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Abstract— Place categorisation; i. e., learning to group per-
ception data into categories based on appearance; typically uses
supervised learning and either visual or 2D range data.

This paper shows place categorisation from 3D data without
any training phase. We show that, by leveraging the NDT
histogram descriptor to compactly encode 3D point cloud ap-
pearance, in combination with standard clustering techniques,
it is possible to classify public indoor data sets with accuracy
comparable to, and sometimes better than, previous supervised
training methods. We also demonstrate the effectiveness of this
approach to outdoor data, with an added benefit of being able
to hierarchically categorise places into sub-categories based on
a user-selected threshold.

This technique relieves users of providing relevant training
data, and only requires them to adjust the sensitivity to the
number of place categories, and provide a semantic label to
each category after the process is completed.

I. INTRODUCTION

Place categorisation is the problem of labelling environment
observations. E. g., it might be relevant for a service robot to
determine whether it is in an office or a kitchen.

Place categorisation may improve service robots’ commu-
nication capabilities with humans [5, 10], and holds a central
place in semantic mapping. This ability may be particularly
useful for teleoperation, so that the robot can tell operators
what environment it is in, when that is hard to see from a
video stream alone. Furthermore, by being able to detect that
a new place has the same type as an already visited one,
a field robot may generalise learned environment-specific
parameters; such as odometry accuracy, traversability, etc.

There are two main holes in the existing literature on place
categorisation (see Sec. II) that this paper aims to fill.

1) Previous work typically uses fully supervised learning,
where the classifier first needs to be trained on labelled
data from known locations, with user-selected cate-
gories. In contrast, the method presented in this paper
automatically computes a pertinent grouping of regions
and lets the user assign meaningful labels afterwards.

2) Previous work mostly used 2D range sensors or cameras,
and has been targeted for indoor environments. We
focus on 3D data, comparing our results to the few
existing results on 3D place categorisation. We also
present outdoor results, and provide a new data set with
a mix of forest and open environments (Fig. 1).
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(a) Map with trajectory coloured based on hierarchical k-means++
clustering of NDT histogram distances. Colours correspond to the
links intersected by the dashed threshold line in Fig. 1b.
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(b) Dendrogram showing the place hierarchy found by the proposed
semi-supervised place categorisation method. The “plain” and “forest”
parts of the environment are well separated, and the “forest” category
is split into two semantically meaningful subcategories: “road” and
“path”. With a selectable threshold (dashed line), the user can select a
suitably detailed categorisation. In this example, setting the treshold
to 0.5 or lower further splits “road” and “path” categories.

Fig. 1: Qualitative results from the EskilstunaField data set.

To the best of our knowledge, this is the first work that
demonstrates place categorisation for unstructured (outdoor)
environments without supervised learning.

In brief, we show that place categorisation can be success-
fully addressed using established clustering methods and a
global appearance descriptor, in contrast supervised learning.

After computing appearance descriptors, and clustering
them based on appearance distance, the clusters should
correspond to meaningful place categories, which can sub-
sequently be labelled by the user. A thorough evaluation of
the performance of this strategy, compared to two baseline
methods, is given in Sec. V.

In addition to the two main contributions listed above, we
demonstrate that by using hierarchical k-means++ cluster-
ing [1] and the NDT-histogram appearance descriptor [8],



it is possible to generate a semantically meaningful tree of
sub-categories, with a single user-specified threshold for how
fine the categories should be (see Fig. 1b). We also evaluate
DBSCAN clustering and alternative k-means seeding.

II. RELATED WORK

Previous work on place categorisation mostly deals with
methods using supervised learning to train classifiers based
on labelled sets of images or 2D laser range scans.

In an early paper, Mozos et al. [12] trained an AdaBoost
classifier to label indoor 2D scans as room, corridor, or
doorway. Pronobis et al. [13] extend this work by combining
laser and camera, and training a support vector machine
(SVM) to combine image and range features. In later work,
Mozos et al. [10, 11] use 3D scans. This work is particularly
relevant for the present paper, and we use the same 3D data
set [10] in our main quantitative results (Sec. V-B, Tab. Ia).

Recently, Goeddel and Olson [5] trained a convolutional
neural network (CNN) on the same indoor classes as Mozos
et al. [12]. By deploying specific training techniques to tackle
the tendency of CNNs to overfitting and bias, they achieve
good accuracy for the room and corridor classes. Sünderhauf
et al. [16] instead use a CNN for place categorisation from
camera images, and complement it with a set of classifiers
in order to recognise new semantic classes online.

In contrast to all the methods above, our proposed method
requires no supervised training in order to find semantically
meaningful categories.

PLISS [14] uses bags of words from indoor image
sequences, and exploits change-point detection to detect
transitions between places. PLISS was shown to achieve
good accuracy on a challenging video data set, but in contrast
to our approach, it could not be used on non-sequential data,
and it was designed for images, which are inherently less
robust to changing light conditions than laser point clouds.

Gholami Shahbandi et al. [4] present an approach concep-
tually similar to ours, using k-means clustering to categorise
places from a warehouse without supervised learning. Com-
pared to their work, we employ a 3D appearance descriptor
and study its performance for place categorisation in combi-
nation with a selection of clustering methods, and compare
it quantitatively to state-of-the-art 3D place categorisation.
We also demonstrate our method in unstructured outdoor
environments.

III. APPEARANCE DESCRIPTOR

To provide a compact global appearance descriptor for 3D
point clouds, we use surface-shape histograms based on the
NDT (normal distributions transform) representation, which
have previously been used for detecting loop closures [8].

NDT [2, 7] describes geometry as a set of Gaussian PDFs
arranged in a voxel grid. NDT has previously been shown to
be useful for applications of point cloud registration [9] and
many other tasks. One can construct a histogram of NDT
voxels to encode point cloud appearance, by classifying the
PDFs based on orientation and shape, and distance from the
sensor. We will briefly describe the appearance descriptor and

its associated distance function. Please refer to Magnusson
et al. [8] for a more comprehensive description.

A. NDT histograms
For each PDF in an NDT voxel grid, the eigenvalues λ1 ≤

λ2 ≤ λ3 and eigenvectors e1, e2, e3 are computed. From the
relative magnitudes of the eigenvalues three surface classes
can be discerned: spherical, planar, and linear. Distributions
are assigned to a class with respect to a threshold te ∈ [0, 1]
that quantifies a “much smaller” relation, such that if λ2 <
teλ3, the PDF is linear, and if λ1 < teλ2 it is planar.

Each of these shape classes can be subdivided, using
orientation for the planar and linear classes, and roughness for
the spherical class. Using ns spherical subclasses, np planar
ones, and nl linear ones, the basic element of the appearance
descriptor is the feature vector

f = [f1, . . . , fns︸ ︷︷ ︸
spherical classes

, . . . , fns+np︸ ︷︷ ︸
planar classes

, . . . , fns+np+nl︸ ︷︷ ︸
linear classes

]T, (1)

where fi is the number of voxels that belong to class i.
In addition to shape and orientation, the distance from

the origin is also informative. Therefore, each point cloud is
described by a matrix F = [f1 · · · fnr

], where each column
fk is the histogram (1) of all voxels within a range interval.

To ensure rotation invariance, the orientation of the point
cloud is first normalised by rotating so that the most common
plane normal is aligned with the z axis and the second most
common lies in the yz plane. There may not be a single
unambiguous maximum, but it is possible to use two sets of
directions, D1 and D2. Given an ambiguity threshold ta ∈
[0, 1] that determines which orientations are “similar enough,”
a set of dominant directions can be selected [8]. If there are
several plane orientations that are equally common, multiple
histograms are generated, one for each potential alignment.
The outcome is a set of histograms F = {F 1, . . . ,FN}.
This set is the appearance descriptor of the point cloud. The
parameters are summarised in Tab. II.

B. Distance measure
To quantify the difference between two appearance matrices

F and G, we use the following function [8]:

δ(F ,G) =

nr∑
i=1

(∥∥∥∥ fi
‖F ‖1

− gi

‖G‖1

∥∥∥∥
2

)
max(‖F ‖1 , ‖G‖1)

min(‖F ‖1 , ‖G‖1)
.

(2)
In other words, δ is the sum of Euclidean distances for each
column (each column corresponds to one range interval). The
right-most normalisation factor in (2) makes it possible to
use a single threshold for data sets that both contain point
clouds that cover a large area (with many occupied voxels)
and scans of more confined spaces.

As said, multiple histograms may be generated for one
point cloud when ta < 1, to achieve rotation invariance.
Given a point cloud pair X1 and X2 with histogram sets F
and G, all members of the sets are compared using δ (2), and
the minimum δ is used as the difference measure for the pair.

∆(X1,X2) = min
i, j

δ(F i,Gj) F i ∈ F , Gj ∈ G (3)



IV. CLUSTERING METHODS
A. k-means

A classic clustering algorithm is k-means, which works as
follows. A set of k seed cluster centres is drawn randomly
from the data points, after which the algorithm iteratively
assigns points to the currently closest centre until convergence.

One weakness of k-means is that it prefers evenly-sized
clusters, so it may be difficult to generate good clusters for
data where some categories are over-represented. Furthermore,
k-means is sensitive to the initial seeding of centres.

For some of the experiments in Sec. V, we use an
alternative, deterministic, k-means seeding strategy, such that
the seeds are selected at equal strides from the list of point
clouds to be categorised. I. e., for n point clouds and k clusters,
cluster i is initialised with the i(n/k)-th point cloud.

The k-means++ algorithm [1] is meant to address k-means’
seeding sensitivity. After randomly selecting the first seed,
k-means++ selects the remaining k − 1 seeds by iterative
sampling data, where each point is weighted by the squared
distance to the closest seed so far. This strategy distributes
the initial cluster centres more evenly in appearance space.

B. Hierarchical k-means++

It is also possible to use k-means hierarchically: starting
with k = 2 clusters, and splitting clusters until all points
in a cluster are “similar enough.” This hierarchical scheme
is particularly interesting when using clustering for place
categorisation, since related sub-categories can be grouped.

We have used k-means++ with k = 2 clusters at each
branch, terminating when the max difference between any
two point clouds in the cluster is below a user-specified
threshold (see Fig. 1b).

C. DBSCAN

For the DBSCAN algorithm [3], the user specifies a density
threshold ε and the minimum number c of data points
required to form a cluster, instead of the desired number
of clusters (as for k-means) or the max allowed distance
(as for hierarchical k-means). Initialised with an arbitrary
seed, the neighbourhood (with radius ε) is retrieved, and if it
contains more than c points, a cluster is started. Otherwise,
the point is labelled as noise. One weakness of DBSCAN
is that it is not generally suitable for data sets with large
differences in densities, using a single ε and c parameter pair.

V. EXPERIMENTS AND RESULTS
A. Overview of results

This section details our quantitative and qualitative results
of applying the methods from Sec. III and IV to three data
sets: the office-like benchmark set used in Mozos et al. [10]
(KyushuIndoor), one from a warehouse (ArlaWarehouse), and
one from an outdoor field robot (EskilstunaField).

Our main quantitative results use the KyushuIndoor data
and are presented in Sec. V-B. KyushuIndoor is the only
relevant data set for 3D place categorisation from the literature
that we are aware of. By comparing our results from
clustering of NDT histogram descriptors to two baselines
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Fig. 2: Dendrogram of hierarchical k-means++ for KyushuIndoor.
The termination threshold for sub-category splitting is marked with a
dashed line. Max distances (3) between clusters are on the horizontal
axis. Leaf nodes show the average scan found for the category.

– the state-of-the-art 3D SVM classifier of Mozos et al.
[10] and clustering with a 2D descriptor used in previous
works [12] – we show that k-means clustering of the NDT
appearance descriptor attains high accuracy without training.
By employing hierarchical k-means++, we have the added
benefit of a semantically meaningful sub-categorisation of
places. Using DBSCAN instead of k-means is also possible
but only works well for a very narrow set of parameters.

The two other data sets (see Sec. V-C and V-D) are both
collected in sequence from a mobile robot, and are used to
demonstrate the usability of the proposed approach on less
artificial data than the KyushuIndoor benchmark. The results
from these data sets show that DBSCAN is useful for data sets
without clear boundaries between places, because it allows
for assigning data from transition regions to an outlier class,
instead of forcing them into a category. However, DBSCAN
needs carefully selected parameters, which makes it unsuitable
for semi- or un-supervised categorisation.

A parameter sensitivity analysis of the NDT histogram
descriptor is provided in Sec. V-E.

B. KyushuIndoor

The Kyushu University Indoor Semantic Place data set1

[10] consists of data for five categories: corridor, kitchen,
laboratory, study room and office. The data were collected
with a rotating laser scanner, and the point clouds are very
dense: about 2.8 million points each. The field of view is
270◦ × 360◦. The data set also has reflectance images, not
used in our work. In contrast to the other two data sets,
this was not collected in sequence from a mobile robot. We
include this data set both to demonstrate the accuracy of
unsupervised clustering using NDT histograms, compared to
the supervised learning and features used by Mozos et al. [10],
and to demonstrate our approach in an office environment,
which is relevant for many types of service robots.

1) Using k-means++ : Tab. Ia summarises the quantitative
results of k-means++ clustering. Since k-means++ uses
stochastic seeding, the results presented here are the mean and
standard deviation of 10 runs. The overall accuracy is 88.0%
± 5.6, which can be compared to the 95.6% accuracy of the

1http://robotics.ait.kyushu-u.ac.jp/kurazume lab/research-e.php?content=
db#d05

http://robotics.ait.kyushu-u.ac.jp/kurazume_lab/research-e.php?content=db#d05
http://robotics.ait.kyushu-u.ac.jp/kurazume_lab/research-e.php?content=db#d05


state-of-the-art SVM-based classifier trained with both 3D
range and reflectance images of Mozos et al. [10]. We believe
that this is a strong result, which shows that even with rather
simple unsupervised clustering, the NDT histogram descriptor
is capable of performance close to that of a manually trained
classifier — and in some cases surpasses it.

The offices and corridors are generally the easiest types
(98% and 95% accuracy), while the kitchens are more difficult
(73%). The main difficulty of the kitchen class in our case
is that in some cases, a corridor outside the kitchen is also
visible, which causes some of the kitchen point clouds to
be clustered with the corridor class. If the max range for
the NDT histograms is set to 9 m (instead of the baseline
parameters from Tab. II) it is possible to reach much higher
accuracy for the kitchens, at the cost of less discrimination
between the larger rooms.

In comparison, the SVM-based system [10] reaches 100%
accuracy for labs, study rooms, and corridors, and has almost
identical accuracy for offices. The kitchens are challenging
for the SVM-based system too, and the accuracy has a large
variance: 80% ± 42, compared to our result 73.6% ± 1.1.

Fig. 2 shows a qualitative result of running hierarchical
k-means++ for this data set. As can be seen from the
dendrogram, the method finds the same categories as the
manual labelling. It differentiates between the smaller rooms
(offices and kitchens) and the larger ones. From the larger
types, it finds that corridors are different from rooms, and
further splits the large rooms into labs and study rooms.

Since hierarchical k-means++ uses stochastic seeding, also
the topology of the tree is stochastic. Fig. 2 shows the most
common tree structure. This topology is generated in 6 of the
10 cases. In three cases, the large and small rooms are still
well separated, but “corridors” has the same parent as labs
or study rooms. In one case, corridors are split between two
leaf classes, which does not make sense semantically. This
case is also the one that mainly decreases the mean accuracy
(and increases the variance) for the corridor class in Tab. Ia.

2) Using deterministic k-means: In an effort to demon-
strate the descriptive power of the NDT histogram descriptor
independently of clustering performance, we have also
computed the confusion matrix for a deterministic k-means
clustering initialised with one seed per category (see Tab. Ib).
With these settings, we achieve 100% accuracy for offices
and corridors, and 95% for kitchens and studyrooms. The
most challenging type for this approach is “labs”, which
sometimes are assigned to the same category as kitchens (6/60
point clouds) or studyrooms (3/60). The overall accuracy is
93.3%, which is very similar to the 95.6% of the SVM-based
classifier [10]. Comparing per-class accuracies, this method
performs better than SVM [10] for kitchens (95% vs 80%)
and offices (100% vs 98%), but worse for labs (78% vs 100%)
and studyrooms (95% vs 100%).

3) Using DBSCAN: We have also investigated how DB-
SCAN performs for place categorisation with NDT his-
tograms. The advantage of DBSCAN over k-means is that its
parameters quantify the expected cluster properties (density
ε and min point count c) rather than a fixed cluster number,
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Fig. 3: Sensitivity analysis for DBSCAN on KyushuIndoor, with ε
on the horizontal axis and c vertical. Good scores (bright/yellow)
are obtained only for a very narrow band of parameters (Fig. 3c).
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(b) Deterministic k-means.

Fig. 4: Clustering results for KyushuIndoor. The coloured fields
represent ground-truth labels, and the green dots represents the result
of clustering. An ideal clustering would show a continuous green
line across each field.

and that it allows for an “outlier” class.
However, selecting the parameters is challenging. Fig. 3

shows the result of a DBSCAN parameter search for
KyushuIndoor. To evaluate the quality we have used the
adjusted Rand index AR [6] to score the difference between
two clusterings, and compute a score that also accounts for
the outliers: S = AR · #inliers

#all data points . (Without this scaling, AR
would consider a clustering that correctly labels one point
cloud but discards the rest as outliers as perfect.)

Fig. 3a shows that the outlier ratio drops with increasing
ε and c. However, Fig. 3b shows that AR is nonzero only in
a small region. The best S is 0.7, with ε = 0.16 and c = 20.
In comparison, the mean score for hierarchical k-means++ is
0.71 ± 0.06. Fig. 4 shows the result for this parameter set.
Again, “kitchen” is the most difficult, but also for “lab” many
point clouds are labelled as outliers. Offices and studyrooms
have 100% accuracy, and corridors 91.7%.

4) 2D baseline: For comparison, we also extracted 2D
grid maps from the 3D point clouds of KyushuIndoor in order
to do the same k-means classification with the 2D feature
descriptor of Mozos et al. [12]. The results are quite poor
compared to categorisation with 3D data. Accuracy is 100%
for offices and 93% for corridors, but only 30% for kitchens,
17% for studyrooms, and 33% for labs. For space reasons,
we omit the confusion matrix.

C. ArlaWarehouse

The ArlaWarehouse data set was collected with a Velodyne
HDL-32E lidar mounted on an AGV. The environment is a
warehouse storing dairy products. The AGV moves between
two adjacent halls, transitioning through an airlock with an
automatic door. We include this data set to demonstrate our



TABLE I: Confusion matrices for KyushuIndoor using k-means.

(a) Mean classification rates ± one standard deviation from 10 random trials,
using hierarchical k-means++. The overall accuracy is 88.0% ± 5.6%.

offices kitchens labs studyrooms corridors

offices 98.0±0.7 2.0±0.7 0.0±0.0 0.0±0.0 0.0±0.0
kitchens 6.7±5.3 73.6±1.1 0.0±0.0 0.0±0.0 19.7±6.3
labs 0.0±0.0 0.2±0.5 85.2±8.3 6.7±3.3 8.0±9.2
studyrooms 0.0±0.0 0.0±0.0 7.2±3.9 90.0±4.3 2.8±2.7
corridors 0.0±0.0 4.0±12.06 0.3±0.7 0.0±0.0 95.7±12.5

(b) Classification rates using a deterministic k-means
variant. The overall accuracy is 93.3%.

offices kitchens labs studyrooms corridors

100.00 0.00 0.00 0.00 0.00
5.00 95.00 0.00 0.00 0.00
0.00 13.33 78.33 6.67 1.67
0.00 0.00 5.00 95.00 0.00
0.00 0.00 0.00 0.00 100.00
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(a) ArlaWarehouse clustering results with ∆ threshold 1.5, creating
two classes. The two main halls are clearly separated, and only a
single scan is mislabelled.

small hall main hall corner/airlock

all “large hall”
∆
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(b) Dendrogram for ArlaWarehouse. With a ∆ threshold less than 1,
the “large hall” class splits in two, where the extra class corresponds
to a tight passage in the airlock and a corner of the large hall.

Fig. 5: ArlaWarehouse results using hierarchical k-means++.

approach in a structured indoor environment that is markedly
different from a standard office environment.

Fig. 5 shows results using hierarchical k-means++. It is
more difficult to quantitative assess these results than for
KyushuIndoor, since this data set includes transitions between
two places, where both are visible. However, with a threshold
set for generating two categories as in Fig. 5a, only 1/538
point clouds is mislabelled, which means an accuracy of
99.8%. With a lower ∆ threshold (for the three categories
at the bottom of Fig. 5b), 6/538 point clouds are clearly
mislabelled (accuracy 98.8%), but the third category is not a
single location, but rather corresponds to “tight passages”.

D. EskilstunaField

The EskilstunaField data set2 (Fig. 1a) was collected with
a Velodyne HDL-64E mounted on a wheel loader. The
environment is a test site for Volvo Construction Equipment in
Eskilstuna, Sweden, and contains both open areas and forest.
In particular, there are three main regions. One is the open
gravel plain (bottom left of the figure), one is a gravel road
going through the forest, and one is a narrow (bumpy) smaller
forest path. The point clouds contain approx. 100 k points
each, and have a 26.5◦ × 270◦ field of view. We include this
data set to demonstrate performance in unstructured outdoor
environments. This is in contrast to existing literature on

2The data set is available from http://mro.oru.se.
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Fig. 6: DBSCAN results for EskilstunaField. Most of the transition
areas between the more distinct zones have been labelled as outliers
(red) instead of forcing an uncertain label.

place categorisation, which has always been demonstrated in
structured, indoor, environments.

The results can be assessed qualitatively from Fig. 1, where
a threshold resulting in three categories is displayed. Again,
this environment has no sharp transitions between places, so
it is not possible to compute a meaningful confusion matrix.

Examining Fig. 1a, some short sequences in the “forest path”
area (blue points) are labelled as “forest road” (magenta).
This mislabelling can be explained by that the road or other
more open areas can also be seen from these poses. It may
be possible to overcome this issue by selecting a shorter max
cut-off range for the appearance descriptor. Also, in the last
part of the forest area (the bend near the top of the image),
the selected category alternates between “road” and “path”.
From the map it can be seen that this segment is indeed a
wider path, somewhat between a “road” and a “path”. There
is also a sequence of 6 “road” point clouds mislabelled as
“path” near the beginning of the main “road” segment.

Compared to a manual labelling (see 6), 30/1220 point
clouds in this data set were mislabelled by k-means++, which
means that the overall accuracy was 97.5%.

An interesting feature of DBSCAN, for this data set in
particular, is that it avoids the misclassifications from Fig. 1a
by labelling uncertain point clouds, and those in transition
regions, as outliers rather than forcing them into any category.
Fig. 6 shows the DBSCAN result, again with parameters
selected from an exhaustive search.

E. Parameter selection for the appearance descriptor

A number of parameters govern the NDT appearance
descriptor. For the results presented above, we have used
parameters similar to those used in previous work for detecting
loop closures [8]; see Tab. II. We have used slightly different
near-range and far-range cut-off distances for the indoor and
outdoor data. The minimum range should be such that the
robot is not seen in the point clouds, but otherwise include
as much of the scene as possible. The selection of the far-
range cut-off distance relates to the question of “what is
a place.” Especially with outdoor lidar data, areas that are

http://mro.oru.se


TABLE II: Parameters of the appearance descriptor.

spherical classes ns 1
planar classes np 9
linear classes nl 1

ambiguity thresh. ta 0.6
e-value thresh. te 0.05
voxel size B 0.4 m

ranges, indoor {[1, 4), [3, 6), [5, 8), [7, 10), [9, 12), [11, 15)[14,∞)}
ranges, outdoor {[5, 8), [7, 10), [9, 12), [11, 15), [14, 20)}

TABLE III: Parameter sensitivity. The table shows overall accuracy
for the KyushuIndoor data set,3 using deterministic k-means with
k = 5. One parameter was changed for each run, and the remaining
parameters were taken from the baseline shown in Tab. II.

e-value thresh. te 0.05 0.10 0.20 0.40
93.3% 91.9% 91.6% 88.7%

ambiguity thresh. ta 0.4 0.6 0.8 1.0
93.7% 93.3% 94.0% 94.3%

voxel size B 0.2 m 0.4 m 0.8 m 1.6 m
93.0% 93.3% 91.2% 86.7%

max range 10 m 17 m ∞m
(1–4, 3–6, etc) 81.7% 93.0% 93.3%

spherical classes 0 1 3 9
89.1% 93.3% 92.6% 86.7%

far from the robot position also influence the appearance
descriptor, which may not be desired. Nevertheless, the NDT
histogram appearance descriptor is remarkably robust to
changing the parameters listed in Tab. II. A sensitivity analysis
is provided in Tab. III. To measure only the influence of the
appearance descriptor’s parameters, and not the clustering
algorithm, Tab. III was computed using the deterministic
k-means seeding.

VI. SUMMARY AND CONCLUSIONS

The main contribution of this paper is to demonstrate that
by leveraging the NDT histogram descriptor, and appropriate
clustering techniques, place categorisation with 3D data from
both structured and unstructured environments can be largely
solved entirely without training. In particular, on a standard
data set, we achieve 88.0% mean accuracy with stochastic
k-means++, and 93.3% with a deterministic k-meansusing
3D only, compared to 95.6% for a state-of-the-art SVM-based
classifier trained with both 3D and reflectance images. We
take this to be a strong result, given that our approach requires
no training.

This is also, to the best of our knowledge, the first paper
to demonstrate and validate place categorisation with 3D data
from unstructured environments.

Based on our results, we propose to use NDT histograms
together with hierarchical k-means++ in general for place
categorisation. We have also shown that DBSCAN can
categorise NDT histograms with high accuracy, but only
for a narrow band of parameters. On the other hand, the
hierarchical k-means++ implementation lends itself well to a
user-selected (semi-supervised) threshold selection based on
the desired level of categories.

3Please note that for performance reasons these numbers were computed
on a subsampled version of the KyushuIndoor data set (2.5 cm voxel grid).
This modified data set is available on request.

We have shown that the NDT histogram appearance
descriptor is remarkably robust w. r. t. parameter selection.
Only a very large te or voxel size B, or cropping the scans
has a significant effect on the overall accuracy.

Future work should include other global descriptors for 3D
data (e. g., IRON [15]) and alternative (hierarchical) clustering
methods. It would also be relevant to work on an on-line
implementation and domain-specific seeding, also taking into
account the sequential nature of data from a moving robot.
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