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Dispertio: Optimal Sampling
for Safe Deterministic Motion Planning

Luigi Palmieri1†, Leonard Bruns2†, Michael Meurer3, and Kai O. Arras1

Abstract—A key challenge in robotics is the efficient generation
of optimal robot motion with safety guarantees in cluttered
environments. Recently, deterministic optimal sampling-based
motion planners have been shown to achieve good performance
towards this end, in particular in terms of planning efficiency,
final solution cost, quality guarantees as well as non-probabilistic
completeness. Yet their application is still limited to relatively
simple systems (i.e., linear, holonomic, Euclidean state spaces).
In this work, we extend this technique to the class of symmetric
and optimal driftless systems by presenting Dispertio, an of-
fline dispersion optimization technique for computing sampling
sets, aware of differential constraints, for sampling-based robot
motion planning. We prove that the approach, when combined
with PRM*, is deterministically complete and retains asymptotic
optimality. Furthermore, in our experiments we show that the
proposed deterministic sampling technique outperforms several
baselines and alternative methods in terms of planning efficiency
and solution cost.

Index Terms—Motion and Path Planning; Nonholonomic Mo-
tion Planning; Reactive and Sensor-Based Planning

I. INTRODUCTION

MOTION planning is key to intelligent robot behavior.
For motion planning in safety-critical applications,

where self-driving cars, social or collaborative robots operate
amidst and work with humans, safety guarantees, explainabil-
ity and deterministic performance bounds are of particular in-
terest. In the past, many motion planning approaches have been
introduced to improve planning efficiency, path quality and
applicability across classes of robotic systems. Probabilistic
sampling-based motion planners [1], [2], [3] and their optimal
variants [4], [5] have shown to outperform combinatorial
approaches [6], especially for high-dimensional systems with
complex differential constraints in cluttered environments.
Sampling-based planners explore the configuration space by
sampling states and connecting them to the roadmap, or tree,
which keeps track of the state space connectivity. Typically
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(a) Halton (b) Dispertio

Fig. 1: Comparison of the coverage between l2 low dispersion
Halton samples and our optimized samples for a 2D Euclidean
case. Bright color highlights uncovered areas. Our approach
achieves better coverage than the baseline.

samples are drawn from a uniform distribution over the state
space by an independent and identically distributed (i.i.d.)
random variable. Biasing techniques towards the goal region
or promising areas of the configuration space may be used if
available [7], [8]. The randomness of the samples set ensures
good exploration of the configuration space, but comes at
the expense of stochastic results which may strongly vary
for each planning query in terms of planning efficiency and
path quality. This stochasticity makes the formal verification
and validation of such algorithms, needed for safety-critical
applications, difficult to obtain.

To address this issue, several authors [9], [10] propose to
use deterministic sets (or sequences). Contrarily to using i.i.d.
random variables, this technique allows to achieve determin-
istic planning behaviors while still getting on par or even
better performance. Moreover, as described also in [9], [10],
deterministic sampling allows an easier certification process
for the planners (e.g., in terms of final cost, clearance from
the obstacles). Particularly, as we will see also in our case,
those approaches have been shown to be complete (i.e., to
find a solution) for planning queries for which a solution with
certain clearance exists. However, current approaches limit
their applicability to Euclidean spaces [9], systems with linear
affine dynamics [10] and specific driftless ones [11].

With the goal to further enhance the usage of deterministic
sampling to symmetric and optimal driftless systems, in this
work we present Dispertio, an optimization-based approach
to deterministic sampling. The method computes a sampling
set which minimizes the actual dispersion of the samples.
To compute the dispersion metric, we need access to a steer
function [12], [13] that can compute an optimal path connect-
ing two states. We focus our attention on uninformed batch-
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based algorithms (e.g., PRM* [4]) where the set of samples
can be precomputed offline. We prove that the approach,
when combined with PRM*, is deterministically complete and
retains asymptotic optimality. Furthermore, we systematically
compare our approach to the existing baselines [10], [11].
The experiments demonstrate that Dispertio outperforms the
baselines in terms of planning efficiency and overall final path
quality.

II. RELATED WORK

LaValle et al. [9] highlight the relationship between grid-
based and probabilistic planning, see Fig. 2. The authors
advocate that grid-based planners and probabilistic sampling-
based planners all belong to the same class of sampling-based
algorithms and are extremes of a broad spectrum of sampling
strategies, ranging from deterministic to highly stochastic tech-
niques. They highlight the benefits of deterministic sampling
sets (or sequences) such as grids [14], [15], lattices [16],
or Halton and Sukharev sequences [17], [18]. In particular,
LaValle et al. [19], [9] show that dispersion (see Sec. III
for the definition) is the deciding metric when it comes to
resolution complete path planning. The reason is that disper-
sion provides lower bounds on the coverage of the space.
The authors prove that low dispersion sampling, e.g. Halton
and Sukharev sequences [17], [18], provides deterministic
completeness guarantees on finding feasible paths, which i.i.d.
sampling can only probabilistically provide, i.e., the planner
will find a solution with a probability of 1 as the number
of samples goes to infinity. Our approach follows the ideas
presented by [9] and extends their results to motion planning
with differential constraints. Khaksar et al. [20] propose a
sampling-rejection mechanism to compute a set of PRM* low-
dispersion samples. Differently from this approach, Dispertio
computes the sampling set off-line and considers symmetric
driftless systems with complex kinematic constraints.

While the authors in [9], [20] focus on feasibility in deter-
ministic sampling-based motion planning, Janson et al. [10]
extend the approach to address optimality. The authors show
that with a particular choice of low dispersion sampling
(l2 dispersion of order O(n−1/D), e.g., Halton sequence,
with D being the state space dimension of the considered
system), optimal sampling-based planners (i.e., PRM* [4],
[21]) can use a lower connection radius compared to i.i.d.
sampling thus requiring a lower computational complexity,
i.e., rn ∈ ω(n−1/D). Moreover, they show that the cost or
suboptimality of the returned solution can be bounded, based
on the dispersion. The latter work limits its applicability to
Euclidean spaces and to systems having linear affine dynamics.
In comparison our method can be applied also to symmetric
and optimal driftless systems with differential constraints.

Poccia [11] proposes an approach for generating a set of de-
terministic samples for nonholonomic systems. The approach
needs an explicit and careful analysis of the system equations
to come up with a sampling scheme. Differently, our approach
provides an algorithm that only needs the availability of an
optimal steer function, a common assumption for optimal
sampling-based planning [4], [21].

Unlike state-lattice approaches [16], which can be seen as
part of the class of deterministic sampling-based planners, our
approach does not rely on a regular grid or a set of pre-
defined motion primitives. Instead, it optimizes the position
of the samples based on the dispersion metric that accounts
for the differential constraints of the system.

III. OUR APPROACH

In this section, we introduce the problem formulation and
the novel dispersion definition. We will then describe our
algorithm and analyze its properties.

A. Problem Definition

Let X ⊂ RD be a manifold defining a configuration space,
U ⊂ RM the symmetric control space, Xobs ⊂ X the obstacle
space and Xfree = X \Xobs the free space. A driftless control-
affine system can be described by a differential equation as

ẋ(t) =

M∑
j=1

gj(x(t))u(t) (1)

where x(t) ∈ X , u(t) ∈ U , for all t, and g1, . . . , gM being the
system vector fields on X . For the remainder of the paper we
will focus on symmetric systems for which an optimal steer
function exists.

Let γ denote a planning query, defined by its initial state
xstart ∈ X and goal state xgoal ∈ X . We define the set of all
possible solution paths for a given query γ as Σγ , with σ ∈
Σγ : [0, 1] → Xfree being one of the possible solution paths
such that σ(0) = xstart and σ(1) = xgoal. The arc-length of
a path σ is defined by l(σ) =

∫ 1

0
||σ̇(t)||2 dt. The arc-length

induces a sub-Riemannian distance dist on X : dist(x, z) =
infσ l(σ), i.e., the length of the optimal path connecting x to
z, which due to our assumptions is also symmetric. Let σ∗

denote the set of all points along a path σ. The dist-clearance
of a path σ is defined as

δdist(σ) = sup
{
r ∈ R | Rdist(x, r) ⊆ Xfree ∀x ∈ σ∗

}
(2)

where Rdist(x, r) is the cost-limited reachable set (closed if
not otherwise stated) for the system in Eq. 1 centered at x
within a path length of r (e.g., a sphere for Euclidean systems):

Rdist(x, r) =
{
z ∈ X | dist(x, z) ≤ r

}
. (3)

The dist-clearance of a query γ is defined as

δdist(γ) = sup
{
δdist(σ) | σ ∈ Σγ

}
(4)

and denotes the maximum clearance that a solution path to a
query can have. An optimal sampling-based algorithm solves
the following δ̂dist-robustly feasible motion planning problem
P: given a query γ̂ with a dist-clearance of δdist(γ̂) > δ̂dist,
find a control u(t) ∈ U with domain [0, 1] such that the
unique trajectory σ satisfies Eq. 1, is fully contained in
the free space Xfree ⊆ X and goes from xstart to xgoal.
Moreover it minimizes, asymptotically, a defined cost function
c : Σγ → R≥0. Hereinafter, we will use the term steer function
to indicate a function that generates a path in X connecting
two specified states. In particular we will use steer functions
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Fig. 2: Range of possible sampling and roadmap types as introduced by LaValle [9]. The highlighted ones are deterministic.

that solve an optimal control problem, i.e., minimizing the cost
c.

In the following sections, we describe the approach to solve
P by using an optimization-based sampling technique that
minimizes the actual dispersion of the sampling set used by
batch-processing algorithms (e.g., PRM*1, see Alg. 1).

B. Dispersion for Differentially Constrained Systems

We use and modify the dispersion definition for a sampling
set S = {x0,x1, . . . ,xn} ⊂ X , introduced by Niederreiter
[22] and also adopted by [9], [10]:

ddist = sup{r > 0 | ∃x ∈ X with Rdist(x, r)∩S = ∅}. (5)

Intuitively the dispersion can be considered as the radius of
the largest (open) ball (i.e., size of the reachable set) that does
not contain an element of S. In the context of differentially
constrained motion planning, we propose to adjust the disper-
sion metric to explicitly require the reachable sets Rdist(x, r)
to be fully contained in X :

d̃dist = sup{r > 0 | ∃x ∈ X with Rdist(x, r) ∩ S = ∅
∧ Rdist(x, r) ⊆ X}.

(6)

We also require this metric to respect possible identifica-
tions of the configuration space. Differently from previous
approaches [9], [11], [10], we will compute the dispersion
metric by numerically generating offline the reachable sets
Rdist(x, r) where r > 0 is the path length obtained by an
optimal controller.

C. The Dispersion Optimization Algorithm

As discussed by [2], [10] multi-query sampling-based plan-
ners, such as PRM* or FMT*, generate as initial step a set
S of collision free samples, see line 2 of Alg. 1. Instead
of using i.i.d. random variables, or an existing deterministic
technique to generate S (e.g., Halton sequence, [9], [11], [10]),
we propose to compute the set by minimizing the dispersion
of Eq. 6. Our algorithm named Dispertio is outlined in Alg. 2.
The general idea of the algorithm is to pick in each step the
sample (up to n < NCS) that maximizes the distance to both
the defined border of the configuration space as well as to
the next sample. In other words we want to greedily put the
sample into the position that currently defines the dispersion.

We propose to make this task computationally feasible by
discretizing the configuration space into a fine grid of NCS

1Due to space limitations, we will not detail the algorithm PRM*. A reader
interested to the properties of the algorithm can refer to [4].

Algorithm 1 PRM*. xstart is the start state, xgoal the goal
state, n the desired number of samples.
1: procedure PRM*
2: S ← SAMPLEFREE(n)
3: V ← {xstart,xgoal} ∪ S
4: for v in V do
5: U ← NEAR(V, v, rn)
6: for u in U do
7: if COLLISIONFREE(v, u) then
8: E ← E ∪ {(v, u)}
9: end if

10: end for
11: end for
12: return SHORTESTPATH(xstart,xgoal, (V,E))
13: end procedure

Algorithm 2 Dispersion Optimization
1: procedure DISPERTIO
2: D ← DISTANCETOBORDER
3: while |S| < n do
4: xi ← argmaxcDc

5: UPDATEDISTANCEMATRIX(D,xi)
6: S ← S ∪ {xi}
7: end while
8: end procedure

equidistant (distance could be different per dimension) cells.
The dispersion tensor D keeps track of the minimum distance
to either the border or closest sample for each grid cell (in
Alg. 2 we denote the dispersion value at the cell or position
c as Dc), computed by solving Eq. 6 using an optimal steer
function.

If it is possible to compute the distance to the border quickly
(e.g., Euclidean case), we initialize D with the distance to the
border for each grid cell, otherwise D is initialized with ∞,
line 1 of Alg. 2. In this case, we check whether the update step
to a potential sample would affect any border sample. If this is
the case, we will not add the sample to S, but instead run an
update step on the border sample without adding it. At each
algorithm iteration, we generate a sample xi that maximizes
the current dispersion tensor D and add it to S, see lines 3–7
of Alg. 2. For a given sample, D is updated (line 5 of Alg. 2)
with a flood-fill algorithm, by only expanding cells for which
the dispersion has been updated. In this way we are exploiting
the connectedness of time-limited reachable sets. The flood-
fill algorithm sequence can be pre-computed to prevent double
checking of already tested cells.

Despite having a time complexity exponential in dimensions
due to the flood-fill algorithm

(
i.e., O(nξD), with the constant

ξ > 0 being related to discretization and complexity of
dist), the algorithm is a feasible pre-computation step for
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qi

xinit
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Fig. 3: Visualization of the proof of completeness. si+1 is
placed along the (unknown) path of maximum clearance σ
such that qi lies on the border of Rdist(si+1, d̃dist). Since
Rdist(qi, d̃dist) and Rdist(qi+1, d̃dist) overlap and are fully
contained in Rdist(si+1, 2d̃dist) the path from qi to qi+1 is
collision free.

many systems (e.g., Reeds-Shepp space, 6D kinematic chain
using Euclidean distance). Once the set S has been generated,
we can then use it in a motion planning algorithm such as
PRM* (Alg. 1). PRM*-edges are generated with the same steer
function used to optimize the set S.

D. Dispertio-PRM* Analysis

In this section we detail how PRM* [4], when using our
deterministic sampling approach, retains the completeness and
asymptotic optimality properties as in [9], [11], [10].

1) Completeness: We show that the approach deterministi-
cally returns a solution if it exists and returns failure otherwise
[9], [10], [11]. Note that this is a stronger property than
probabilistic completeness [1].

Theorem 1. Given a set of samples S with known dispersion
d̃dist and considering general driftless systems for which we
have steer functions that are optimal and symmetric, we can
solve all planning queries γ with Alg. 1 using a connection
radius

r > 2d̃dist (7)

having clearance of

δdist(γ) > 2d̃dist. (8)

Proof. To see this, first note that Rdist(x, r) for optimal
steering functions, is equivalent to time-limited reachable sets
of the system. Hence, trajectories from x to any other point
in Rdist(x, r) will also be fully contained in Rdist(x, r).
Given a query γ with clearance δ(γ) > 2d̃dist, there exists
a solution σ with R(si, 2d̃dist) ∈ Xfree, ∀si ∈ σ∗. First note
that due to the dispersion definition, there must be a sample
of S in both Rdist(xstart, d̃dist) and Rdist(xgoal, d̃dist). Thus
it is possible to connect the start and goal configuration to
the roadmap. It remains to show that a dist-clearance of

δdist(γ) > 2d̃dist is sufficient to find a path from xstart to
xgoal. Let q0 and qN denote the samples that xstart and
xgoal are connected to, respectively. By taking s1 along a
path σ and such that q0 lies on the border of Rdist(s1, d̃dist)
we see, due to the dispersion definition in Eq. 6, that there
must be another sample in the reachable set, denoted by
q1. At this point we only know that the path from q0 over
s1 to q1 must be collision free. Since only q0 and q1 are
known, we require a factor of 2 in the clearance (i.e., 2d̃dist
in Eq. 8), which ensures that the path from q0 to q1 must be
collision-free. To see this, note that due the system symmetry
both Rdist(q0, d̃dist) and Rdist(q1, d̃dist) must be contained
in R(s1, 2d̃dist) ⊂ Xfree. We also know that the intersection
Rdist(q0, d̃dist) ∩ Rdist(q1, d̃dist) contains s1 and is thus
nonempty. The trajectory from q0 to q1 must pass through
this intersection and is hence collision-free. The same idea
can now be repeated until the path to qN is found. Fig. 3
visualizes the proof.

2) Asymptotic Optimality: In this section, following [10]
we will show that PRM* is asymptotically optimal when using
the sampling sets generated by Dispertio. Particularly, Janson
et al. [10] show that PRM* is asymptotically optimal when
using deterministic sampling sets in D dimensions whose
dispersion is upper-bounded by γPRM∗ n−1/D, γPRM∗ > 0.
Next, we will show how the sampling sets generated by our
approach reach the same asymptotic dispersion (see Theorem
2), i.e., lower l2-dispersions, for all driftless control-affine sys-
tems, therefore retaining the PRM* asymptotic optimality. For
the special Euclidean case, we show that the algorithm reaches
the same asymptotically optimal dispersion as for example
the Halton sequence. Note that for simplicity we are using a
simplified version of the algorithm, without discretization and
assuming the distance to the border is known. Throughout the
discussion we again assume that the distance function dist is
symmetric and optimal. Also note that R(x, r) now denotes
the open ball of radius r at x and V (·) the volume of a set.

Theorem 2. Under the assumption that the discretization of
the space does not influence the placement of the samples,
Alg. 2’s dispersion can be bounded by

nV (R(x, dn/2)) ≤ V (X ) (9)

where dn denotes the dispersion defined for a distance function
dist as in Eq. 5, when n samples have been picked, i.e.,
|S| = n. This yields for the D-dimensional Euclidean case
an asymptotic behavior of

dn ∈ O
(
n−1/D

)
(10)

and the driftless control-affine case

dn ∈ O
(
n−1/D̃

)
(11)

with D̃ =
∑D
i=1 wi, where wi are the weights of the boxes

approximating the reachability space for driftless control-
affine systems (see ball-box theorem [23], [24]).

Proof. To prove the asymptotic behavior of the algorithm, let
us consider the case in which the discretization of the space has
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Fig. 4: Progression of the algorithm in 2D Euclidean space. The background color indicates the distance to the next sample
(i.e., the distance matrix D). The white crosses and dots show the processed border points and actual samples respectively.

no effect on the placement of samples2. The key argument to
analyze the asymptotic behavior of the algorithm is to realize
that the nth sample is, by construction, placed such that its
distance to the closest neighbor is dn−1. Due to that, after n
samples have been picked, we can note that

dn−1 ≤ min
y∈S\x

dist(x,y) ≤ 2dn−1 ∀x ∈ S, (12)

where the second inequality follows from the symmetry and
optimality assumption of dist. From the first inequality it
follows that (note that the ball is open)

R(x, dn−1) ∩ S = ∅ ∀x ∈ S. (13)

In addition, because of symmetry and optimality, the intersec-
tion of all open balls of radius dn−1/2 must be empty, i.e.,⋂

x∈S
R(x, dn−1/2) = ∅. (14)

Note that dn ≤ dn−1 and with n samples being in S we
can state that

nV
(
R(x, dn/2)

)
≤ V (X ) (15)

must hold. To upper bound the dispersion for a number
of samples n we would optimally use an explicit term for
the volume V

(
R(x, dn/2)

)
, but if no such term exists (as

for general sub-Riemannian balls), we need to use a lower
bound, for example by using the ball-box theorem. Let us
first consider the case of a D-dimensional Euclidean space X .
In that case we obtain

nαdDn ≤ V (X ) (16)

and thus

dn ≤
V (X )1/D

α1/Dn1/D
∈ O

(
n−1/D

)
(17)

with α > 0. This shows that in the Euclidean case, the
achieved asymptotic dispersion is the same as for l2 low
dispersion sequences (e.g., Halton). For the driftless control-
affine case we can use the same argumentation as in [11].
Under the assumption that the system is sufficiently regular
we can find a parameter Amax such that

Boxw
(
x,

dn
2Amax

)
⊆ R(x, dn/2) (18)

2For brevity, we remove the explicit dist from the dispersion, but it is
implied to be the distance function used in the algorithm and the reachable
sets R.

and according to Lemma II.2 by Schmerling et al. [21] the
volume is given by

V

(
Boxw

(
x,

dn
2Amax

))
=

(
dn

2Amax

)D̃
(19)

with D̃ =
∑D
i=1 wi. We can rewrite Eq. 15 as

n

(
dn

2Amax

)D̃
≤ V (X ) (20)

and thus

dn ≤
V (X )1/D̃2Amax

n1/D̃
∈ O

(
n−1/D̃

)
. (21)

Note that if the number of samples approaches the dis-
cretization of the space, they will actually converge to a
Sukharev grid [18]. Hence, in the Euclidean case, the asymp-
totic dispersion is still O

(
n−1/D

)
, but in the general case, we

would need to inner-bound the reachable set with a Euclidean
ball, which would lead to rather crude approximations as
shown by Janson et al. [10] for the linear affine case. Thus,
especially for nonholonomic systems, a grid of high resolution
may be important to capture the shape of the reachable sets.

Corollary 1. Given that our set S has the same asymptotic
dispersion as l2 low dispersion sequences, our approach
retains the asymptotic analysis carried out in [10], [11] and
it allows the usage of a PRM* connection radius rn ∈
ω(n−1/D).

IV. EVALUATION

In this section we describe the experiments to evaluate how
our approach performs in terms of planning efficiency and path
quality compared to a set of baselines. To this end, we design
two main experiments. In the first experiment, we compare our
approach against the baselines (uniform i.i.d. samples, Halton
samples [9], Poccia’s approach [11], state-lattice approach
[16]) for a car-like kinematic systems (i.e., Reeds-Shepp (RS)
[13]), over a subset of maps from the benchmark moving-
ai [25], i.e., city maps, see Fig. 7 for example maps. The
benchmark contains maps with several narrow corridors, and
the planner needs to perform complex maneuvers (i.e., wholly
exploiting the full maneuverability), to let the car achieve its
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Fig. 5: Dispersion trend for the Reeds-Shepp case (η = 1.0,
obstacle free environment). Our approach obtains a better
dispersion than the baselines, thus achieving a better coverage
of the state space as also shown in Fig. 1.

(a) 2m grid (b) 5m grid

Fig. 6: The motion primitive sets, used for the state lattice
approaches in Table Ia and Ib, respectively.

goal. We use a minimum turning radius ρ = 5 m and plan in
environments of different size with w being the width of the
map. For the state lattice, sets of motion primitives have been
chosen after an informal validation and are shown in Fig. 6.
The actual dispersion is reported as d̃rs and the number of
drawn samples as nall.

In the second experiment, we compare the approach to the
baselines on a set of randomized maps and random planning
queries. To show the general applicability of the algorithm
we also benchmark it for a 6D kinematic chain in the 2D
plane (comparing it to Halton sequence and i.i.d. samples).
In this case, each joint either has an angle θi ∈ [−3, 3] with
i = 1, ..., 6, or we plan in an identified space (i.e., the arms
can wrap around) with θi ∈ [−π, π]/ ∼. We use as distance
function the 2-norm in joint space (respecting the possible
identification).

In both experiments we evaluate the approach in terms of
cost (i.e., path length) and success rate, and show planning
efficiency by plotting the cost progression. We use OMPL [26]
and adopt its PRM* implementation (we made it deterministic
by removing the random walk expansion step). As the con-
nection strategy, we either use a fixed connection radius based
on the computed dispersion such that Eq. (7) holds or the k-
nearest connection strategy with kn = e (1 + 1/D) log n (for
the arm experiments), which ensures asymptotic optimality for
all the samplers. All experiments run on a machine with Xeon
E5-1620 CPU and 32GB of RAM.

(a) i.i.d. (b) Halton (c) Dispertio
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Fig. 7: Qualitative comparison of i.i.d., Halton and Dispertio.
The top row shows example paths obtained after 1500 valid
samples connecting starts (in red) with goals (in blue). The
gray footprints represent the roadmap’s vertices. The bottom
row shows success rate and cost for this example.

V. RESULTS AND DISCUSSION

We collect the evaluation’s results in Tables I-II. The scores
report how often an approach (on the table row) generates a
better solution than another (on the table column). Whenever
an approach is better, the score was changed by +1, by 0 for a
draw (i.e., both fail to find a solution), and −1 if the approach
yielded the higher cost. To account for the dependency of this
score on the number of performed runs m, we normalize the
scores by the standard deviation in case both samplers had a
50% chance of giving the better score (i.e., σrand =

√
m).

In Table I, a green cell highlights that the approach on the
table row performs better than the one on the table column,
red otherwise. Table II reports only the scores obtained by
Dispertio against the baselines. Reeds-Shepp results are shown
for different ratios η = ρ/w.

Experiment 1) Table I shows the results of the first ex-
periment considering 13 maps with 50 queries each. Overall
our approach achieves better costs and a higher success rate
compared to the baselines. In general, Halton is the second
best placed. State-lattice performs poorly, indicating that more
effort is required for their motion primitives design (i.e.,
possibly also using a notion of dispersion in control space).
Fig. 7 shows an example planning query for i.i.d., Halton
sampling and our approach. It reports the obtained paths, the
trend for the success rate and the cost progression. The blue
range shows the minimum and maximum cost observed in
these runs for the i.i.d. sampler. The cost results are only
shown for success rates of 100%. Cost and success rate
progressions of Fig. 7 highlight how our approach is faster
in getting an initial good solution, and faster (as the number
of samples increases) in converging to lower cost solutions
in those cluttered and narrow scenarios. Furthermore, Fig. 5
reports a numerical comparison of the dispersion obtained for
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i.i.d. Halton Poccia Dispertio Lattice
i.i.d. · -4.75 -5.41 -8.24 18.75

Halton 4.75 · -1.84 -3.65 20.16
Poccia 5.41 1.84 · -1.88 21.18

Dispertio 8.24 3.65 1.88 · 21.53
Lattice -18.75 -20.16 -21.18 -21.53 ·

(a) PRM*, Reeds-Shepp, η = 0.1, nall = 5000, r = 8.5m
i.i.d. Halton Poccia Dispertio Lattice

i.i.d. · -5.30 -6.86 -9.96 12.28
Halton 5.30 · -0.51 -2.98 16.71
Poccia 6.86 0.51 · -1.77 16.98

Dispertio 9.96 2.98 1.77 · 17.96
Lattice -12.28 -16.71 -16.98 -17.96 ·

(b) PRM*, Reeds-Shepp, η = 0.05, nall = 3200, r = 12.5m

TABLE I: Path quality results of all the methods for the city-
maps benchmark [25]. Dispertio obtains on average better
solutions against all the baselines. Scores are normalized by
σrand =

√
650.

i.i.d. Halton Poccia
RS η = 1, nall = 1500, r = 3.3m 13.44 9.08 9.71
RS η = 0.25, nall = 1500, r = 6.5m 8.73 5.79 3.32
RS η = 0.1, nall = 1500, r = 11m 10.47 6.58 5.09
RS η = 0.05, nall = 1500, r = 16m 15.27 7.59 8.10
KC {[−π, π]/ ∼}6, nall = 30000, k-n 2.28 1.01 ·
KC [−3, 3]6, nall = 30000, k-n 7.78 7.78 ·

TABLE II: Path quality results of Dispertio against the base-
lines, on randomized maps and queries in different spaces
(Reed-Shepp and 6D Kinematic Chain). Scores are normalized
by σrand =

√
1000.

the Reeds-Shepp case after n samples for i.i.d., Halton and
the proposed approach in an obstacle-free environment. Our
approach achieves better dispersion than the baselines.

Experiment 2) Table II reports the results for the second
experiment. Also in this case, our approach achieves better
performance in terms of final cost solution even in higher
dimensional spaces. For the arm experiments we use a k-
nearest neighbor connection strategy, which shows that the
qualitative advantages hold even with different connection
strategies (although not reported, similar results are obtained
with a radius-based strategy that satisfies Eq. (7)). Further-
more, in very cluttered environments (with η = 1.0) our
approach achieves on average a 10% higher success rate
than the baselines, indicating how it can better exploit the
knowledge of the nonholonomic constraints (i.e., maneuvering
capabilities) in narrower scenarios.

VI. CONCLUSIONS

In this work we extend deterministic sampling-based motion
planning to the class of symmetric and optimal driftless sys-
tems, by proposing Dispertio, an algorithm for optimized de-
terministic sampling set generation. When used in combination
with PRM*, we prove that the approach is deterministically
complete and retains asymptotic optimality. In the evaluation,
we show that our sampling technique outperforms state-of-the-
art methods in terms of solution cost and planning efficiency,
while also converging faster to lower cost solutions.

As future work, we are interested in extending the approach
towards non-uniform sampling schemes, for example to exploit
learned priors, and to systems with drift.
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