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We present an approach for recognizing objects present in a scene and estimating their full pose by
means of an accurate 3D instance-aware semantic reconstruction. Our framework couples convolu-
tional neural networks (CNNs) and a state-of-the-art dense Simultaneous Localization and Mapping
(SLAM) system, ElasticFusion (Whelan et al., 2016), to achieve both high-quality semantic reconstruc-
tion as well as robust 6D pose estimation for relevant objects. We leverage the pipeline of ElasticFusion
as a backbone, and propose a joint geometric and photometric error function with per-pixel adaptive
weights. While the main trend in CNN-based 6D pose estimation has been to infer object’s position
and orientation from single views of the scene, our approach explores performing pose estimation
from multiple viewpoints, under the conjecture that combining multiple predictions can improve the
robustness of an object detection system. The resulting system is capable of producing high-quality
instance-aware semantic reconstructions of room-sized environments, as well as accurately detecting
objects and their 6D poses. The developed method has been verified through extensive experiments on
different datasets. Experimental results confirmed that the proposed system achieves improvements
over state-of-the-art methods in terms of surface reconstruction and object pose prediction. Our code
and video are available at https://sites.google.com/view/object-rpe.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Simultaneous localization and mapping (SLAM) is a crucial
nabling technology for autonomous robots. With the increasing
vailability of RGB-D sensors, research on visual SLAM has made
iant strides in development [1–3]. These approaches achieve
ense surface reconstruction of complex and arbitrary indoor
cenes while maintaining real-time performance through imple-
entations on highly parallelized hardware. However, the purely
eometric map of the environment produced by classical SLAM
ystems is not sufficient to enable robots to reason about and
anipulate their surroundings. Thus, the inclusion of rich seman-

ic information and 6D poses of object instances within a dense
ap is useful for robots to effectively operate and interact with
bjects.
Beyond classical SLAM systems that solely provide a purely ge-

metric map, the idea of a system that generates a dense map in
hich object instances are semantically annotated has attracted
ubstantial interest in the research community [4–6]. Semantic
D maps are important for robotic scene understanding, planning
nd interaction. In the case of robotic manipulation, providing
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accurate object poses together with semantic information are
crucial for robots that have to manipulate the objects around
them in diverse ways.

To obtain the 6D pose of objects, many approaches were
introduced in the past [7–9]. However, because of the complexity
of object shapes, measurement noise and presence of occlusions,
these approaches are not robust enough in real applications. Re-
cent work has attempted to leverage the power of deep CNNs to
solve this nontrivial problem [10–12]. These techniques demon-
strate a significant improvement of the accuracy of 6D object
pose estimation on some popular datasets such as YCB-Video
or LineMOD. Even so, due to the limitation of single-view-based
pose estimation, the existing solutions generally do not perform
well in cluttered environments and under large occlusions.

This paper extends our previous work [13], in which we de-
veloped a system for 6D object pose estimation that benefits
from the use of an instance-aware semantic mapping system
and from combining multiple predictions. Our prior work relies
on a robust camera tracking method that combines adaptively
weighted photometric, geometric and semantic cost terms in a
single objective function. In [13] these adaptive weights are cho-
sen on a per-image basis, while ideally they should be different
for each pixel, as certain regions in the image can contain varying
amounts of structure and color. Therefore, in order to improve

the performance of camera tracking, in this paper we propose
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registration cost function with per-pixel adaptive weights. We
lso provide validation of the proposed algorithms on more di-
erse datasets. Regarding object pose estimation, intuitively by
ombining pose predictions from multiple camera views, the
ccuracy of the estimated 3D object pose can be improved. Based
n this, our framework deploys simultaneously a 3D mapping
lgorithm to reconstruct a semantic model of the environment,
nd an incremental 6D object pose recovery algorithm that carries
ut predictions using the reconstructed model. We demonstrate
hat we can exploit multiple viewpoints around the same object
o achieve robust and stable 6D pose estimation in the presence
f heavy clutter and occlusion.
In summary, this paper contributes with:

• An instance-aware semantic mapping system that is capable
of producing accurate semantic maps of room-sized envi-
ronments. We improve segmentation accuracy by correcting
misclassified regions using two proposed criteria which rely
on location information and pixel-wise probability of the
class.
• A registration cost function combining geometric and ap-

pearance cues weighted adaptively. We achieve reliable
camera tracking and state-of-the-art surface reconstruction.
• A method that can be used to accurately predict the pose

of objects under partial occlusion. We demonstrate that by
integrating deep learning-based pose prediction into our
semantic mapping system we are able to address the chal-
lenges posed by missing information due to clutter, self-
occlusions, and bad reflections.

. Related work

.1. Dense RGB-D reconstruction

During the last years, many different mapping systems were
eveloped in order to get high-quality reconstructions in real-
ime using an RGB-D camera [1,2,14–17]. Most of these ap-
roaches have a very similar processing pipeline. In the first stage,
oise reduction and outlier removal are applied to the raw depth
easurements and then vertex maps are generated. Additional

nformation such as normals also might be extracted from the
epth image. In the next step, the sensor pose is estimated in a
rame-to-frame or frame-to-model fashion by minimizing a cost
unction. Finally, the surface measurements are integrated into
he global scene model based on the camera pose determined
n the previous stage. ElasticFusion [1] and BundleFusion [17]
emonstrated that they can achieve fast and robust mapping
nd tracking in large environments. In this paper, we leverage
he pipeline of ElasticFusion as a backbone (BundleFusion is an
lternative to ElasticFusion). We propose a joint geometric and
hotometric error function with per-pixel adaptive weights. The
eights are estimated based on textureness assessment.

.2. Dense semantic reconstruction

Several recent works [18–21] have utilized semantic segmen-
ation CNN architectures to obtain semantically labeled dense
cene reconstruction. SemanticFusion [20] employs the real-time
ense visual SLAM system ElasticFusion to provide a reliable
amera pose tracking and a globally consistent map of fused
urfels. In addition, the method utilizes a Bayesian update scheme
o keep track of the semantic class probability distribution for
ach surfel and to update those probabilities based on the CNN’s
redictions. Similar work in [21] developed an efficient and scal-
ble method for incrementally building a dense, semantically
nnotated 3D map in real-time. The authors additionally pro-
ose an efficient CNN-based semantic segmentation by refining
the geometric edges on frame-wise segmentation. Both works
in [20,21] illustrated that their systems do not only produce a
useful semantic 3D map, but also result in an improvement in
the 2D semantic labeling. However, since the above systems only
consider class labels, they are unaware of object instances. To
build a more meaningful map, instance-aware semantic map-
ping was introduced in [5,22–24]. The methods integrate deep
learning-based instance segmentation and classification into a
SLAM system. The resulting systems are capable of producing
accurate semantic maps of room-sized environments, as well as
reconstructing highly detailed object-level models. Most related
to ours is the work of Runz et al. MaskFusion [6], which is
able to recognize, segment, and assign semantic class labels to
different objects in the scene, while tracking and reconstructing
them. The 3D geometry of each object is represented as a set
of surfels. MaskFusion takes advantage of combining the outputs
of Mask R-CNN [25] and a geometry-based segmentation algo-
rithm, to increase the accuracy of the object boundaries in the
object masks. The authors showed that MaskFusion can be used
to implement novel augmented reality applications or perform
common robotics tasks.

Taking advantage of instance-aware semantic mapping, in this
work we demonstrate that our proposed object pose estimator
can benefit from the use of accurate masks generated by the
mapping system. Our work differs from the above methods as the
developed system is able to provide an instance-aware semantic
map along with 6D poses of objects. The proposed approach
increases the robustness of sensor tracking through an objective
function with per-pixel adaptive weights. Instead of updating
probabilities for all elements in the 3D map, we reduce the space
complexity by a more efficient strategy based on instance labels.
In addition to the highly accurate semantic scene reconstruc-
tion, we correct misclassified regions using two proposed criteria
which rely on location information and the pixel-wise probability
of the class.

2.3. Object pose estimation

In recent years, CNN architectures have been extended to the
object pose estimation task [10–12]. SingleShotPose [11] simul-
taneously detects an object in an RGB image and predicts its
6D pose without requiring multiple stages or having to examine
multiple hypotheses. It is end-to-end trainable and only needs the
3D bounding box of the object shape for training. This method is
able to deal with textureless objects, however, it fails to estimate
object poses under large occlusions. To handle occlusions better,
the PoseCNN architecture [10] employs semantic labeling which
provides richer information about the objects. PoseCNN recovers
the 3D translation of an object by localizing its center in the image
and estimating the 3D center distance from the camera. The 3D
rotation of the object is estimated by regressing convolutional
features to a quaternion representation. In addition, in order to
handle symmetric objects, the authors introduce ShapeMatch-
Loss, a new loss function that focuses on matching the 3D shape
of an object. The results show that this loss function produces
superior estimation for objects with shape symmetries. However,
this approach requires Iterative Closest Point (ICP) for refinement
which is prohibitively slow for real-time applications. To solve
this problem, Wang et al. proposed DenseFusion [12] which is
approximately 200x faster than PoseCNN-ICP and outperforms
previous approaches on two datasets, YCB-Video and LineMOD.
The key technique of DenseFusion is that it extracts features
from the color and depth images and fuses RGB values and
point clouds at the per-pixel level. This per-pixel fusion scheme
enables the model to explicitly reason about the local appear-
ance and geometry information, which is essential to handle
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Fig. 1. Overview of the proposed system. In the main thread, input data is
tilized for camera pose tracking. In a separate thread, RGB keyframes are
rocessed by an instance segmentation framework (Mask R-CNN [25]). Then
epth, color and semantic information are fused into the 3D map based on
he transformation matrix estimated from the camera tracking stage. The last
omponent is a 6D object pose estimator that output the pose of objects from
ultiple viewpoints.

cclusions between objects. In addition, an end-to-end iterative
ose refinement procedure is proposed to further improve pose
stimation while achieving near real-time inference. Although
enseFusion has achieved impressive results, like other single-
iew-based methods it suffers significantly from the ambiguity of
bject appearance and occlusions in cluttered scenes, which are
ery common in practice. In addition, since DenseFusion relies
n segmentation results for pose prediction, its accuracy highly
epends on the performance of the segmentation framework
sed. As in pose estimation networks, if the input to a segmen-
ation network contains an occluder, the occlusion significantly
nfluences the network output. In this paper, while exploiting
he advantages of the DenseFusion framework, we replace its
egmentation network by our semantic mapping system that
rovides a high-quality segmentation mask for each instance. We
ddress the problem of the ambiguity of object appearance and
cclusion by combining predictions using RGB-D images from
ultiple viewpoints.

. Methodology

Our pipeline is illustrated in Fig. 1. Firstly, input data is utilized
or camera pose tracking. In a separate thread, RGB keyframes
re processed by an instance segmentation framework (Mask R-
NN) and the detections are filtered and matched to the existing
nstances in the 3D map. When no match occurs, new object
nstances are created. Then using the estimated camera pose and
nstance masks, the dense 3D geometry of the map or model
s updated by fusing the points labeled in the fusion stage. The
ast component is a 6D object pose estimator that output the
ose of objects by combining predictions from single-view-based
redictions. In the following, we summarize the key elements of
ur method.
Instance Segmentation: The network takes in RGB images
and extracts instance masks labeled with object class, which serve
as input to the subsequent registration and fusion stages.

Camera Pose Tracking: Estimate camera poses within the
ElasticFusion pipeline using a joint cost function that combines
the cost functions of geometric and photometric estimates in an
adaptively weighted sum.

Data Fusion: Our 3D map representation is an unordered list
of surfels similar to [1]. The surfel map is updated by merging
the newly available RGB-D frame into the existing models. In
addition, segmentation information is fused into the map using
our instance-based semantic fusion scheme. To improve segmen-
tation accuracy, misclassified regions are corrected by two criteria
which rely on a sequence of CNN predictions.

Object Pose Estimation: First, we employ DenseFusion that
perates on object instances from single views to predict object
oses. Instead of using depth and color frames captured by the
amera, we use the surfel-splatted predicted depth map and the
olor image of the model from the previous pose estimate for
enseFusion. The predicted poses are then used as a measure-
ent update in a Kalman filter to estimate optimal 6D pose of
bjects.

.1. Instance segmentation

We employ an end-to-end CNN framework, Mask R-CNN [25]
or generating a high-quality segmentation mask for each in-
tance. Mask R-CNN has three outputs for each candidate object, a
lass label, a bounding box offset, and a mask. Its procedure con-
ists of two stages. In the first stage, candidate object bounding
oxes are proposed by a Region Proposal Network (RPN). In the
econd stage, classification, bounding-box regression, and mask
rediction are performed in parallel on each small feature map.
o speed up inference and improve accuracy, the mask branch is
pplied to the highest scoring 100 detection boxes after running
he box prediction. The mask branch predicts a binary mask from
ach RoI using an FCN architecture [26]. The binary mask is a
ingle m×m output regardless of class, which is generated by bi-
arizing the floating-number mask or soft mask at a threshold of
.5. Output of Mask-RCNN including class probabilities and masks
re then used in data fusion stage. In our previous work [13],
e extended Mask R-CNN to also regress an RGB image confi-
ence weight for use in the registration step. However, producing
onfidence weights from every frame using the additional branch
n Mask-RCNN is computationally intense, limiting the suitability
f the overall system in real-time applications. In addition, the
onfidence weights are chosen on a per-image basis, while ideally
hey should be different for each pixel, as certain regions in
he image can contain varying amounts of structure and color.
o address the limitations of the prior work, in this paper we
emove the registration weight prediction branch and propose
registration cost function with per-pixel adaptive weights as
escribed in Section 3.2

.2. Camera pose tracking

To perform camera tracking, our mapping system maintains
fused surfel-based model of the environment (similar to the
odel used by ElasticFusion [1]). Here we borrow and extend the
otation proposed in the original ElasticFusion paper. The model
s represented by a cloud of surfels Ms, where each surfel consists
f a position p ∈ R3, normal n ∈ R3, color c ∈ N3, initialization
imestamp t0 and last updated timestamp t . In addition Object-
PE maps each element of the 3D map (surfel) to a pair (ls, os) ∈
× N, where l represents the semantic class of surfel s and o
s s
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epresents its object instance id. L is a predetermined set of L
semantic classes encoded by L := {0, . . . , L− 1}.

The image space domain is defined asΩ ⊂ N2, where an RGB-
D frame is composed of a color map and a depth map D of depth
pixels d : Ω → R. We define the 3D back projection of a point
u ∈ Ω given a depth map D as p(u,D) = K−1ũd(u), where K is the
camera intrinsics matrix and ũ is the homogeneous form of u. The
erspective projection of a 3D point p = [x, y, z]⊤ is defined as
= π (Kp), where π (p) = (x/z, y/z). Given a color image C with
olor c(u) = [c1, c2, c3]⊤, the intensity value of a pixel u ∈ Ω is
defined as I(u, C) = (c1 + c2 + c3)/3.

We estimate an incremental transformation ξ̂ between a
ewly captured RGB-D image at time t and the previous sensor
ose at time t − 1 by minimizing a joint optimization objective:

combined = Eicp + Ergb (1)

here Eicp and Ergb are the geometric and photometric error terms
espectively. The main difference between our approach and Elas-
icFusion is that instead of using fixed weights, we estimate
er-pixel adaptive weights based on textureness assessment. To
efine the textureness of each depth image pixel, we assume that
ntextured regions are often piecewise flat and thus the amount
f characteristic features is low. Under these assumptions, the
dea behind our proposed cost function is to favor highly textured
egions of the image.

In the term of the geometric energy Eicp, between the current
epth map Dt and the predicted model depth map from the last
rame D̂a

t−1 we aim to minimize the cost of the point-to-plane ICP
egistration error:

icp =
∑
u∈Ω

λicp(u)((vk(u)− exp(ξ̂ )Tvkt (u))n
k)2 (2)

here vkt is the back-projection of the kth vertex in the cur-
ent depth frame Dt ; and vk and nk are respectively the back-
rojection of the corresponding vertex in the predicted depth
rame of the 3D map from the previous frame t−1 and its normal.
is the current estimate of the transformation from the previous
amera pose to the current one. λicp is the weight computed
rom Eq. (3). The energy is adaptively weighted based on the local
ariance at u, we define it as in [27]:

(u) =
σ 2
u

σ 2
u + ϵ

(3)

here σu denotes the local variance of the 5x5 patch around
ixel u in the current depth image Dt , and ϵ is an empirically set
onstant. The higher the variance, the closer the weight is to 1.
ig. 2 shows an example of per-pixel weights for a RGB-D image.
In term of photometric energy Ergb, between the live color

mage C l
t and the predicted model color from the last frame Ĉa

t−1
e minimize differences in brightness:

rgb =
∑
u∈Ω

λrgb(u)(I(u, C l
t )− I(Ψ (ξ̂ , u), Ĉa

t−1))
2 (4)

here the weight λrgb is computed from Eq. (3) with the variance
u taken as the variance of a local 5 × 5 patch of pixels from the
ntensity image I(u, C). The vector Ψ (ξ̂ , u) is the warped pixel and
efined according to the incremental transformation ξ̂ :

(ξ̂ , u) = π (K exp(ξ̂ )Tp(u,Dt )) (5)

Finally, we find the transformation by minimizing the ob-
ective (1) through the Gauss–Newton non-linear least-square

ethod with a three-level coarse-to-fine pyramid scheme.
Fig. 2. Visualization of per-pixel weights computed on depth and color images:
(a) color image; (b) weights on color image; (c) depth image; (d) weights on
depth image.

3.3. Data association and segmentation refinement

Data association: Given an RGB-D frame at time step t , each
mask M from Mask R-CNN must be associated with an instance
in the 3D map. Otherwise, it will be assigned as a new instance.
To find the corresponding instance, we use the tracked camera
pose and existing instances in the map built at time step t −
1 to predict binary masks via splatted rendering. The overlap
percentage between the mask M and a predicted mask M̂ for

object instance o is computed as U(M, M̂) =
M ∩ M̂

M̂
. Then the

mask M is mapped to object instance o which has the predicted
mask M̂ with largest overlap, where U(M, M̂) > 0.3.

To efficiently store class probabilities, we propose to assign
an object instance label o to each surfel and then this label is
associated with a discrete probability distribution over potential
class labels, P(Lo = li) over the set of class labels, li ∈ L. In
consequence, we need only one probability vector for all surfels
belonging to the same object entity. This makes a big difference
when the number of surfels is much larger than the number
of classes. To update the class probability distribution, recursive
Bayesian update is used as in [28]. However, this scheme often
results in an overly confident class probability distribution that
contains scores unsuitable for ranking in object detection [5]. In
order to make the distribution more even, we update the class
probability by simple averaging:

P(li|I1,...,t ) =
1
t

t∑
j=1

(pj|It ) (6)

Besides fusing main class probabilities, we enrich segmen-
ation information on each surfel by adding the probability to
ccount for background/object predictions from the binary mask
ranch of Mask R-CNN. To that end, each surfel in our 3D map
as a non-background (object) probability attribute po. As pre-
ented in [25] the binary mask branch first generates an m × m
floating-number mask which is then resized to the RoI size, and
binarized at a threshold of 0.5. Therefore, we are able to extract a
per-pixel non-background probability map with the same image
size 480 × 640. Given the RGB-D frame at time step t , a non-
background probability po(It ) is assigned to each pixel. Camera
tracking and the 3D back projection introduced in Section 3.2
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enables us to update all the surfels with the corresponding prob-
ability as following:

po =
1
t

t∑
j=1

pj(It ) (7)

Segmentation Improvement: Despite the power and flexibil-
ity of Mask R-CNN, it frequently misclassifies object boundary
regions as background. In other words, the detailed structures of
an object are often lost or smoothed. Thus, there is still much
room for improvement in segmentation. We observe that many of
the pixels in the misclassified regions have non-background prob-
ability just slightly smaller than 0.5, while the soft probabilities
mask for real background pixel is often far below the threshold.
Based on this observation, we expect to achieve a more accurate
object-aware semantic scene reconstruction by considering the
non-background probability of surfels within a n frame sequence.
With this goal, each possible surfel s (0.4 < po < 0.5) is
associated with a confidence ϑ(s). If a surfel is identified for the
first time, its associated confidence is initialized to zero. Then,
when a new frame arrives, we increment the confidence ϑ(s)←
ϑ(s) + 1 only if the corresponding pixel of that surfel satisfies 2
criteria: (i) its non-background probability is greater than 0.4; (ii)
there is at least one object pixel inside its 8-neighborhood. After
n frames, if the confidence ϑ(s) exceeds the threshold σobject , we
assign surfel s to the closest instance. Otherwise, ϑ(s) is reset to
zero.

3.4. Multi-view object pose estimation

Given an RGB-D frame sequence, the task of 6D object pose
estimation is to estimate the rigid transformation from the ob-
ject coordinate system O to a global coordinate system G. We
assume that the 3D model of the object is available and the object
coordinate system is defined in the 3D space of the model. The
rigid transformation consists of a 3D rotation R(ω, ϕ,ψ) and a 3D
translation T (X, Y , Z). The translation T is the coordinate of the
origin of O in the global coordinate frame G, and R specifies the
rotation angles around the X-axis, Y -axis, and Z-axis of the object
coordinate system O.

Our approach outputs the object poses with respect to the
global coordinate system by combining predictions from different
viewpoints. For each frame at time t , we apply DenseFusion to
masks back-projected from the current 3D map. The estimated
object poses are then transferred to the global coordinate system
G and serve as measurement inputs for an extended Kalman filter
(EKF) based pose update stage.

Single-view based prediction: In order to estimate the pose
of each object in the scene from single views with respect to
the local camera coordinate system, we apply DenseFusion to
masks back-projected from the current 3D map. The network
architecture and hyperparameters are similar as introduced in
the original paper [12]. The image embedding network consists
of a ResNet-18 encoder followed by 4 up-sampling layers as a de-
coder. The PointNet-like architecture is a multi-layer perceptron
(MLP) followed by an average-pooling reduction function. The
iterative pose refinement module consists of 4 fully connected
layers that directly output the pose residual from the global
dense feature. For each object instance mask, a 3D point cloud
is computed from the predicted model depth pixels and an RGB
image region is cropped by the bounding box of the mask from
the predicted model color image. First, the image crop is fed into
a fully convolutional network and then each pixel is mapped
to a color feature embedding. For the point cloud, a PointNet-
like architecture is utilized to extract geometric features. Having
generated features, the next step combines both embeddings and
outputs the estimation of the 6D pose of the object using a
pixel-wise fusion network. Finally, the pose estimation results
are improved by a neural network-based iterative refinement
module. A key distinction between our approach and DenseFusion
is that instead of directly operating on masks from the segmen-
tation network, we use predicted 2D masks that are obtained
by reprojecting the current scene model. As illustrated in Fig. 3
our semantic mapping system leads to an improvement in the
2D instance labeling over the baseline single frame predictions
generated by Mask R-CNN. As a result, our object pose estimation
method benefits from the use of more accurate segmentation
results.

Object pose update: For each frame at time t , the estimates
obtained by DenseFusion and camera motions from the registra-
tion stage are used to compute the pose of each object instance
with respect to the global coordinate system G. The pose is then
used as a measurement update in a Kalman filter to estimate an
optimal 6D pose of the object. Since we assume that the measured
scene is static over the reconstruction period, the object’s motion
model is constant. The state vector of the EKF combines the
estimates of translation and rotation:

x = [X Y Z φ ϕ ψ]⊤ (8)

Let xt be the state at time t , x̂−t denote the predicted state
estimate and P−t denote predicted error covariance at time t given
the knowledge of the process and measurement at the end of step
t−1, and let x̂t be the updated state estimate at time t given the
pose estimated by DenseFusion zt . The EKF consists of two stages:
prediction and measurement update (correction) as follows.

Prediction:

x̂−t = x̂t−1 (9)

P−t = Pt−1 (10)

Measurement update:

x̂t = x̂−t ⊕ Kt (zt ⊖ x̂−t ) (11)

Kt = P−t (Pm
t + P−t )−1 (12)

Pt = (I6×6 − Kt )P−t (13)

Here, ⊖ and ⊕ are the pose composition operators. Kt is the
Kalman gain update. The 6 × 6 matrix Pm

t is measurement noise
covariance, computed as:

Pm
t = µI6×6 (14)

where µ is the mean distance from measured object points to
its 3D model transformed according to the estimated pose. The
measured object points are computed from depth and mask back-
projected from the current 3D map.

4. Experiments

In this section, we evaluate the proposed system through
extensive experiments on four datasets: TUM RGB-D dataset [29],
YCB-Video dataset [10], SceneNN [30] and a newly collected
warehouse object dataset. The TUM RGB-D dataset was used
for evaluation of the tracking and mapping component of our
framework, while the remaining three datasets were used for
evaluation of the semantic mapping and pose retrieval compo-
nents. Note that due to the disjoint object categories present
in the three datasets, both Mask-RCNN and DenseFusion were
trained independently for each dataset. For evaluation on the
SceneNN dataset we used 75 scenes for training and 20 scenes
for testing. The YCB-Video dataset was split into 80 videos for
training and the remaining 12 videos for testing. For the ware-
house object dataset, the system was trained on 15 videos and
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Table 1
Comparison of absolute trajectory error RMS [m]/relative orientation error RMS [deg] as indicated in [29] on the warehouse dataset
and TUM RGB-D dataset. ElasticFusion (EF); MaskFusion (MF); Ours (fixed λicp): our proposed registration using a fixed weight for
geometric energy and per-pixel adaptive weights for photometric energy; Ours (fixed λrgb): our proposed registration using a fixed
weight for photometric energy and per-pixel adaptive weights for geometric energy; Object-RPE: our proposed registration using
per-pixel adaptive weights for both geometric energy and photometric energy.

EF MF Ours (fixed λicp) Ours (fixed λrgb) Object-RPE

freiburg1_desk 0.020/1.625 0.034/2.487 0.019/1.393 0.018/1.245 0.017/0.996
freiburg1_room 0.068/2.045 0.153/2.342 0.065/1.542 0.066/1.623 0.065/1.325
freiburg1_teddy 0.083/1.743 0.129/1.897 0.080/1.540 0.080/1.365 0.079/1.206
freiburg2_desk 0.071/0.918 0.108/1.549 0.071/0.883 0.070/0.887 0.070/0.885
freiburg2_xyz 0.011/0.477 0.041/0.977 0.009/0.406 0.010/0.412 0.009/0.399
freiburg3_large_cabinet 0.099/2.138 0.133/2.455 0.060/1.351 0.065/1.486 0.052/1.210
warehouse_01 0.025/1.529 0.026/1.982 0.023/1.332 0.021/1.210 0.021/1.101
warehouse_02 0.031/1.870 0.040/2.654 0.028/1.657 0.029/1.669 0.027/1.554
warehouse_03 0.036/2.331 0.043/2.765 0.034/1.877 0.030/1.743 0.029/1.521
warehouse_04 0.022/1.644 0.031/2.382 0.021/1.660 0.018/1.563 0.016/1.316
warehouse_05 0.045/1.954 0.055/2.378 0.037/1.651 0.033/1.546 0.032/1.442
warehouse_06 0.028/1.980 0.033/2.121 0.026/1.971 0.025/1.667 0.025/1.550
Fig. 3. Examples of masks generated by Mask R-CNN and produced by reprojecting the current scene model.
Fig. 4. The set of 11 objects in the warehouse object dataset.

ested on the other 5 videos. Our experiments are aimed at
valuating trajectory estimation, surface reconstruction and 6D
bject pose estimation accuracy. A comparison against the most
losely related works is also performed here.
For all tests, we ran our system on a desktop PC running 64-

it Ubuntu 16.04 Linux with an Intel(R) Xeon(R) E-2176G CPU
Fig. 5. We collected a dataset for the evaluation of reconstruction and pose
estimation systems in a typical warehouse using (a) a hand-held ASUS Xtion
PRO LIVE sensor. Calibration parameters were found by using (b) a chessboard
and (c) reflective markers detected by the motion capture system.

3.70 GHz and an Nvidia GeForce RTX 2080 Ti 10GB GPU. Our
pipeline is implemented in C++ with CUDA for RGB-D image
registration. The Mask R-CNN and DenseFusion codes are based
on the publicly available implementations by Matterport1 and
Wang.2 In all of the presented experimental setups, results are
generated from RGB-D video with a resolution of 640 × 480
pixels. The DenseFusion networks were trained for 200 epochs
with a batch size of 8. Adam [31] was used as the optimizer with
a learning rate set to 0.0001.

1 https://github.com/matterport/Mask_RCNN.
2 https://github.com/j96w/DenseFusion.

https://github.com/matterport/Mask_RCNN
https://github.com/j96w/DenseFusion
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Fig. 6. The result trajectories estimated by ElasticFusion and Object-RPE compared to the ground truth of two videos in the warehouse dataset. Ground truth and
camera trajectories projected to 2D: (a–c) video 1, (d–f) video 2.
4.1. The warehouse object dataset

Unlike scenes recorded in the YCB-Video dataset or other pub-
icly available datasets, warehouse environments pose more com-
lex problems, including low illumination inside shelves, low-
exture and symmetric objects, clutter, and occlusions. To ad-
ance applications of robotics as well as to thoroughly evaluate
ur method, we collected an RGB-D video dataset of 11 ob-
ects as shown in Fig. 4, which is focused on the challenges in
etecting warehouse object poses using an RGB-D sensor. The
ataset consists of over 20,000 RGB-D images extracted from 20
ideos captured by an ASUS Xtion PRO Live sensor, the 6D poses
f the objects and ground truth instance segmentation masks
anually generated using the LabelFusion framework [32], as
ell as camera trajectories from a motion capture system de-
eloped by Qualisys.3 Calibration is required for both the RGB-D
ensor and motion capture system shown in Fig. 5. We calibrated
he motion capture system using the Qualisys Track Manager
QTM) software. For RGB-D camera calibration, the intrinsic cam-
ra parameters were estimated using the classical black-white
hessboard and the OpenCV library. For extrinsic calibration, four
arkers were placed on the outer corners of the checkerboard as

n [29]. We also attached four spherical markers on the sensor.
imilar to [29], we were able to estimate the transformation
etween the pose from the motion capture system and the optical
rame of the RGB-D camera.

.2. Trajectory estimation

We compare the trajectory estimation performance of our
bject-RPE to the state-of-the-art mapping system ElasticFu-
ion and the most related work MaskFusion on the warehouse

3 https://www.qualisys.com.
dataset and the widely used TUM RGB-D dataset [29]. This bench-
mark [29] is one of the most popular datasets for the evaluation of
RGB-D SLAM systems. The dataset covers a large variety of scenes
and camera motions and provides sequences for debugging with
slow motions as well as longer trajectories with and without loop
closures. Each sequence contains the color and depth images,
as well as the ground-truth trajectory from the motion capture
system. The benchmark does not contain ground-truth data for
instance segmentation and object pose estimation. The set of
objects in the scene is also not known. Thus, we did not train
Mask R-CNN and DenseFusion on this dataset. Similar to [6], we
used pre-trained weights for the MS COCO dataset to run Mask
R-CNN for MaskFusion. To evaluate the error in the estimated
trajectory by comparing it with the ground-truth, we adopt the
absolute trajectory error (ATE) root-mean-square error metric
(RMSE) as proposed in [29].

Table 1 shows the results. The best quantities are marked
in bold. We performed an ablation study and computed the
trajectory errors for our approach where we kept either the
photometric or geometric error terms fixed. We note that the
full version of our approach relying on adaptive weights (last
column of Table 1) consistently results in the lowest observed
trajectory errors across all datasets. A visualization of trajectories
by running ElasticFusion and Object-RPE on two videos in the
warehouse dataset is shown in Fig. 6.

4.3. Reconstruction results

In order to evaluate surface reconstruction quality, we com-
pare the reconstructed model of each object to its ground truth
3D model. For every object present in the scene, we first register
the reconstructed model M to the ground truth model G by
a user interface that utilizes human input to assist traditional

https://www.qualisys.com
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Table 2
Comparison of surface reconstruction error and pose estimation accuracy results on the YCB objects. ElasticFusion (EF), DenseFusion
(DF).

Reconstruction (mm) 6D pose estimation

EF Object-RPE DF DF-PM DF-PM-PD DF-PM-PD-PC Object-RPE

002_master_chef_can 5.7 4.5 96.4 96.8 96.5 97.0 97.6
003_cracker_box 5.2 4.8 95.5 96.2 96.2 96.9 97.3
004_sugar_box 7.2 5.3 97.5 97.4 97.0 97.2 98.1
005_tomato_soup_can 6.4 5.7 94.6 94.7 95.2 95.6 96.8
006_mustard_bottle 5.2 5.0 97.2 97.9 98.0 98.0 98.5
007_tuna_fish_can 6.8 5.4 96.6 97.1 97.4 98.1 98.5
008_pudding_box 5.6 4.3 96.5 97.3 97.1 97.6 98.4
009_gelatin_box 5.5 4.9 98.1 98.0 98.2 98.4 99.0
010_potted_meat_can 7.4 6.3 91.3 92.2 92.5 92.9 94.7
011_banana 6.2 5.8 96.6 97.2 97.2 97.4 97.9
019_pitcher_base 5.8 4.9 97.1 97.5 97.9 98.2 99.3
021_bleach_cleanser 5.4 4.2 95.8 96.5 95.9 96.3 97.6
024_bowl 8.8 7.4 88.2 89.5 90.3 90.8 93.7
025_mug 5.2 5.4 97.1 96.8 97.3 97.5 99.1
035_power_drill 5.8 5.1 96.0 96.6 96.8 96.8 98.1
036_wood_block 7.4 6.7 89.7 90.3 90.6 91.2 95.7
037_scissors 5.5 5.1 95.2 96.2 96.2 96.2 97.9
040_large_marker 6.1 3.4 97.5 98.1 97.9 97.6 98.5
051_large_clamp 4.6 3.9 72.9 76.3 77.1 77.8 82.5
052_extra_large_clamp 6.2 4.6 69.8 71.2 72.5 73.6 78.9
061_foam_brick 6.2 5.7 92.5 93.7 91.5 91.6 95.9
MEAN 6.1 5.2 93.0 93.7 93.8 94.1 96.0
Table 3
Comparison of surface reconstruction error and pose estimation accuracy results on the warehouse objects.
ElasticFusion (EF), DenseFusion (DF).

Reconstruction (mm) 6D pose estimation

EF Object-RPE DF DF-PM DF-PM-PD DF-PM-PD-PC Object-RPE

001_frasvaf_box 8.3 6.0 60.5 63.5 64.6 65.9 68.9
002_small_jacky box 7.4 6.5 61.3 66.8 66.9 67.1 70.8
003_jacky_box 6.6 5.7 59.4 65.5 68.8 68.9 73.5
004_skansk_can 7.9 7.5 63.4 66.8 68.2 68.8 68.7
005_sotstark_can 7.3 5.5 58.6 62.5 65.5 66.3 69.7
006_onos_can 8.1 6.6 60.1 63.6 65.7 66.5 70.6
007_risi_frutti_box 5.3 4.2 59.7 64.5 65.2 66.1 69.3
008_pauluns_box 5.8 5.3 58.6 62.5 65.9 66.7 70.5
009_tomatpure 7.4 6.1 63.1 65.8 66.5 67.7 73.2
010_pallet 11.7 10.0 62.3 64.9 65.3 66.6 67.8
011_half_pallet 12.5 10.4 58.9 64.4 64.8 64.8 69.4
MEAN 8.0 6.7 60.5 64.6 66.1 66.9 69.9
Table 4
Comparison of surface reconstruction error and pose estimation accuracy results on the SceneNN objects.
ElasticFusion (EF), DenseFusion (DF).

Reconstruction (mm) 6D pose estimation

EF Object-RPE DF DF-PM DF-PM-PD DF-PM-PD-PC Object-RPE

Cabinet 9.7 8.1 66.7 67.1 67.5 67.5 70.8
Bed 10.8 9.9 65.2 67.4 68.2 68.3 72.9
Chair 8.6 6.8 70.5 75.2 76.3 76.5 78.8
Sofa 9.9 7.2 73.7 76.5 77.1 77.4 78.9
Table 7.8 6.5 68.4 72.2 73.3 73.3 80.2
Desk 11.1 9.2 70.1 73.4 75.7 76.6 80.4
Pillow 8.3 7.2 68.2 69.5 70.5 71.1 77.9
Television 8.4 7.1 63.8 64.9 65.1 65.5 74.2
Lamp 12.5 10.6 66.4 69.6 70.3 70.5 73.1
Monitor 11.3 10.3 72.5 77.2 78.6 78.9 82.1
MEAN 9.84 8.3 68.6 71.3 72.3 72.6 77.0
registration techniques [32]. Next, we project every vertex from
M onto G and compute the distance between the original vertex
and its projection. Finally, we calculate and report the mean
distance µd over all model points and all objects.

The results of this evaluation on the reconstruction datasets
are summarized in Tables 2–4. Qualitative results are shown in
Fig. 7. We can see that our reconstruction system significantly
outperforms the baseline (ElasticFusion). Our approach achieves
the best performance on all objects. The results show that our re-
construction method has a clear advantage of using the proposed
registration cost function. In addition, we are able to keep all
surfels on object instances always active, while ElasticFusion has
to segment these surfels into inactive areas if they have not been
observed for a period of time ∂t . This means that the object surfels
are updated all the time. As a result, the developed system is able
to produce a highly accurate instance-aware semantic map.
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Fig. 7. Examples of 3D object-aware semantic maps from the YCB-Video dataset
(a–b), the warehouse object dataset (c–d) and SceneNN dataset (e–f).

4.4. Pose estimation results

We used the average closest point distance (ADD-S) met-
ic [10,12] for evaluation. We report the area under the ADD-S
urve (AUC) following PoseCNN [10] and DenseFusion [12]. The
aximum threshold was set to 10 cm as in [10] an [12]. The
bject pose predicted from our system at time t is a rigid trans-
ormation from the object coordinate system O to the global
coordinate system G. To compare with the performance of Dense-
Fusion, we transform the object pose to the camera coordinate
system using the transformation matrix estimated from the cam-
era tracking stage. Tables 2–4 present a detailed evaluation for all
the 21 objects in the YCB-Video dataset, 11 objects in the ware-
house dataset and 10 selected objects in SceneNN. Object-RPE
with the full use of projected mask, depth and color images from
the semantic 3D map achieves superior performance compared
to the baseline single frame predictions. We observed that in all
cases combining information from multiple views improved the
accuracy of the pose estimation over the original DenseFusion.
We saw an improvement of 3.0% over the baseline single frame
method with Object-RPE, from 93.0% to 96.0% for the YCB-Video
dataset. We also observed a marked improvement, from 60.5%
for a single frame to 69.9% with Object-RPE on the warehouse
object dataset. Similarly, Object-RPE saw +8.4% improvement on
the selected objects in SceneNN. Furthermore, we ran a num-
ber of ablations to analyze Object-RPE including (i) DenseFusion
using projected masks (DF-PM) (ii) DenseFusion using projected
masks and projected depth (DF-PM-PD) (iii) DenseFusion using
projected masks, projected depth, and projected RGB image (DF-
PM-PD-PC). DF-PM performed better than DenseFusion on the 3
datasets (+0.8%, +4.1% and +2.7%). The performance benefit of
Table 5
Average run-time analysis of system components (ms
per frame). Note that the components with ∗ process
keyframes.
Component Object-RPE

Instance Segmentation ∗ 350
Registration 25
Data Fusion 15
Object Pose Estimation 40

DF-PM-PD was less clear as it resulted in a very small improve-
ment of +0.1%, +1.5% and +1.0% over DF-PM. For DF-PM-PD-PC,
performance improved additionally with+0.4% on the YCB-Video
dataset, +0.8% on the warehouse object dataset, and +0.3% on
SceneNN objects. The remaining improvement is due to the fusion
of estimates in the EKF.

Lastly, the running times of the individual components of
Object-RPE, averaged over all evaluated sequences, are shown in
Table 5. Our pipeline does not explicitly depend on Mask-RCNN,
and can be configured to use a different instance segmenta-
tion backbone. The current system does not run Mask-RCNN
for every frame because of heavy computation, with an average
computational cost of 350 ms per frame. We instead only run
instance segmentation for keyframes (1 keyframe per 10 frames).
The numbers indicate that the system is capable of running at
approximately 8 Hz on 640 × 480 input.

5. Conclusions

We have presented and validated a mapping system that
yields high quality instance-aware semantic reconstruction while
simultaneously recovering 6D poses of object instances. The main
contributions of this paper is to show that (i) by combining
geometric and appearance cues in an adaptively weighted sum
we are able to obtain reliable camera tracking and state-of-
the-art surface reconstruction and (ii) taking advantage of deep
learning-based techniques and our semantic mapping system we
are able to improve the performance of object pose estimation
as compared to single view-based methods. We have provided
an extensive evaluation on common benchmarks and our own
dataset. The results confirm that Object-RPE is able to produce
a high quality dense map with robust tracking. We also demon-
strated that the proposed object pose estimator benefits from the
use of accurate masks generated by the semantic mapping system
and from combining multiple predictions based on the Kalman
filter.

We believe that the instance-aware semantic mapping and
object pose estimation from multi-views will open the way to
new applications of intelligent autonomous robotics. As future
work, to achieve real-time capabilities, we plan on investigating
the optimal way to reduce the runtime requirements of the
proposed system. More experiments also will be done to see how
the semantic reconstruction performs in comparison with other
state-of-the-art semantic mapping methods.
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