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Panoptic 3D Mapping and Object Pose Estimation
Using Adaptively Weighted Semantic Information

Dinh-Cuong Hoang , Achim J. Lilienthal , and Todor Stoyanov

Abstract—We present a system capable of reconstructing highly
detailed object-level models and estimating the 6D pose of objects
by means of an RGB-D camera. In this work, we integrate deep-
learning-based semantic segmentation, instance segmentation, and
6D object pose estimation into a state of the art RGB-D mapping
system. We leverage the pipeline of ElasticFusion as a backbone
and propose modifications of the registration cost function to make
full use of the semantic class labels in the process. The proposed ob-
jective function features tunable weights for the depth, appearance,
and semantic information channels, which are learned from data. A
fast semantic segmentation and registration weight prediction con-
volutional neural network (Fast-RGBD-SSWP) suited to efficient
computation is introduced. In addition, our approach explores per-
forming 6D object pose estimation from multiple viewpoints sup-
ported by the high-quality reconstruction system. The developed
method has been verified through experimental validation on the
YCB-Video dataset and a dataset of warehouse objects. Our results
confirm that the proposed system performs favorably in terms of
surface reconstruction, segmentation quality, and accurate object
pose estimation in comparison to other state-of-the-art systems.
Our code and video are available at https://sites.google.com/view/
panoptic-mope.

Index Terms—RGB-D perception, object detection, segmen-
tation and categorization, mapping.

I. INTRODUCTION

FUSING semantic along with geometric information within
a 3D reconstructed map is a promising approach to enable

robots to better understand a 3D scene [1]. It is especially im-
portant for mobile manipulation in which robots simultaneously
navigate in unknown environments and picking objects. To accu-
rately grasp selected objects and avoid collisions with neighbor-
ing obstacles in the workspace, the reconstruction process needs
to produce a high-quality map of the working environment. The
addition of semantic information enables a much greater range
of functionality than geometry alone. However, since semantic
mapping systems only consider class labels, they are limited
to scenarios with single object instances per scene and may
degenerate performance in case multiple objects of the same
type are present. The idea of a system that generates a dense
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map in which object instances are semantically annotated has
attracted substantial interest in the research community [2]–[5].
Such instance-aware semantic 3D map is useful for enabling
more context-aware and more intelligent robot behaviors.

In our previous work, we developed a semantic mapping sys-
tem, called Object-RPE (Reconstruction and Pose Estimation)
[5], for accurate 3D instance-aware semantic reconstruction and
6D pose estimation using an RGB-D camera. While Object-RPE
yields high quality object-oriented semantic reconstruction, the
system has a number of limitations. Producing object masks
from every frame using Mask-RCNN severely limits it’s speed,
placing Object-RPE far from real-time applications. In addition,
a notable feature of the semantic mapping system is the use
of color images alone for segmentation and prediction of an
adaptive registration weight. In other words, our previous study
has not fully exploited the potential of RGB-D data by making
effective use of depth information.

To address the limitations of Object-RPE, in this letter we
propose a panoptic mapping and object pose estimation system
(Panoptic-MOPE). The term “panoptic” was introduced in [6]
in the context of panoptic segmentation: that is a combination of
instance and semantic segmentation. Unlike semantic mapping,
Panoptic-MOPE fuses both semantic and instance information
into a surfel-based map. The contributions of this work are
summarized as follows:
� A mapping system that allows a robot not only to re-

construct its surrounding environment but also to acquire
semantic and instance information as well as the 6D pose
of objects in the scene.

� A fast semantic segmentation and registration weight pre-
diction convolutional neural network using RGB-D data
(Fast-RGBD-SSWP).

� Reliable camera tracking and state-of-the-art surface re-
construction based on an addaptively weighted optimiza-
tion of geometric, appearance, and semantic cues.

II. RELATED WORK

A. Registration of RGB-D Images

A large number of registration algorithms have been pro-
posed in the context of RGB-D Tracking and Mapping (TAM)
[7]–[10]. Feature-based approaches estimate the sensor pose by
only considering informative and characteristic points known
as key points [9], [10]. Alternatively, dense geometric track-
ing approaches, such as KinectFusion [8], typically apply an
ICP [11] variant to directly register the full depth image to an
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online reconstructed volumetric model. The original Kinect-
Fusion algorithm uses a Truncated Signed Distance Function
(TSDF) for model representation and point-to-plane ICP [11]
for alignment. Several alternatives to this choice of algorithms
have been proposed [12], [13], which are expected to perform
better in regions where the point-to-plane distance is ill-defined.

Using only depth data, tracking failure can occur in situations
where the amount of characteristic features in the depth map is
low. Steinbrucker et al. [14] introduced an energy minimization
approach for RGB-D image registration that relies on color
information instead. In comparison with geometric ICP, the
authors reported that their method is more accurate in the regime
of small camera motions. Whelan et al. [15] combined the color
and depth information in the cost function so that all given
information is used. They demonstrated that this combination
increases the robustness of camera tracking across a variety of
environments. This idea was further used in ElasticFusion [7]
which fuses measurements and uses a surfel structure instead of
a volumetric one for reconstruction. ElasticFusion demonstrates
the capability to produce globally consistent reconstructions in
real-time without the use of post-processing steps. Similarly to
Elastic Fusion, our approach also integrates both geometric and
photometric cues for camera tracking. In addition, we propose
modifications of the registration objective function to make full
use of the semantic information in the process. The proposed
objective function features tunable weights for the depth, ap-
pearance, and semantic information channels, which our method
learns from data.

B. Semantic Mapping

Fusing semantic along with geometric information within
a 3D reconstructed map is a promising approach to enable
intelligent systems to better understand a 3D scene. A number of
semantic mapping systems have been developed [1], [16], [17].
Hermans et al. [16] utilize Random Decision Forests to achieve
semantic pixel-wise image labeling and fuse them in a classic
Bayesian framework. Previous work by McCormac et al. [1]
aimed at combining Convolutional Neural Networks and Elas-
ticFusion [7] to obtain semantic-aware 3D reconstruction. The
correspondences between frames are estimated by the SLAM
system. Meanwhile, their CNN architecture adopts a Decon-
volutional Semantic Segmentation network [18] to generate a
pixel-wise semantic map for incoming images. Unlike the origi-
nal architecture [18], this system incorporates depth information
to obtain a higher accuracy than the pretrained RGB network.
The authors reported that fusing multiple predictions led to a
significant improvement in the semantic labeling and it is the
first real-time capable approach suitable for interactive indoor
scene scanning and labeling. Likewise, SegICP-DSR [17] fuses
RGB-D observations into a semantically-labeled point cloud for
object pose estimation using adversarial networks and ElasticFu-
sion. There is, however, one significant difference. SegICP-DSR
employs the semantic label difference instead of a photometric
error when formulating the alignment objective function. Then, a
semantically-labeled point cloud can be directly obtained from
the reconstruction process without an extra update step. The

addition of semantic information enables a much greater range
of functionality than geometry alone. However, since the above
systems only consider class labels, they are limited to scenarios
with single object instances per scene and may degenerate per-
formance in case multiple objects of the same type are present.

A number of other works have addressed the task of mapping
at the level of individual objects [3], [4]. The work of McCormac
et al. Fusion++ [3] aimed to produce multiple semantically
labeled maps of object instances without a dense representation
of the entire static scene. Fusion++ uses Mask R-CNN instance
segmentation to initialize dense per-object TSDF reconstruc-
tions with object size-dependent resolutions. For camera track-
ing, Fusion++ takes an approach similar to KinectFusion using
projective data association and a point-to-plane error. Note that
apart from object level maps, Fusion++ also maintains a coarse
background TSDF to assist frame-to-model tracking. While the
authors evaluated the trajectory error of the developed system
against the baseline approach of simple coarse TSDF odometry,
the reports did not provide a comparison with other photometry
or semantics-aware state of the art approaches. Similarly, Mask-
Fusion [4] is a real-time, object-aware, semantic and dynamic
RGB-D SLAM system. It combines geometric segmentation
running on every frame and instance segmentation using Mask
R-CNN computed for select keyframes. The geometric segmen-
tation algorithm acquires object boundaries based on an anal-
ysis of depth discontinuities and surface normals, while Mask
R-CNN is used to provide object masks with semantic labels.
Camera poses are estimated by minimizing a joint geometric
and photometric error function as presented in [7]. The reported
results demonstrate that while MaskFusion outperforms a set of
baseline state of the art algorithms in highly dynamic scenes,
ElasticFusion performs best on static and moderately dynamic
scenes.

Our work differs from the above methods as the developed
system is able to provide a panoptic 3D map along with 6D
poses of objects. Our approach increases the robustness of sensor
tracking through integrating semantic, appearance, and geomet-
ric cues into the reconstruction process as described in Sec. III-B.
In addition, our CNN network presented in Sec. III-A is able to
generate adaptive weights for the joint cost function. The CNN’s
semantic and instance predictions from multiple viewpoints are
probabilistically fused into our panoptic surfel-based map as
described in Sec. III-C. In addition, Panoptic-MOPE maps each
element of the 3D map (surfel) to a pair (ls,os) ∈ L × N, where
ls represents the semantic class of surfel s and os represents its
object instance id.L is a predetermined set of L semantic classes
encoded by L := {0, . . ., L− 1}. Elements with the same label
and id belong to the same object. When a surfel is labeled with
ls �∈ Lo, the instance id is ignored, whereLo ⊂ L. The subsetLo

contains semantic classes of relevant objects whose 3D models
are avaible in database for further stage object pose estimation.

III. METHODOLOGY

Our pipeline is visualized in Fig. 1. The input RGB-D data is
processed through a semantic segmentation and adaptive weight
prediction stage, followed by camera pose tracking, and finally
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Fig. 1. Overview of the proposed system.

a data fusion stage. In a separate thread, RGB keyframes are
processed by an instance segmentation (Mask R-CNN) and the
detections are filtered and matched to the existing instances in
the 3D map. When no match occurs, new object instances are
created. Note that our pipeline does not specifically limit the
choice of instance segmentation frameworks. Mask-RCNN can
be replaced by a different instance segmentation approach of
comparable quality. The final component is a 6D object pose
estimator that exploits multiple views of the same instance and
our high-quality reconstruction to accurately predict the pose of
objects.

A. Fast-RGBD-SSWP

Our segmentation framework for Fast RGBD Semantic Seg-
mentation and Weight Prediction (Fast-RGBD-SSWP) is in-
spired by Fast-SCNN [19] and FuseNet [20] to address the
problem of real-time semantic labeling on RGB-D data. We em-
ploy depthwise separable convolutions and residual bottleneck
blocks for deep CNN [21]. The network contains two branches
to extract features from RGB and depth images, and the depth
feature map is constantly fused into the RGB branch as shown
in Fig. 2. In each branch, only three layers are employed to
extracted low-level features for the purpose of feature sharing.
The first layer is a standard convolutional layer (Conv2D) and
the remaining two layers are depthwise separable convolutional
layers (DSConv) [21].

The low-level features not only become the input for the other
stages of semantic segmentation but also share computation
with the branches for adaptive weight estimation. The weight
prediction is treated as a classification problem where the target
is a binary decision whether or not the given RGB image and
depth image should be used in the registration process. In other
words, we aim to train our weight predicting model as a binary
classifier, where one class signifies that the image contains useful
information for the subsequent registration process, while the
other class indicates the converse. The probability predicted
from the classification model is considered as an adaptive weight
for our joint cost function for camera pose estimation.

Similar to Fast-SCNN, the semantic segmentation branch
includes a global feature extractor, a feature fusion module and
a standard classifier as shown in Fig. 2. However, instead of
using feature maps from the RGB branch, our global feature
extractor module takes the feature maps fused by the depth and
RGB branches. This module is composed of efficient bottleneck
residual blocks [21] and a pyramid pooling module (PPM) [22].
The bottleneck block uses depthwise separable convolution to
enhance efficiency without significantly reducing effectiveness.
The feature fusion module processes a simple addition of fea-
tures as utilized in ICNet [23]. In the classifier, two depthwise
separable convolutions (DSConv) and one pointwise convolu-
tion (Conv2D) are employed. Softmax is used during training
and inference. The output of the CNN is a per-pixel independent
probability distribution over the class labels P (li)(u), li ∈ L
with u denoting pixel coordinates. L is a predetermined set of L
semantic classes encoded by L := {0, . . ., L− 1}.

B. Camera Pose Tracking

To perform camera tracking, our object-oriented mapping
system maintains a fused surfel-based model of the environment
(similar to the model used by ElasticFusion [7]). Here we borrow
and extend the notation proposed in the original ElasticFusion
letter. The model is represented by a cloud of surfels Ms, where
each surfel consists of a position p ∈ R3, normaln ∈ R3, colour
c ∈ N3, weight w ∈ R, radius r ∈ R, initialisation timestamp
t0 and last updated timestamp t. Panoptic-MOPE maps each
element of the 3D map (surfel) to a pair (ls,os) ∈ L × N, where
ls represents the semantic class of surfel s and os represents its
object instance id. Elements with the same label and id belong
to the same object. When a surfel is labeled with ls �∈ Lo, the
instance id is ignored, where Lo ⊂ L. The subset Lo contains
semantic classes of relevant objects whose 3D models are avaible
in database for further stage object pose estimation.

The image space domain is defined as Ω ⊂ N2, where an
RGB-D frame is composed of a color map and a depth map D
of depth pixels d : Ω → R. We define the 3D back projection of
a point u ∈ Ω given a depth map D as p(u,D) = K−1ũd(u),
where K is the camera intrinsics matrix and ũ is the homoge-
neous form of u. The perspective projection of a 3D point p =
[x, y, z]� is defined asu = π(Kp), whereπ(p) = (x/z, y/z). In
the following, we describe our proposed approach for combined
ICP pose estimation.

Our approach aims to estimate a sensor pose that minimizes
the cost over a combination of the global point-plane energy,
photometric error, and semantic difference. We wish to minimize
a joint optimization objective:

Ecombined = ωgeoEicp + ωrgbErgb + ωsemEsem (1)

where ωgeoEicp, ωrgbErgb, and ωsemEsem are the geometric,
photometric and semantic error terms respectively. The geo-
metric and photometric error functions are weighted by factors
predicted from the Fast-RGBD-SSWP network. The weight for
semantic error is defined as ωsem = Nm/Nu, where Nm is the
number of non-background pixels and Nu is the number of
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Fig. 2. Fast-RGBD-SSWP makes dense predictions inferring labels for every pixel while simultaneously yielding adaptive weights for camera tracking. The
network uses standard convolution (Conv2D), depth-wise separable convolution (DSConv), depth-wise convolution (DWConv), inverted residual bottle-neck blocks
(bottleneck), a pyramid pooling module and a feature fusion module block.

pixels per frame. This fraction accurately captures the amount
of semantic texture present in the scene.

The details of the first two terms in equation (1) can be found
in [7]. Eicp is the point-to-plane error metric in which the object
of minimization is the sum of the squared distance between a
point from a live surface measurement and the tangent plane at
its correspondence point from the model prediction. The cost
function performs well in environments with high geometric
texture, however tracking failures can occur in case there are
not enough features to fully constrain all 6DOF of the camera
pose. For instance, if the measured points are located on planar
surfaces then the point-to-plane error metric will fail to register
successive views. This is because there will be no mechanism
to guarantee that a global minimum can be reached by shifting
source points to target points in the direction perpendicular to
the normals. Steinbrucker et al. [14] used color information to
overcome this. ωrgbErgb is the cost over the photometric error
between the current color image and the predicted model color
from the last frame.

A key distinction between our approach and ElasticFusion is
that instead of only estimating camera pose via geometric and
photometric data, we additionally employ semantic information
to perform camera tracking. The cost we wish to minimize
depends on the difference in predicted likelihood values between
the label probability maps:

Esem_full =
∑

li∈L

∑

u∈Ω
(P (li)(u)− P (li)(Ψ(ξ̂, u)))2 (2)

The vector Ψ(ξ̂, u) is the warped pixel and defined according to
the incremental transformation ξ̂:

Ψ(ξ̂, u) = π(K exp(ξ̂)Tp(u,Dt)) (3)

where T is the current estimate of the transformation from the
previous camera pose to the current one. To simplify minimizing

the cost function, we only take the probability of the most
likely class on each pixel-wise probability vector Q(u, P ) =
maxP (li) from frame t− 1 and the probability of the same
class label from frame t. We denote values of Q(u, P ) over a
given image as a semantic probability map. So based on this
simplification, the semantic probability error can be formulated
as:

Esem =
∑

u∈Ω
(Q(u, Pt)−Q(Ψ(ξ̂, u), Pt−1))

2 (4)

In words, Pt and Pt−1 are per-pixel independent probability
distributions over the class labels from the frame at time step
t and t− 1 respectively. Finally, we find the transformation
by minimizing the objective (1) through the Gauss-Newton
non-linear least-square method with a three-level coarse-to-fine
pyramid scheme.

C. Data Fusion

Each consecutive depth frame, with an associated camera
pose estimated in section III-B, is fused incrementally into
the surfel map Ms [7]. In the next step, both semantic and
instance information are also added or updated to our map. Each
surfel in the map Ms stores a discrete probability distribution,
P (Ls = li) over the set of class labels in semantic segmentation,
li ∈ L. After projectively associating image coordinates with
corresponding surfels in the map Ms, an update scheme by
means of a recursive Bayesian update similar to [1] is used for
incremental semantic label fusion. Regarding fusing instance
information, instead of assigning class probabilities to each
element that composes the 3D map, we assign the probabilities to
each object instance. Indeed, each surfel is assigned an instance
id and then this id is associated with a discrete probability dis-
tribution over potential class labels, P (Lo = li) over the set of
class labels in instance segmentation, li ∈ Lo. In consequence,
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Fig. 3. Examples of dense 3D semantic mapping and object pose estimation from Panoptic-MOPE on 2 different videos in the warehouse dataset.

we need only one probability vector for all surfels belonging to
the same object entity.

Given an RGB-D frame at time step t, each mask M from
Mask R-CNN must be associated with an instance in the 3D
map. Otherwise, it will be assigned as a new instance. To
find the corresponding instance, we use the tracked camera
pose and existing instances in the map built at time step t− 1
to predict binary masks via splatted rendering. The percent
overlap between the mask M and a predicted mask M̂ for
object instance o is computed as the Intersection over Union

(IoU): U(M, M̂) =
M ∩ M̂

M ∪ M̂
. Then the mask M is mapped to

object instance o which has the predicted mask M̂ with largest
overlap, where U(M, M̂) > 0.3. Subsequently, we update the
class probability distribution of each object instance through
simple averaging:

P (li|I1,..,t) = 1

t

t∑

j=1

(pj |It) (5)

D. Multi-View Object Pose Estimation

Contrary to classical single-view-based approaches, robots
usually observe the same instances of objects in their environ-
ment several times and from disparate viewpoints. Thus, we
explore performing object pose estimation from multiple view-
points, under the conjecture that combining multiple predictions
can improve the robustness of an object pose estimation system.
For every single frame, we apply DenseFusion to predict the
position and orientation of objects in 3D space. A key distinction
between our approach and DenseFusion is that instead of directly
operating on masks from segmentation, we use predicted 2D
masks that are obtained by reprojecting of the current surfel map
Ms, expecting that our object pose estimation method benefits
from the use of more accurate masks. The predicted poses are
then transferred to the global coordinate system and serve as
measurement inputs for an extended Kalman filter (EKF) to

estimate an optimal pose of each object. The details are similar
as in our previous work [5].

IV. EXPERIMENTS

We have evaluated our system by performing experiments
on the YCB-Video dataset [24] and a dataset of warehouse
objects [5]. These experiments are aimed at evaluating both
surface reconstruction and 6D object pose estimation accuracy.
In addition, we also evaluate the accuracy of segmentation masks
produced by our pipeline against the accuracy achieved by a
single frame CNN semantic segmentation. Fig. 3 shows the
results of the reconstruction and pose estimation on 2 different
videos in the warehouse dataset.

For all tests, we ran our system on a desktop PC running
64-bit Ubuntu 16.04 Linux with an Intel(R) Xeon(R) E-2176 G
CPU 3.70 GHz and an Nvidia GeForce RTX 2080 Ti 10 GB
GPU. Our pipeline is implemented in ROS Kinetic using services
to call different modules. The sensor pose tracking module
is implemented in C++ with CUDA. The Mask R-CNN and
DenseFusion codes are based on the publicly available imple-
mentations by Matterport1 and Wang2. The Fast-RGBD-SSWP
network is implemented using PyTorch 1.0 and the rest of the
framework is in Python. In all of the presented experimental se-
tups, results are generated from RGB-D videos with a resolution
of 640x480 pixels.

A. Training Details

The CNNs for instance segmentation was initialized with
weights pre-trained on the COCO dataset [25]. We finetuned
layers of Mask R-CNN on the warehouse dataset with 11 object
classes in warehouse environments (pallet and boxes) and on a
portion of the YCB video data set not used in the evaluation. We
trained on 1 GPU (mini-batch size is 1 image) using stochastic

1https://github.com/matterport/Mask_RCNN
2https://github.com/j96∼w/DenseFusion
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Fig. 4. Examples of semantic segmentation result on the YCB-Video dataset and warehouse dataset.

TABLE I
COMPARISON OF SEMANTIC SEGMENTATION ACCURACY, SURFACE RECONSTRUCTION ERROR AND POSE ESTIMATION ACCURACY RESULTS ON THE YCB OBJECTS:

FAST-SCNN (FN), FAST-RGBD-SSWP (FP), PROJECTED FROM OUR 3D MAP (PM), PANOPTIC-MOPE (OURS)

gradient descent with momentum of 0.9 for 40 epochs with a
learning rate of 0.001.

In both warehouse dataset and YCB dataset, the semantic
label sets for semantic segmentation and instance segmentation
are equal, Lo = L. To label data for the registration weight
training, we split the datasets into two groups based on ground
truth object models and reconstructed models by ElasticFusion
using either geometric error or photometric error. To train Fast-
RGBD-SSWP we used stochastic gradient descent (SGD) with
momentum 0.9 and batch-size 12. As regards object pose esti-
mation, the DenseFusion networks were trained for 200 epochs
with a batch size of 8. Adam [15] was used as the optimizer with
learning rate set to 0.0001.

B. Semantic Segmentation

In the first experiment, we compared our Fast-RGBD-SSWP
to the baseline Fast-SCNN [19]. We use mean intersection
over union (IoU) widely-used to measure the performance of

semantic segmentation [26]. Qualitative results from this eval-
uation are shown in Fig. 4, while a numerical comparisson over
each label class are summarized in Table I and Table II. Fast-
RGBD-SSWP outperforms the baseline, demonstrating that our
network effectively utilizes depth information. It improves the
accuracy of RGB-only Fast-SCNN by 8.2% on the YCB-Video
dataset and 9.7% on the warehouse dataset. In addition, we show
on the datasets that the proposed semantic mapping system
leads to an improvement in the 2D instance labeling over the
single frame predictions generated by Fast-RGBD-SSWP. The
2D semantic images are obtained by reprojecting the dense
3D semantic map. We observe the segmentation performance
improved, on average, from 71.4% for a single frame to 85.1%
when projecting the predictions from the 3D map.

C. Reconstruction Results

In order to evaluate surface reconstruction quality, we com-
pare the object models obtained through our approach to the
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TABLE II
COMPARISON OF SEMANTIC SEGMENTATION ACCURACY, SURFACE RECONSTRUCTION ERROR AND POSE ESTIMATION ACCURACY RESULTS ON THE WAREHOUSE

OBJECTS: FAST-SCNN (FN), FAST-RGBD-SSWP (FP), PROJECTED FROM OUR 3D MAP (PM), PANOPTIC-MOPE (OURS)

TABLE III
AVERAGE RUN-TIME ANALYSIS OF SYSTEM COMPONENTS (MS PER FRAME)

ground truth object models. For every object present in the
scene, we first register the reconstructed model M to the ground
truth model G. Next, we project every vertex from M onto G,
and compute the distance between the original vertex and it’s
projection. Finally, we calculate and report the mean distance
μd over all model points and all objects.

Table I and Table II present a detailed evaluation for all the
21 objects in the YCB-Video dataset and 11 objects in the
warehouse dataset respectively. Panoptic-MOPE consistently
results in the lowest reconstruction errors over all datasets. From
this comparison it is evident that the proposed approach benefits
greatly from the use of the proposed joint cost function with
adaptive weights. We observe an increase in accuracy is achieved
when more segmented objects appeared in the reconstructed
environment, suggesting that our framework makes efficient use
of the available semantic information to improve surface recon-
struction quality. In other words, when the number of objects of
interest increases the semantic probability map becomes more
textured, which leads to a better reconstruction performance.
We also evaluated the performance of Panoptic-MOPE with the
different semantic energies. While Esem_full results in slightly
lower reconstruction errors (4.8 mm for warehouse objects and
5.7 mm for YCB objects on average), the computational time
required (200 ms) for registration is much higher than using
Esem (reconstruction error and average run-time are reported in
Table I, Table II and Table III).

D. Pose Estimation Results

We use the average closest point distance (ADD-S) met-
ric [24], [27] for evaluation. We report the area under the ADD-S
curve (AUC) following PoseCNN [24] and DenseFusion [27].
The maximum threshold is set to 10 cm.

The pose estimation accuracy of our results compared with
those of the baseline DenseFusion and the previous system
Object-RPE are shown in Table I and Table II. Our results show
significant improvement in all objects by effectively employ-
ing more accurate projected mask and depth images from the
panoptic surfel-based map.

Lastly, the execution times of the individual components
Object-RPE and Panoptic-MOPE, averaged over all evaluated
sequences, are shown in Table III. The numbers indicate that
the proposed system in this letter is almost three times faster on
average than the previous one due to reduction of segmentation
running time. Note that the segmentation computation time in
Panoptic-MOPE is a sum of semantic segmentation (15 ms
per frame) and instance segmentation (350 ms per keyframe,
1 keyframe per 10 frames).

V. DISCUSSION

Since our experiments have focused on evaluating the per-
formance of object reconstruction and pose estimation in room-
sized environments, we have not trained our semantic segmen-
tation module on classes that do not offer a meaningful instance
concept (such as grass, sky, wall, etc.). However, Panoptic-
MOPE pipeline is designed to be able to densely predict class
labels of a background region and individually segment arbitrary
foreground objects. The system has the capability to perform
large-scale scene reconstruction and dense semantic labeling
with the ability to discriminate individual objects. Depending
on the application, the selection of which classes are used in
semantic segmentation is a design choice left to the user.

While the weights of the different components of the camera
tracking objective function in (1) are chosen on a per-image
basis, ideally they should be different for each pixel, as certain
regions in the image can contain varying amounts of structure,
color, and semantic information. Thus, we plan to explore
methods for dense prediction of the weighting components as a
possible extension of our framework.

VI. CONCLUSION

In this letter we have presented a 3D mapping system for
RGB-D camera pose tracking that yields high quality panoptic
reconstruction. Our system is based on incorporating state of
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the art RGB-D SLAM and deep-learning-based semantic and
instance segmentation. Our main contribution in this letter is to
show that by combining geometric, appearance, and semantic
cues in the proposed registration function with adaptive weights
we are able to obtain reliable camera tracking and state of the
art surface reconstruction in small-scale environments populated
with objects of interest. In addition, we propose an approach
to improve segmentation accuracy and reduce execution time.
We have provided an extensive evaluation on the YCB-Videos
dataset and warehouse dataset. The results confirm that the
developed system performs favorably in terms of surface re-
construction, object pose estimation, and segmentation in com-
parison to other state-of-the-art systems.
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