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Unified Motion-Based Calibration of Mobile
Multi-Sensor Platforms with Time Delay Estimation

Bartolomeo Della Corte1, Henrik Andreasson2, Todor Stoyanov2 and Giorgio Grisetti1

Abstract—The ability to maintain and continuously update
geometric calibration parameters of a mobile platform is a
key functionality for every robotic system. These parameters
include the intrinsic kinematic parameters of the platform, the
extrinsic parameters of the sensors mounted on it and their time
delays. In this paper, we present a unified pipeline for motion-
based calibration of mobile platforms equipped with multiple
heterogeneous sensors.

We formulate a unified optimization problem to concurrently
estimate the platform kinematic parameters, the sensors extrinsic
parameters and their time delays. We analyze the influence of the
trajectory followed by the robot on the accuracy of the estimate.
Our framework automatically selects appropriate trajectories
to maximize the information gathered and to obtain a more
accurate parameters estimate. In combination with that, our
pipeline observes the parameters evolution in long-term operation
to detect possible values change in the parameters set. The
experiments conducted on real data show a smooth convergence
along with the ability to detect changes in parameters value.
We release an open-source version of our framework to the
community.

Index Terms—Calibration and Identification.

I. INTRODUCTION

CALIBRATING a robotic platform is a mandatory and
a time-consuming procedure, whose outcome may con-

siderably improve the performance of the system. The exact
knowledge of the robot kinematic parameters and of the
relative poses of the sensors constitutes the basis for the
successful application of complex higher level techniques,
such as localization and mapping or trajectory planning and
tracking.

A reliable dead reckoning system, whose intrinsic accu-
racy is solely based on the kinematic parameters estimate,
constitutes a cornerstone of modern robotic systems. The
integrated odometry, usually coupled with inertial sensors,
can be used as prior for visual odometry and localization
systems. At the same time, it provides a prediction measure
for modern trajectory tracking systems, mostly based on model
predictive control algorithms. As depicted in Fig. 1, a custom

Manuscript received: September, 10, 2018; Revised November, 5, 2018;
Accepted December, 27, 2018.

This paper was recommended for publication by Dezhen Song upon
evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by Semantic Robots Research Profile, funded by the Swedish
Knowledge Foundation (KKS).

1Bartolomeo and Giorgio are with Department of Computer, Control, and
Management Engineering “Antonio Ruberti”, Sapienza University of Rome,
Italy.

2Henrik and Todor are with the Center of Applied Autonomous Sensor
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Fig. 1: Dead reckoning map built on a trajectory of approximately 200
meters, after the calibration procedure. The robot used for building
the map (shown in the bottom right part of the figure) is a custom built
platform, equipped with commercial RGB-D cameras. Such a locally
accurate map may aid localization and mapping systems acting as a
prior information.

low-cost platform, accurately calibrated in terms of kinematic
parameters and sensors poses, is able to build a map using
only its dead reckoning system. Such a map might be used as
a robust prior for mapping systems.

Recently, with the massive deployment of robotic platforms
in both social and industrial contexts, the robots themselves
are supposed to work seamlessly for hours or days. This
makes them subject to possible failures in term of parameters
change. Thus, they need a robust and on-the-fly re-calibration
procedure.

Two main classes of approaches for motion-based calibra-
tion have been proposed: either the platform autonomously
executes a calibration procedure, or an expert user drives
the platform. In the first case, the calibration outcomes will
statistically be more accurate, since the robot performs an
ad-hoc calibration routine, as described in our previous work
[1]. On the other hand, the robot is forced to stop working,
something undesirable for long-term operations. Moreover,
such an approach does not allow constant monitoring of
the evolution of the parameters. A failure, e.g. a change in
a parameter value, can happen between two scheduled re-
calibrations without being immediately detected. In the second
case, when an expert user gathers data and runs the calibration,
or in case of a long-term procedure, the user manually selects
the portions of the trajectory to feed the calibration system. As
a consequence, the outcome is likely to be less accurate, since
the chosen trajectory highly affects the quality of the estimate
for motion-based calibration problems, as extensively proven
[2], [3].

We investigate the problem of calibrating a mobile robotic
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platform, equipped with several heterogeneous sensors. More
concretely our goal is to provide functionality to robotic
platforms able to perform both an accurate active calibration
for the platform startup and to keep constantly updated the
kinematic parameters in a passive way. This allows, at the
same time, the detection of possible failures arising either
from the platform mechanics, whose effect is reflected on its
kinematic parameters, or from the sensor extrinsics.

The main contribution of this paper is the characterization of
a methodology for mobile robotic platform calibration, suitable
for long-term operations. We constantly keep updated the
geometric parameters while looking for fault detection through
the parameters evolution observation. The calibration involves
both the platform kinematic parameters and the sensors ex-
trinsic ones, embedding in a single optimization algorithm
both the platform-sensor constraints and the sensor-sensor
constraints. As an additional feature, the estimate includes also
the sensors time delays.

An open source implementation of our framework is avail-
able online 1.

II. RELATED WORK

The first set of calibration methods listed in the state of the
art relies on particular external configurations, i.e., a predefined
path to be followed [4] or environment geometry to be known
[5]. In the first case, the error to be minimized is formulated
as the difference between starting and final positions, limiting
the calibration to the platform kinematic parameters only. The
latter, instead, expresses the error in terms of the difference
between what the sensor mounted on a robot perceives com-
pared with the known structure of the environment. Apart
from the intrinsic limitation of the approach presented in [4],
the complete knowledge of the environment structure might
be challenging in long-term contexts, making the method of
Underwood et al. [5] unsuitable.

Different approaches try to overcome these limitations
by solving the calibration problem using motion-based con-
straints. Censi et al. [6], [7] formulated the calibration as a
maximum likelihood problem, relying on an onboard tracking
system for 2D sensors. This solution has been successfully
applied also with other kinds of solvers, as in [8] where the
authors presented an UKF-based approach that is able to deal
with multiple heterogeneous sensors, or in [9] where a Gauss-
Helmert Model is used. Martinelli et al. [10] presented an
Augmented Kalman Filter (AKF) approach to simultaneously
estimate the robot configuration and parameters, embedding
the calibration in a Kalman-based SLAM pipeline. This idea
has been further investigated in [11], with a simultaneous
calibration, localization, and mapping (SCLAM) approach,
that incorporates the calibration parameters in a graph-based
optimization problem. Despite being widely used and effec-
tive, these methods do not take care of how the trajectory
followed by the robot may affect the estimate accuracy. A
recent work by Huang et al. [3] highlights how the followed
trajectory affects the parameter estimates in motion-based
calibration problems. Kelly et al. [2] demonstrated how the

1http://srrg.gitlab.io/unified-calibration.html

chosen trajectory affects the quality of the estimate, since, by
simply taking arbitrary trajectories, the quality of estimate for
different parameters varies substantially.

In our previous work [1], we presented an active calibration
approach based on two stages: an exploration phase used
to discover how the robot motions affect the quality of the
parameters estimate, and an exploitation stage, where the
robot actively performs a set of motions that ensures that all
parameters are observed in an equally informative manner.
Despite the uniform estimate obtained with this method, its
applicability to long-term operations is limited as the platform
is required to stop and to actively execute the procedure.

In [12], [13] Taylor et al. proposed a full calibration pipeline
for mobile platforms equipped with multiple heterogeneous
sensors. Their approach performs the calibration in three
stages: the estimate of individual sensor motion; the estimate
of offset from motion cues; and use of appearance information
to refine the estimate. Their pipeline includes also the timing
offset estimate for each sensor. In contrast to our approach,
Taylor et al. perform the time delay estimate as a separate step,
before performing the rotational and translational estimate.

Furgale et al. [14], [15] overtook the step-by-step procedure
for extrinsics and time delay sensor calibration. They pre-
sented a general solution to this problem based on maximum-
likelihood estimation.

The problem of finding the time offset between sensors has
been addressed also in [16], [17], with the particular focus
on INS to camera time offset. Ovren et al. [18] calibrated the
relative pose between a camera and a gyroscope, estimating
also the time scaling and delay through non-linear least squares
optimization.

Other recent works focus on using the calibration results
on long-term context to perform change detection [19], [20].
The authors propose the division of the gathered data on
temporal basis. In this way, they assign to each portion a score
based on the covariance matrix obtained from the optimization
output. The calibration is then performed with the k highest
score portions. Moreover, the portions leading to rank loss are
discarded. By analyzing the variation of mean and covariance
of the estimate, these approaches are statistically able to detect
changes in the parameters.

A. Contributions
In contrast to previous approaches, the methodology pre-

sented in this paper:
• simultaneously estimates the platform kinematic param-

eters, the sensor extrinsics and the sensors time delay;
• comprises the sensor to sensor constraints in the opti-

mization procedure;
• runs in a semi-active way in long-term operation contexts,

by discarding portions of a trajectory whose information
does not lead to a better parameters estimate while the
platform is performing seamlessly its tasks;

• is suitable to be used in a failure detection pipeline
through the continuous observation of the parameters
evolution.

Moreover, we released an open-source implementation to
the community.
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III. MULTI-SENSOR CALIBRATION

Considering a mobile platform equipped with an arbitrary
number of sensors N , our goal is to estimate, simultaneously:
• the kinematic parameters of the platform, used to inte-

grate the dead reckoning;
• the extrinsic parameters of each sensor, i.e., the relative

poses of the sensors with respect to the platform base;
• the time offset of each sensor.

Thus, our parameters space x is composed as follows

x = (x>R xS1
dt1︸ ︷︷ ︸

Sensor1

. . . xSN
dtN︸ ︷︷ ︸

SensorN

)>. (1)

• xR ∈ RK stores the K kinematic intrinsic parameters
of the robotic platform. As an example, for a differential
drive platform we would have xR = (kl, kr, b)

> ∈ R3.
kl and kr denote respectively the ratios between the
circumferences of the left and right wheels and the
encoder ticks per revolution of the wheels shaft, while
b is the distance between the wheels (baseline).

• xSi = [R|t] ∈ SE(3) expresses the extrinsic parameters
of the i-th sensor in the platform reference frame. t ∈ R3

represents the translation vector and R ∈ SO(3) is a
rotation matrix.

• dti ∈ R denotes the time delay of the i-th sensor. Its
value is relative to the platform timebase and it represents
the temporal delay between the sensor and the platform
measurements.

In the following, we report the size of the sensor variables to
be [x̃>Si

dti]
> ∈ R7, where x̃Si

= t2v(xSi
) ∈ R6. The t2v()

operator extracts a 6D vector from a transformation matrix, in
terms of a translation vector and the first three components of
a unit quaternion.

The observations zti, namely observations gathered from the
i-th sensor at time t, are defined according to the kind of con-
straint. More specifically, for odometry-sensor constraints they
express relative motions, while for sensor-sensor constraints
they represent raw data correspondences between the sensors.

Let eti(z
t
i, ẑ

t+dti
i ) = eti(x) be a function that computes

the error between the actual observation zti and the predicted
observation

ẑt+dtii = f(xR,xSi
, dti,u

t(dti)). (2)

Here, ut(dti) represents the input measurement at time t. In
the following we specify the nature of the function f(◦) in
Eq. (2) for each type of constraint.

Our goal is to find the set of parameters x∗ that minimizes
the negative log-likelihood F(x) of all the observations

F(x) =
∑
t,i

eti(x)
>

Ωie
t
i(x)︸ ︷︷ ︸

Ft
i(x)

, (3)

where Ωi is the information matrix of the measurement
generating the error eti. Hence, we seek to solve the following
equation

x∗ = argmin
x

F(x). (4)

We solve this problem by employing an iterative least
squares approach. At each iteration the algorithm computes

a perturbation ∆x to refine the current estimate x. ∆x
minimized a quadratic approximation of Eq. (4)

∆x>H∆x + b>∆x + c. (5)

The minumum of Eq. (5) is found as H∆x = −b, where
H =

∑
i J
>
i ΩiJi and b =

∑
i J
>
i Ωiei are obtained linearing

the error function

eti(x + ∆x) ' eti(x)︸ ︷︷ ︸
ei

+
∂eti(x)

∂x︸ ︷︷ ︸
Ji

∆x, (6)

where Ωi denotes the information matrix of the i-th measure.
In particular, we simultaneously optimize two types of con-

straints, i.e., the odometry-sensor constraints and the sensor-
sensor constraints. The first kind of constraint involves the
error between the trajectory computed by the dead reckoning
system and the one provided by an external tracking system
working on a sensor, after having expressed the odometry
trajectory in sensor reference frame by the sensor extrinsics
xSi

. The second kind of constraint, instead, considers the
relative error between two sensors, by means of the specific
error computed between their raw data.

As derived in [21], the employed method leads to build
a unique linear system, whose solution serves as an up-
date for the parameters x. In particular, the contribution
of every single constraint feeds a contribution matrix H ∈
R(K+N∗7)×(K+N∗7) and a residual vector b ∈ R(K+N∗7) of
type

H =



H[RR] H[RS1] H[Rdt1] . . . H[RdtN ]

H[S1R] H[S1S1] H[S1dt1]

H[dt1R] H[dt1S1] H[dt1dt1]

...
. . .

...
H[SNR] H[dtNSN ]

H[dtNR] . . . H[dtNdtN ]



b =
(
b>[R] b>[S1]

b>[dt1] . . . b>[SN ] b>[dtN ]

)>
.

In the following we report the computation of both the
odometry-sensor constraints, either with and without access to
platform encoders, and the sensor-sensor constraints. For every
kind of constraint we report the error function computation,
the Jacobians, and their effect on the system.

A. Odometry-Sensor Constraint with Encoders Access

For an odometry-sensor constraint, every measurement is
represented by a relative motion of a sensor mounted on the
platform, whose outcome depends on both the robot kinematic
parameters and the sensor estimated pose, i.e. zti ∈ SE(3). Let
τ be the sampling period used to get the relative measures.

Referring to Eq. (2), the relative input measurement ut(dt)
is obtained in terms of platform encoders counts. More specif-
ically, we extract the relative input as follows

ut(dt) = ut+dt+τa − ut+dta , (7)
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using the current estimate of the sensor delay dt. The absolute
values uta in Eq. (7) are obtained by interpolating the input
data streams at the required times.

The relative encoder input measure is then used to compute
the relative motion of the platform as

TR = g(ut(dt),xR) ∈ SE(3). (8)

Here, g() represents the direct kinematic function of the
plaform. Thus, the predicted observation is computed as

ẑti = x−1S TRxS (9)

Consequently, the error function can be computed as

eti = t2v(zti
−1

ẑti) ∈ R6 (10)

The Jacobian depends on both the kinematics parameters
and the sensor ones. Hence, it has a block structure

Ji =

[
∂ei
∂xR︸ ︷︷ ︸
JR

∂ei
∂xS︸︷︷︸
JS

∂ei
∂dt︸︷︷︸
Jdt

]
∈ R6×(7+K) (11)

where the sensor Jacobian JS is obtained considering the
partial derivatives with respect to the vector vS = t2v(xS).

By using the Jacobian components, the relative blocks of
H and b are updated incrementally as follows:

H[RR] += J>
RΩiJR H[RS] += J>

RΩiJS H[Rdt] += J>
RΩiJdt

H[SR] += J>
S ΩiJR H[SS] += J>

S ΩiJS H[Sdt] += J>
S ΩiJdt

H[dtR] += J>
dtΩiJR H[dtS] += J>

dtΩiJS H[dtdt] += J>
dtΩiJdt

and

b[R] += J>
RΩiei b[S] += J>

S Ωiei b[dt] += J>
dtΩiei.

B. Odometry-Sensor Constraint without Encoders Access

When using commercial platforms, the encoder tick counts
might be unaccessible, while the odometry is already provided.
Once extracted the relative measure of the platform odometry
there are two options, i.e. either we compute the inverse
kinematics to get the encoder tick counts or we look for the
systematic error affecting the odometry in terms of a 3 × 3
matrix.

In the first case, we fix a reasonable value for the kinematic
parameters of the platform, and use the inverse kinematics
(IK) to get the encoder tick counts we need as input. Using
our method we then obtain a corrected value of the platform
kinematic parameters as well as the sensor extrinsics. While
the latter can be further used in higher-level tasks, the platform
parameters depend on the initial guess used in the IK and
should not be further used.

On the other hand, we can estimate a correction matrix
instead of the platform kinematic parameters:

xR = (x11 x12 x13 x21 x22 x23 . . . x33)> (12)

that we can use to correct the odometry input measurements
ut(dt) as

TR = g(ut(dt),xR) =

x11 x12 x13
x21 x22 x23
x31 x32 x33

ut(dt), (13)

where ut(dt) = [δtx(dt) δty(dt) δtθ(dt)]
> represents the

relative odometry. From here on, we are connected to Eq. (8).

C. Sensor-Sensor Constraint

In case of sensor to sensor constraint, two different situa-
tions arise, i.e., homogeneous sensors and heterogeneous sen-
sors. In the first case, depending on the specific sensor mode,
every kind of least squares based registration algorithm can
suffice, either indirect [22] or direct [23]. In the second case,
instead, a data preprocessing is needed to find associations
between data coming from heterogeneous sensors. The most
common cases are the registration of data between cameras
and Lidars [24]–[26], and between IMU and cameras [14],
[16], [27].

As a general example, we report the constraint computed
with a standard ICP formulation. Same holds for all the
other least squares based registration algorithms reported in
this section. We decided not to focus on specific registration
algorithms for cross-sensor calibration, since there is already
ample literature describing specific cross-sensor calibration
procedures.

Given two sensors Si and Sj , whose time delays are re-
spectively denoted as dti and dtj , we use their observed point
clouds Pt+dtii and Pt+dtjj to generate measurements. Here we
use the time delay of the sensors in order to synchronize the
data streams and to select corresponding point clouds.

Let C = {pci , pcj}c=1...N the corresponding points of the
two clouds, we compute the error for each correspondence as

ec = ẑi(xSi
, pci )− ẑj(xSj

, pcj), (14)

where the prediction function ẑ(xSi , p
c
i ) uses the current

sensor extrinsics estimate xSi
to express the point pci in the

platform reference frame. The error will lie in R3 in case
of standard ICP, or in higher spaces in case of augmented
measurement [28], [29].

The jacobian for each correspondence has the same structure
depicted in Eq. (11), with the partial derivatives computed both
with respect to the sensor extrinsics and to their time delays.

IV. ESTIMATE ACCURACY

In this section we first provide some general considerations
about motion-based extrinsics calibration. These have to be
considered as assumptions the system works on. Later, we
present our method for measuring the accuracy of the calibra-
tion outcome. Finally, we show the direct relation between the
calibration accuracy and the trajectory taken while gathering
data.

A. General Considerations

To measure the accuracy of the estimate in motion-based
extrinsics calibration, some considerations have to be taken
into account. For odometry-sensor constraints, the quality
of the pose tracking system acting on a sensor affects the
accuracy of the calibration outcome. In fact, the observation
zti acts as reference value to the prediction of Eq. (2). Thus,
the calibration outcome can be as accurate as is possible from
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Fig. 2: Right-side of the figure depicts H matrix as an ellipsoid
spanning over the parameters space (x1,x2,x3), highlighting its
eigenvectors with the respective eigenvalues. This kind of visual-
ization rapidly becomes impractical when increasing the parameters
space dimension, i.e. dealing with hyperellipsoids. To this extent,
we visualize the amount and the distribution of the information in a
grid fashion (left-side). Each eigenvector is represented by a column
of the grid, whose cell values (the darker the color, the higher the
value) indicate the pointed directions in parameters space. In this
particular example, the highest eigenvalue λ3 is the one associated
with eigenvector v3, that is pointing exclusively in the direction of
parameter x3. This indicates a high confidence in the estimate of this
parameter.

the pose tracking systems accuracies. Intuitively, in case of
offline batch calibration the use of optimized trajectories from
full SLAM pipelines mitigates this effect. In case of online
calibration, though, the presence of sudden changes of pose
due to online trajectory optimization, as an effect of local
bundle adjustment or loop closures, may introduce high levels
of noise. The reader can image the case of one of these
conditions caught while sampling a relative datum zti, whose
smoothness in terms of trajectory is lost. In these cases, a
visual odometry tracking system has to be preferred.

Furthermore, specific adaptations have to be done in case
of sensor clock drift, rolling shutter camera or lidar motion
distorsion. Where possible, Eq. (2) should model them. Finally,
as a rule of thumb, the individual sensors intrinsics have to be
calibrated before running the extrinsics calibration.

B. Measuring the Accuracy

The optimization procedure described in Sec. III provides
a perturbation vector ∆x used to update the current estimate
of the parameters. The accuracy of the output vector itself is
directly correlated to the sequence, type and quality of the
measurements with which the optimization has been supplied.

By analyzing the H matrix obtained while using a portion of
trajectory it is possible to evaluate how informative the portion
is and which dimensions of the estimate have been observed
more. In other words, H stores the information about the
estimate. To remove the effect of different units, the H matrix
has to be normalized [19]. Being by construction a positive
definite matrix, its eigenvalues are real and positive, and by
analyzing them we can provide a measure of the uniformity
of the estimate. As illustrated in Fig. 2, the eigenvectors of
the hyperellipsoid spanned by H, weighted by the respective
eigenvalues, provide an overview of the estimate accuracy.

In particular we express uniformity in terms of the ratio
between the lowest λmin and the highest λmax eigenvalues of

(a) Straight Motion (b) Rotation Motion

Fig. 3: Observation of the uncertainty of the calibration process
while using exclusive motions, i.e. straight motions and pure rotation
motions, with a differential drive platform equipped with a 2d sensor.
In the figures, the darker the color, the higher the value, e.g. in Fig. 3a
the highest eigenvalue is the one related the eigenvector pointing
mostly in the wheel radii directions. This expresses a high confidence
in the estimate of these parameters.

the information matrix. More formally, let η(H) ∈ R be this
ratio

η(H) =
λmin
λmax

. (15)

The ideal condition is the one with η(H) equal to 1. Such
a result can be obtained if all the information directions,
represented by its eigenvectors, are uniformly explored. A low
value of η(H) expresses a high difference in the uncertainty
of the parameters estimate.

Nevertheless, expressing the goal of a robust calibration as
maximizing the outcome of Eq. (15) may lead the estimate
to be performed with an insufficient amount of information
(expressed by the volume of the hyperellipsoid spanned by
H). Intuitively, a low magnitude information matrix can easily
obtain a high value for η(H), while being at the same time
insufficient for a good estimate. To avoid such a case, we add
the additional goal of increasing the magnitude of the infor-
mation matrix H, expressed by its determinant. Let φ(H) ∈ R
define the product between the information magnitude and the
uniformity value, normalized by the number of samples N

φ(H) =
det(H)η(H)

N
. (16)

Thus, we define the calibration objective as maximizing the
value of Eq. (16).

When performing a background calibration for long-term
operations, we get the matrix Hi for every portion of tra-
jectory. In some cases, outlined in Sec. IV-C, the matrix Hi

may be rank deficient, depending on the trajectory taken while
gathering the data. Our policy is to discard those portions
whose φ(Hi) is below a certain threshold. In this way we
update the parameters by using only highly informative and
uniform portions.

C. Calibration Trajectory

Depending on the kinematics of the platform to calibrate,
the uncertainties observed during operations may substantially
vary depending on the kind of motions executed.

As an example, Fig. 3 reports the uncertainty observed while
calibrating a differential drive equipped with a 2d LiDAR
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Fig. 4: Variation of the value of φ(H) on KITTI sequence 10 by
selecting portions of trajectory of 200 samples, resulting in portions
of approximately 20 seconds each.

using exclusive motions (e.g., straight, rotate). Intuitively,
using only straight paths in the calibration process leads to
high uncertainty on the sensors positions and on the plat-
form baseline, as shown in Fig. 3a. Conversely, as reported
in Fig. 3b, using only pure rotation motions increases the
uncertainty on the sensors orientations and on the wheel radii
of the platform. Arc turns are usually preferred, since they lead
to a relatively uniform exploration of the parameter space. The
eight-shaped path is usually recommended in case of manual
calibration with differential drive platforms. Another argument
to use varied platform motions is that exclusively straight
trajectories do not allow a proper observation of the sensor
delay parameter.

Fig. 4 shows an example of the impact of trajectory taken
on the calibration process. In particular we calibrated the
extrinsics of the sensors mounted on a car in sequence 10 of
the KITTI dataset [30]. We used ProSLAM [31] and IMLS-
SLAM2 [32] as tracking systems respectively for the stereo
camera and velodyne, calibrating the extrinsics with respect to
the ground truth trajectory provided by the IMU/GPS system.

We split the dataset sequence in six portions consisting of
200 samples each (approximately 20 seconds each), analyzing
the output Hessian matrix. By observing the value of φ(H) it
is easily detectable how the most informative portions are the
ones consisting of multiple turns {1, 4, 5}, while the remaining
provide high uncertainty in the parameters estimate.

V. CHANGE DETECTION

When performing time demanding tasks, resulting in what
are called long-term operations, parameter change detection
represents a fundamental feature for a calibration system. If a
geometric parameter changes its value without being detected,
all the higher level components, e.g. the units of a SLAM
pipeline, may fail.

A change in the parameters usually happens in two ways:
either gradually by wear of mechanical components; or sud-
denly due to a rapid change in sensors poses. In both cases,

2We are grateful to Jean-Emmanuel Deschaud for providing us the output
trajectories of IMLS-SLAM on the KITTI dataset.
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Fig. 5: Dynamics of the parameters estimate when simultaneously
calibrating the kinematics parameters of a differential drive (kl, kr ,
b), the extrinsics of several sensors and their time delays, whose
values are relative to the platform timebase. Last row depicts the
evolution of the quadratic error. All the plots report the evolution for
20 iterations of the least squares solver (best viewed on screen).

depending on the specific task the system is carrying on, it
is desirable either to re-calibrate and continue, or to stop the
current task and physically correct the change.

The detection of such changes is based on the constant
observation of the uncertainty evolution on the parameters
estimate, as described in Keivan et al. [19]. We generalize
the approach of Keivan et al. by including the kinematic
parameters of the platform and by discriminating the trajectory
portion in a systematic way (Sec. IV-C). In particular, given a
calibrated platform, whose parameters mean µ0 and covariance
Σ0 (obtained as the inverse of the relative H matrix) have
been estimated before starting the task, we sample portions
of the trajectory the platform is following on a temporal
basis. For each portion we evaluate its normalized amount of
information as in Eq. (16). We discard the portion in case the
computed value is lower than a specified threshold. Otherwise,
we compute the mean µ and covariance Σ from the portion. As
in [19], [20], we solve a multivariate Behrens-Fisher problem
[33] to define the similarity of the two distributions, computing
an approximated F-distribution. We computed the p-value from
this distribution to define a similarity value.

If two consecutive portions present a low value of similarity,
compared with the current estimate of the parameters, we start
a re-calibration due to the detected change. More specifically,
we discriminate the behaviour of our system depending on the
outcome of p-value:

• if p-value is close to 1, the two distributions are consid-
ered similar and the current portion of data is used to
further refine the parameters estimate;

• otherwise, if p-value is less than a predefined threshold,
we trigger a re-calibration process since a change has
been detected.
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VI. PERFORMANCE EVALUATION

The reported experiments have been designed to prove the
effectiveness of the presented techniques for calibration and
change detection.

In our first experiment we used a custom differential drive
platform equipped with a 2D Hokuyo-URG scanner and
three RGB-D cameras. The custom platform provides encoder
readings at ∼ 50Hz, while the laser scanner and the cameras
provide raw data respectively at ∼ 40Hz and ∼ 30Hz. The
intrinsics of the cameras have been estimated with a standard
camera resectioning tool. Furthermore, we corrected the sensor
distorsion as described in [34].

We calibrated the kinematic parameters of the platform, and
the extrinsics of the four sensors mounted on it, as described
in Sec. III. To validate the convergence of the presented
methodology, we gathered data following an eight-shaped path
several times, to run a one shot optimization. We used MPR
[23] to get the RGB-D camera position tracking and a scan
matching system3 for the laser position tracking. Fig. 5 depicts
the results of the calibration process. As initial guess we set
all the sensors positions to the origin and their time delays
to zero. The camera orientations where roughly initialized as
(qx = −0.5, qy = 0.5, qz = −0.5) for the camera with the
y-axis pointing down and (qx = 0.5, qy = 0.5, qz = 0.5) for
the two cameras with y-axis pointing up. We initialized the
kinematic parameters of the differential drive as (kl = −0.5,
kr = 0.5, b = 0.2). As shown in the last row of Fig. 5, the
dynamic of the quadratic error presents a smooth convergence,
even with a rough parameters initialization.

To prove the effectiveness of the calibration on the kine-
matic parameters of the platform, we run again the calibration,
this time using the active routine described in [1], adapted
with the accuracy measure described in Sec. IV-C to score the
portions of trajectory. Once calibrated, we ran the platform
for a path of approximatively 200 meters, reconstructing its
odometry by integrating the encoder measurements using the
calibrated parameters. As term of comparison we used the
trajectory generated by a state of the art 2d mapper [35] acting
on the laser scanner, comparing it with the dead reckoning
system of the calibrated platform. Fig. 6 depicts the two tra-
jectories. The dead reckoning trajectory is obtained integrating
the encoder counts, using the estimated kinematic parameters,
and transforming the obtained trajectory in the laser reference
frame using the estimated extrinsics. In Tab. I we report the
relative pose error between the two trajectories, evaluating the
error per meter. As expected, a robust calibration procedure
leads to a reasonably accurate dead reckoning system, that
results to be very helpful as prior for more complex mapping
and localization systems. To further stress this concept, we
report in Fig. 1 the reconstructed 3d map using the estimated
kinematic parameters of the platform and extrinsics of the front
RGB-D camera.

We performed a change detection experiment on the KITTI
dataset [30], using sequence 00. We choose this sequence for
the diversity of the trajectories taken by the platform. The car
in the dataset is equipped with a stereo rig, obtained with two

3https://gitlab.com/srrg-software/srrg scan matcher ros
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Fig. 6: Direct comparison of the output trajectory obtained with a
2d laser-based mapper [35] and the dead reckoning trajectory of a
calibrated custom platform.
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Fig. 7: Change detection experiment on KITTI sequence 00. First two
rows report the error in the evolution of the parameters estimate for
the stereo camera, while third and fourth rows depict the error in the
evolution of the Velodyne parameters. Last row shows the evolution
of the p-value either in high informative portions (highlighted in
green) and in low informative ones (in red), coherently with the
computed value of φ(H) (best viewed on screen).

Point Grey Flea 2, a Velodyne HDL-64 laser scanner and a
Inertial Navigation System (INS) to provide the ground truth.
In our experiment we used the INS trajectory as platform
odometry and calibrate the sensors’ extrinsics with respect to
it. All the data are provided at 10Hz, without timestamps.
Hence, we locked the time delays of the sensors to zero. We
used ProSLAM [31] and IMLS-SLAM [32] as position track-
ing systems respectively on the stereo camera and on the laser
scanner. They are reported to provide impressive accuracy on
KITTI dataset: IMLS-SLAM has an average translation error
of 0.61%, while ProSLAM has an average translation error of
1.37%. We computed initial mean µ0 and covariance Σ0 by
running the calibration on the other sequences of the dataset.
We simulated two parameters changes at time t1 = 120s and
t2 = 300s, shifting the computed trajectories of the following
amounts dt1 : (dx = 0, dy = 0.08, dz = 0, dqx = 0.15, dqy =
−0.05, dqz = 0) and dt2 : (dx = 0, dy = −0.05, dz =
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Translation Rotation
RMSE 0.0328 m 0.619 deg
std. dev. 0.0121 m 0.421 deg

TABLE I: Relative Pose Error per meter

0, dqx = 0.05, dqy = −0.05, dqz = −0.1). We set the change
detection threshold for the p-value at 0.7. Fig. 7 depicts the
results of this experiment in terms of estimate error. As shown,
the two changes are detected respectively at t = 150s and
t = 330s. In the last row of Fig. 7, we reported the evolution
of p-value. We reported in red the portions of the dataset where
φ(Hi) was below the minimum information required (1e3). As
can be observed at time t = 230s and t = 430s, some false
positives are avoided by the analysis of the trajectory taken.

VII. CONCLUSION

In this paper, we presented a unified methodology for
calibrating a mobile platform equipped with several hetero-
geneous sensors. Our method embeds in a single optimization
problem multiple constraints. It simultaneously estimates the
platform kinematic parameters, and the sensors extrinsic ones.
The latter include the sensors time delay, relative to the
platform timebase. Moreover, we highlighted the importance
of the trajectory taken for motion-based calibration, providing
a quality measure of the trajectory itself. We used this measure
to discriminate portions of trajectory, so to obtain a highly
accurate parameters estimate by using the more informative
ones. In addition, we show how the presented methodology
is suitable for change detection pipelines, to observe the
parameters value variation. We implemented and evaluated our
approach on real data, releasing an open-source version to the
community.
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