage of the
proposed method is the computation time. This means that
this method is not suitable for real-time applications. While
exploiting the notion of meaningful regions improves the
map alignment under difficult circumstances, it also lim-
its the applicability of the method. Dependency on the
region segmentation means it most likely will fail in maps
of environments cluttered with furniture, or in a maze-
like environment, unless an appropriate region segmentation
algorithm is employed. Partial maps which don’t cover mul-
tiple regions (e.g. a map of only one room), in applications
such as scan matching and incremental mapping, violate one
of the initial assumptions and would cause our method to
fail. We speculate that this is a domain where other meth-
ods such as the ones proposed by Carpin (2008) and Saeedi
et al. (2012) would outperform our method, given the maps
are from the same modality. As stated before, in Sect. 4, not
all the maps satisfy our initial assumptions such as global
consistency. We included these maps to better explain the
effects of aforementioned assumptions on the method and
portray a fair picture of the method’s performance under dif-
ferent conditions, even if they violate the assumptions of our
method. Other conditions that make our method unsuitable
occurswhen the prior assumptions are violated. Examples are
non-uniformly scaled maps like sketch maps, and maze-like
environments such as underground tunnels and alike where
the notion of meaningful regions might not apply.

Model regression Random sample consensus (RANSAC) is
a powerful regression technique in estimating a model from
noisy data. However, our empirical observation suggests that
RANSAC is not a suitable replacement for the components
of our method. The first possibility is to employ RANSAC
for hypothesis generation, i.e. estimating a transformation
between faces with known correspondences. We have found
Umeyama’s method to be a better fit as a non-iterative deter-
ministic method for this objective. Alternatively RANSAC
could be considered for solving the alignment on the map
level with unknown correspondences. However, the point

sets from our representation (vertices of the prime graph) are
sparse and do not reflect the skeletal structure. This challenge
is exaggerated with relatively high level of noise and par-
tiality of the maps. We have experimented with RANSAC in
this manner, with a simple setup and a denser sampling of the
occupied points, the result of which has not been satisfactory.
This lead to our experimentation with iterative closest points
(ICP) and Coherent point drift (CPD), a continuation of the
attempt in relying on the shape of the distribution of occu-
pied points. The results of CPD have been included in this
manuscript as a representative of this category of approaches.
Despite the inadequacy of RANSAC in estimating the align-
ment, we speculate that such regression techniques could be
beneficial in estimating other models as a part of a more elab-
orate method. For instance, RANSAC can be used for the
regression of the geometric coherency of hypotheses. That
is to say, assuming a correct alignment is represented with
multiple hypotheses, the pool of hypotheses is expected to
contain clusters of similar transformations. RANSAC can be
used for estimating the geometric coherency of hypotheses
and rejecting outliers. We ran experiments with this idea,
although with a clustering algorithm (DBSCAN (Ester et al.
1996)) and not RANSAC. The challenge is that not always
the correct alignment has multiple representatives, specially
for small, deformed, and partial maps. This idea needs fur-
ther investigation, since treating the pool of hypotheses has
to be done carefully with additional considerations.

5.2 Future work

In the continuation of this work we intend to address some
interesting questions which were raised during the develop-
ment of this work. One of those questions is the challenge of
autonomous detection of successful alignments. This prob-
lem can be translated to a classification task, where an
alignment match score could be a multidimensional vector
based on other sources of information in addition to arrange-
ment based match score, such as graph matching metrics
(e.g. GED), and data level distance between maps. Towards
that objective, we intended to enrich our collection of maps
with awider variety of environments. Furthermore,we intend
to carry out more challenging experiments and with other
modalities to inspect the performance of the proposed align-
ment approach under different circumstances.

The direction of our future work is towards merging maps
after alignment. Specific examples of features to contain in a
merging process would be the transferring of semantic labels
from layout map to sensor map for high level task planning,
and detecting and compensating global inconsistencies in
sensor map by relying on the structure of the layout map.
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Appendix

Map data-set

See Figs. 10, 11, 12 and 13.

Fig. 10 HH_E5 (office building in Halmstad, Sweden)

Fig. 11 HIH (Halmstad Intelligent Home (Lundström et al. 2016))

Fig. 12 HH_F5 (office building in Halmstad, Sweden)
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Fig. 13 KPT (apartment in Halmstad, Sweden)
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