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Abstract— Kinematic redundancy enhances the dexterity and
flexibility of robot manipulators. By exploiting the redundant
degrees of freedom, auxiliary null space tasks can be carried
out in addition to the primary task. Such auxiliary tasks are
often formulated in terms of a performance or safety criterion
that shall be minimized. If the optimization criterion, however,
is defined in global terms, then it is directly affected by the
primary task. As a consequence, the task achievement of the
auxiliary task may be unnecessarily detrimented by the main
task. In addition to modifying the primary task via constraint
relaxation, a possible solution for improving the performance
of the auxiliary task is to relax the primary task temporarily
via time scaling. This gives the null space task more time
for achieving its objective. In this paper, we propose several
such time scaling schemes and verify their performance for a
DLR/KUKA Lightweight Robot with one redundant degree of
freedom. Finally, we extend the concept to multiple prioritized
tasks and provide a simulation example.

I. INTRODUCTION

Many of today’s robots are equipped with more degrees
of freedom (DOF) than necessary to accomplish a desired
task, e.g., a six-DOF Cartesian trajectory of the end-effector.
The redundancy enhances the overall flexibility and dexterity
of the system and can be exploited to fulfill auxiliary null
space tasks which do not interfere the primary task. The
objective of a null space task is often formulated in terms of a
performance or safety criterion that shall be minimized, e. g.,
the manipulability measure in case of singularity avoidance
[1], the distance to the joint position limits [2], or the
estimated contact force during a collision with the robot
[3]. If the optimization criterion is defined globally, then
both the primary task and the null space task influence this
criterion during task execution. This means that the main
task can either support or hinder the null space scheme from
achieving its objective. This is also due to the fact that
typical hierarchical task control schemes are defined in an
instantaneous manner and do not take the entire temporal
dimension of task fulfillment into account [4], [5].

One obvious solution is to use motion planning schemes
for generating trajectories that respect all constraints and
optimization criteria. However, motion planning is typically
done offline and computationally very costly if done online.
In terms of realtime control, a possible solution is to relax the
main task through a suitable task scaling [6], [7] or priority
switching scheme [8]–[11]. Such approaches, however, sac-
rifice the nominal execution of the primary task in order to
satisfy the auxiliary tasks. They have been used for avoiding
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Fig. 1. Basic concept. The null space performance criterion at the current
configuration is denoted H(q), the desired value Hd. The difference eH =
H(q)−Hd and a suitable synchronization error eḢ are used to modify the
timing law of the interpolator, which provides the desired joint or Cartesian
space trajectory (here: xd, ẋd) to the robot. The speed reduction gives the
null space scheme more time to minimize the performance criterion.

obstacles [8], [9], joint limits [6], [7], [10], or kinematic
singularities [10], [11], for example.

The solution developed in this paper is based on slow-
ing down the main task temporarily while preserving its
geometric description. By reducing the execution speed,
the null space task is given more time to optimize for its
performance criterion. The idea was – to the best of the
authors’ knowledge – first suggested in [12]. There, the oper-
ational speed was reduced whenever the ratio of available and
desired null space velocity/torque for minimizing a certain
optimization function became smaller than a threshold. In our
work, we further investigate the concept of scaling the main
task in time for improving the minimization performance of
auxiliary tasks. The objective is to keep the same primary and
null space controller but modify the timing law of the desired
task trajectory online, see Fig. 1. Such relaxation leaves the
principal behavior of the system unchanged. In this paper,
we propose several time scaling schemes and verify them
experimentally with a DLR/KUKA Lightweight Robot IV
(LWR) for one redundant DOF. Furthermore, we extend the
concept to multiple prioritized tasks and provide simulation
results.

The paper is organized as follows. In Sec. II we describe
the considered robot dynamics and the problem formulation.
Then, we propose possible time scaling schemes in Sec. III.
In Sec. IV, the experiments for verifying the performance
of the time scaling methods are described. An extension to
multiple prioritized task including a simulation of a 4R planar
robot is provided in Sec. V. Finally, Sec. VI concludes the
paper.
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II. PROBLEM FORMULATION

The considered robot dynamics can be expressed as

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τext , (1)

where q ∈ R
n are the generalized coordinates, M(q) ∈

R
n×n is the symmetric, positive definite mass matrix,

C(q, q̇) ∈ R
n×n is the Coriolis and centrifugal matrix, and

g(q) ∈ R
n is the gravity vector. The joint torques and the

external torques are denoted by τ ∈ R
n and τext ∈ R

n,
respectively. The main task is given by x = fk(q), where
x ∈ R

m and fk(q) is the nonlinear forward kinematics. The
m× n task Jacobian is given by J(q) = ∂fk(q)

∂q and relates
joint-space velocities to task-space velocities via ẋ = J(q)q̇.

For sake of clarity, let us assume that one secondary task
shall be fulfilled in addition to the main task in order to
resolve the robot’s redundancy (cf. Sec. V for an analysis
for multiple, hierarchical tasks). The goal of the secondary
task shall be the local optimization of a certain performance
criterion H(q) that is differentiable w.r.t q1. The joint
velocity resulting from control of the main and the secondary
task is given by

q̇ = q̇x + q̇ns , (2)

where q̇x can be associated to the main task and
q̇ns ∈ ker(J) is the null space velocity, which can be ob-
tained, e.g., by projecting the gradient ∇H = ∂H

∂q of H onto
the null space of the Jacobian matrix. The time derivative of
the objective is given by

Ḣ = ∇H q̇ = ∇H q̇x +∇H q̇ns = Ḣx + Ḣns . (3)

Since the null space controller locally minimizes H , we
can assume that Ḣns is either negative, or zero if a local
minimum has been reached. The rate Ḣx, however, can
be either positive or negative, meaning the main task may
support or prevent the null space scheme from minimizing
H . Let us consider the following two cases:

1) Ḣx < 0, Ḣns ≤ 0: Both the main and auxiliary task
minimize H .

2) Ḣx > 0, Ḣns ≤ 0: The main task deteriorates the null
space performance. If |Ḣx| ≤ |Ḣns|, then H is being
minimized (slowly), otherwise H is even increases.

While the first case is certainly desirable, the second case
should be avoided, most significantly if Ḣx > 0 and |Ḣx| >
|Ḣns|. Clearly, the null space dynamics play an important
role here. If they are (deliberately) slower than the dynamics
of the main task, then H may be increasing during task
execution.

We want to ensure Ḣ ≤ 0 by limiting the magnitude
of Ḣx. This shall be accomplished by redistributing the
actuation of the main task towards the auxiliary task via time
scaling. By slowing down the main task temporarily, the null
space task is given more time to minimize the performance
or safety criterion. In addition to keeping Ḣ negative or
equal to zero, one may want to keep the magnitude of H
as small as possible, respectively the difference of H and a
(preferably feasible) desired value Hd. For this, the execution
speed needs to be reduced even further than required to fulfill
Ḣ ≤ 0.

In the following, we propose several time scaling methods
to solve our problem. First, we briefly summarize the concept
of time scaling and related work on the topic.

1In the remainder, we omit the dependency of q where obvious.

III. TIME SCALING-BASED RELAXATION OF THE
PRIMARY TASK

The desired joint space trajectory qd(t) ∈ R
n or Cartesian

space trajectory xd(t) ∈ SE(3) are typically provided by an
interpolator and are parameterized w.r.t. time. In a discrete
implementation of the interpolator, the current time is given
by ti = ti−1 + Δt, where ti−1 is the last time instant and
Δt is the increment, which is usually the sampling time. By
multiplying the time increment by a factor α

ti = ti−1 + αΔt , (4)

we may scale the trajectory in time, i. e., slow down (α ∈
[0, 1)), speed up (α > 1), or even go backwards along the
trajectory (α < 0). In the robotics literature, time scaling has
been used to solve various control problems. In [13], [14] it
was employed to satisfy dynamic and kinematic constraints
during task execution. The authors of [15] aimed at improv-
ing the tracking performance of pre-planned trajectories, and
in [16], time scaling was used for implementing a collision
reaction scheme, where α was defined as a function of the
estimated external torque. Depending on the amount and the
direction of the external torque, the user could push the robot
back and forth along the desired path.

In this work, we apply the concept of time scaling to the
synchronization of main task and (prioritized) auxiliary null
space tasks. The problem is to define α as a function of a
suitable null space performance error.

A. General Scheme
In the previous section, we defined two goals for the time

scaling scheme, namely 1) Ḣ shall be less or equal to zero,
and 2) H shall be kept as small as possible. Our general
time scaling scheme for achieving these goals is defined as

α = 1− (KHeH +KḢeḢ) , (5)

where eH represents the error of the performance criterion
and eḢ is the so-called synchronization error. The corre-
sponding scalar gains for these errors are denoted KH and
KḢ , respectively. This definition is also inspired by the
literature on motion coordination of two or more dynamical
systems [17], [18]. In the following, we define eḢ and
propose possible definitions of eH . Prior to this, we comment
on the considered range and dynamics of α.

B. Considered Range and Dynamics of α
The time scaling factor shall satisfy α ∈ [0, 1], i. e., we

want to decelerate the robot but not go backwards along
the planned path (α < 0) or reach higher speeds than the
nominal velocity (α > 1). When commanding α = 0, the
robot will stop its motion, which means that the null space
scheme will reach its goal (if reachable) after some time.
However, in many applications a certain cycle time shall not
be exceeded. Therefore, one may demand that the allowable
range is α ∈ [αmin, 1], where αmin ∈ (0, 1). This ensures that
the robot always executes the task at a minimum velocity.
Another possibility is to supervise the evolution of α during
task execution and the time which is lost due to time scaling
in order to decide when the trajectory should resume to
nominal speed for meeting the cycle time requirement. In
this paper, however, we only consider the constant lower
bound αmin on α. Practically, one may submit α to critically
damped second-order dynamics with relatively low time
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constant to ensure that the scaling factor is continuous given
the possibly discontinuous errors eH and eḢ .

C. Definition of the Synchronization Error eḢ

We define the synchronization error as

eḢ = Ḣx − Ḣns . (6)

Since this error is only relevant when Ḣx is larger than Ḣns

and both rates have opposite sign, we reformulate eḢ as

eḢ =

⎧⎨
⎩
Ḣx − Ḣns, if sign(Ḣx) �= sign(Ḣns)

∧ |Ḣx| > |Ḣns| ,
0, otherwise .

(7)

For determining Ḣx and Ḣns based on the measured Carte-
sian and joint velocity, we consider the kinematically decou-
pled decomposition of the joint space velocities suggested in
[19]

q̇ = JW+ẋ+ZTvn , (8)

where JW+ is the weighted pseudoinverse [20] and vn =
(ZWZT)−1ZWq̇ is a minimal parameterization of the self
motion velocity [21]. The weighting matrix is denoted by
W ∈ R

n×n and is typically selected as W = M . The full
row rank2 matrix Z ∈ R

(n−m)×n spans the null space of the
Jacobian matrix and satisfies JZT = 0. The Z-matrix can
be obtained numerically by Singular Value Decomposition
(SVD) of J or analytically as described in [22], for example.
The rates of H due to the velocity of the main and auxiliary
task can now be determined by

Ḣx = ∇HJW+ẋ , (9)

Ḣns = ∇HZTvn . (10)

D. Definitions of the Performance Criterion Error eH

1) Gradient: Since the gradient ∇H is usually available
for null space control, we can use this information also for
time scaling. When the gradient is large, then the velocity
shall be reduced while the robot shall resume to nominal
speed when the gradient is close to zero (extremum). A
similar approach can be found in [12]. Using ∇H as a
measure may not reflect the actual null space capabilities,
since only local constrained minimization of H is possible.
Instead, we consider the weighted gradient [23]

hn = (ZWZT)−1Z (∇H)T , (11)

where hn ∈ R
(n−m) can be regarded as the gradient of H

projected into minimal null space coordinates. In the sequel,
it will be referred to as the minimal gradient. The error in
performance criterion can now be defined as the magnitude
of the minimal gradient, i. e.,

eH = |hn| . (12)

2We assume that the Jacobian matrix is non-singular.

2) Gradient & Hessian: The problem with using |hn|
as a null space performance measure is that its magni-
tude is equally low near a constrained local maximum and
minimum. Accordingly, the minimal gradient on its own
is a rather insufficient definition of the performance error,
unless augmented by information about the kind of extremum
(minimum/maximum), i.e., the second-order derivative. Nu-
merically, the derivative of the gradient can be obtained by

h′
n =

H(q−)− 2H(q) +H(q+)

|q+ − q−|2 . (13)

Here, the configurations q− and q+ in the direction of
the negative and positive gradient in the vicinity of the
current robot configuration q can be obtained with an Euler
integration step

q− = q −ZThnΔt , (14)

q+ = q +ZThnΔt , (15)

where Δt is a small step size. Having determined h′
n, we

redesign α as

α =

{
αmin if h′

n < 0,

1− (KHeH +KḢeḢ) otherwise ,
(16)

which means that the robot speed is limited to the minimum
possible velocity if the current robot configuration is near a
constrained local maximum in terms of the objective.

3) Difference of Current H and Desired Hd: Since the
range of the minimal gradient can be large, it may be
difficult to tune the gain KH in (5). Furthermore, the gradient
provides no clear information about the error in H itself.
A more intuitive formulation of the null space performance
error is thus given by the difference

eH = H −Hd , (17)

of the current value H and a desired value Hd. When select-
ing Hd the kinematic self-motion capabilities of the robot
should be taken into account. If Hd is selected arbitrarily,
then it may occur that this goal is not reachable. If α = 0
is allowed for, then it is possible that the robot stops its
motion entirely because eH does not converge to zero. In
this situation, task scaling or task transition schemes can be
employed to relax constraints on the main task and resume
operation. If it is required that the objective fulfills H ≤ Hd,
then it should be considered to reformulate the task as a
constraint [24].

To ensure that Hd is feasible, it should be located on a
reachable part of the self-motion manifold. For local null
space optimization schemes, Hd may be defined as the next
local minimum in the direction of the negative gradient,
which can be found by iteratively integrating the null space
velocity q̇n = −ZThn. In the optimization literature, many
schemes exist to find such a minimum, e. g., via gradient
descent. For the LWR this was done in [25], for example.
Having determined a feasible Hd, (17) represents a meaning-
ful error in terms of the performance criterion. Accordingly,
the parameterization of the time scaling scheme should be
more intuitive than for the previous schemes.
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Fig. 2. Schematic of the pick and place task trajectory in the y0/z0 plane.

IV. EXPERIMENTS

In order to verify the performance of the proposed time
scaling schemes, we conducted experiments with a 7-DOF
DLR/KUKA Lightweight Robot IV. The robot shall perform
a pick and place task, the desired Cartesian end-effector
trajectory is illustrated in Fig. 2. The motion sequence is
1 → 2 → 1 → 3 → 4 → 3 → 5, the desired robot speed
is 0.8m/s. We consider a Cartesian SE(3) task, thus the
robot has one redundant degree of freedom. The primary
robot controller is a Cartesian impedance controller [26], the
null space controller shall minimize the so-called reflected
robot mass H = mu(q), i. e., the mass perceived at the end-
effector in a certain Cartesian direction u [20]. The controller
was implemented according to [25] and shall improve the
collision safety of the robot. We first consider a nominal
motion without null space scheme or time scaling. Then,
we activate the null space controller, again without time
scaling. Finally, we use the null space scheme in combination
with all proposed time scaling methods. For all schemes we
select αmin = 0.3 in order to allow for a significant velocity
decrease but avoid for a (temporary) complete stop of the
system.

The motion of the robot is shown in the attached video,
the experimental results are illustrated in Fig. 3. For sake of
brevity, we only depict the results for three motion segments,
namely 1 → 2 (left column), 1 → 3 (middle column),
and 3 → 4 (right column). The analysis for the other
motion segments is similar. In the top row, we illustrate
the reflected mass over the Cartesian end-effector position,
which is represented in terms of the path parameter s ∈ [0, 1].
For motions 1 ↔ 2 and 3 ↔ 4, s corresponds to a distance of
25 cm in z0-direction, for 1 ↔ 3 to 50 cm in y0-direction, see
Fig. 2. In the middle row, we depict the time scaling factor
α over time, and in the bottom row the path parameter over
time. This representation allows to determine when and to
which extent the robot speed is reduced and how much extra
time is required to accomplish the task in comparison to the
nominal motion.

The nominal trajectory without null space scheme or time
scaling is represented by a black line, null space control
without time scaling by a gray line, null space control with
time scaling based on gradient-based scheme, gradient &
Hessian, and known local minimum Hd by a blue, red, and
yellow line. The next local minimum in direction of the
negative gradient of H is represented by a green line.

Regarding the nominal motion (top row in Fig. 3) one

can observe that the reflected mass is generally higher3

when compared to the other schemes where a null space
controller is used. However, during motion 1 → 3 the
nominal trajectory reaches a local minimum in reflected mass
(at s ≈ 0.4) by coincidence. When the null space controller
is used without any time scaling scheme, the reflected mass is
increasing for the largest portion of the motion in all motion
segments. This is due to the competing dynamics between
the primary and the null space task. Given the relatively high
velocity of the end-effector, the magnitude of Ḣx is typically
larger than Ḣns. Due to the limited null space dynamics, the
minimization of the reflected mass mainly takes place at the
end of a motion segment, where the velocity of the end-
effector becomes zero.

The introduction of a time scaling scheme clearly im-
proves the performance of the null space scheme, as the
robot can reach a lower reflected mass over the course of
the trajectory. For the considered problem and trajectory,
the time scaling law based on (17) has a relatively better
ability to maintain the reflected mass closer to the minimum
than the other schemes. The performance of the gradient-
based and gradient & Hessian schemes are identical for all
motion segments except for segment 3 → 44. The initial
configuration for this segment is close to a local maximum
in reflected mass and therefore, the gradient itself does not
give a proper indication about the error in reflected mass.

For motion 1 → 2, the reflected mass is very close to the
desired value (note the range of the y-axis in the top left
figure) for all considered control schemes. This means that
time scaling is only active for a short time period, otherwise
the motion and final time remain unchanged, see the timely
evolution of α and s in the first column. For the motion
segments 1 → 3 and 3 → 4 the velocity is being reduced for
a larger time period, which leads to a significant decrease
of the reflected mass, but in turn also to an increase of the
cycle time.

A. Discussion

Our experimental results confirm that time scaling can be
a simple, yet effective method to improve the performance
of auxiliary tasks. The influence of the time scaling scheme
on the operational velocity depends on several factors. If the
dynamics of the main task are much slower than those of the
auxiliary task, then the time scaling scheme will be inactive
most of the time. If the main task is much faster than the
auxiliary task, then the error in the performance index may
lead to a significant velocity reduction for a large part of
the trajectory. However, being able to speed up means that
the method is generally superior to only scaling the robot
velocity by a constant factor for the entire trajectory.

The value of the minimum allowable scaling factor αmin

also influences the behavior of the system. Setting αmin

to very low values may result in a “stop-and-go” like
motion, which can make the motion appear discontinuous.
High values of αmin yield that even when the end-effector
is slowed down to the minimum admissible velocity, the
dynamics of the primary task may still be faster than the

3For motion 1 → 2 the reflected mass is not illustrated because it is
above the considered range.

4In the top right plot in Fig. 3 (motion segment 3 → 4), s is below zero
at the beginning of the motion. Here, the robot moves < 2 mm in opposite
direction due to imperfect null space projection and/or controller overshoot.
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Fig. 3. Experimental results for a pick and place task using an LWR. The left column represents the motion 1 → 2, the middle column the motion 1 → 3,
and the right column the motion 3 → 4, see Fig. 2. In the upper row, we depict reflected mass over the path parameter s, in the middle row the time
scaling factor α over time, and in the lower row the path parameter over time. Legend: w\o NS,w\o TS: nominal trajectory without null space control
or time scaling (black); NS,w\o TS: null space control without time scaling (gray); NS, {TSG,TSGH,TSHd

}: Null space control with gradient-based
scheme, gradient & Hessian, and known local minimum Hd, respectively (blue, red, yellow); mu,d: desired local minimum in reflected mass (green).

null space dynamics, which leads to a deterioration of the
null space performance.

V. EXTENSION TO MULTIPLE TASKS

In this section, we extend our concept to an arbitrary
number of auxiliary tasks. Given a task hierarchy with r
priority levels, each task xi(q) ∈ R

mi×n is defined by the
mapping xi = fk,i(q) on a kinematic level and the mapping
ẋi = Ji(q)q̇ on a differential level with Ji(q) =

∂fk,i(q)
∂q .

Furthermore, each task consists of minimizing the perfor-
mance criterion Hi(xi) locally5. As before, the primary
task is an end-effector positioning task, where the desired
trajectory provided an interpolator is parameterized w.r.t.
time. The problem is to design the time scaling factor such
that the primary and the auxiliary tasks are synchronized,
while taking the task priority and performance of all r − 1
null space tasks into account.

A. Scaling Factor Design
The time scaling factor α is determined in two steps. First,

we design αi, i = 2, . . . , r for each task in the hierarchy
independently from the other tasks. Then we combine the
scaling factors of each level to the overall time scaling factor.
For each task, we consider the time scaling law

αi = 1− (KH,ieH,i +KḢ,ieḢ,i) , (18)

5In the sequel we will again omit the dependency of q and x.

where KH,i and KḢ,i are positive scalars. The problem is
now how to define eH,i and eḢ,i in a hierarchy consistent
way. The original task space velocities ẋi comprise couplings
between the hierarchy levels and can thus not be used for
our problem. Therefore, we consider the local null space
velocities vi ∈ R

mi , introduced in [21], [27], which are
given by ⎛

⎜⎝
v1

...
vr

⎞
⎟⎠

︸ ︷︷ ︸
v

=

⎛
⎜⎝
J̄1

...
J̄r

⎞
⎟⎠

︸ ︷︷ ︸
J̄

q̇ . (19)

Here, J̄ is the hierarchy consistent Jacobian matrix [27]. The
time derivative of Hi due to the influence of the primary task
and the control action on level i are given by

Ḣi,1 =
∂Hi

∂xi
JiJ̄1

W+
ẋ1 , (20a)

Ḣi,i =
∂Hi

∂xi
JiJ̄i

W+
vi . (20b)

We can now systematically define the synchronization
error for each level as

eḢ,i =

⎧⎨
⎩
Ḣi,1 − Ḣi,i, if sign(Ḣi,1) �= sign(Ḣi,i)

∧ |Ḣi,1| > |Ḣi,i| ,
0, otherwise ,

(21)
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Fig. 4. Time scaling in combination with hierarchical null space control: Simulation results for a planar 4R robot. The robot is illustrated in the left figure,
where the vertical position of the third joint is p3 = [p3,x, p3,y ]T, the initial and desired Cartesian position are x0 and xd, respectively. In the second
and third figure, the results for level two (vertical position of third joint) and level three (minimization of reflected mass) are depicted. The evolution of
the time scaling factor is shown in the right figure. Legend: NS,w\o TS: nominal motion with null space control but without time scaling; NS,TSHd

:
null space control with time scaling; p3,y,d,mu,d: Desired vertical position of second joint and reflected mass.

which means that eḢ,i is only relevant when the primary
task has a negative influence on the null space task on level
i. The error eH,i in performance criterion can be formulated
in terms of any of the schemes proposed in Sec. III-D. Here,
we define the error as eH,i = Hi − Hi,d with Hi,d being
a constrained local minimum for task xi. For determining
Hi,d, we define the minimal gradient on each level as

hn,i = J̄iW
−1JT

i

(
∂Hi(xi)

∂xi

)T

, (22)

where the gradient of the objective (possibly defined in task
space) is first mapped to configuration space using JT

i , then
W−1 compensates for the rotation of the gradient included
in J̄i [28]. Finally, the gradient is mapped to local null space
coordinates via J̄i. The null space velocity in the direction of
the gradient can be obtained by q̇n,i = J̄i

W+
hn,i. Similar

to the case of only one degree of redundancy, we can now
repeatedly integrate q̇n,i on all levels independently until the
next constrained local minimum Hi,d is found.

Having determined αi on all levels, we now want to
combine them to the overall time scaling factor. One solution
is to select the most conservative αi of all hierarchy levels,
i. e.,

α = min(αi), i = 2, . . . , r . (23)

Alternatively, each αi can be weighted and combined as

α =
r∑

i=2

wiαi . (24)

Here, wi are non-negative weights which are selected such
that

∑r
i=2 wi = 1 and wi > wj , ∀i < j. This means that

a high priority task influences the robot speed more than a
low priority task.

B. Simulation Results

In order to verify the hierarchical time scaling approach,
we carried out simulations with the 4R DOF planar robot
shown in Fig. 4 (left). Each link has 0.5m length and a 0.5 kg
point mass located at the center. The initial configuration is
q0 = [135°,−90°,−45°,−45°]T. The primary task is an X/Y
linear Cartesian motion of the end-effector of 40 cm distance
in negative y0-direction. For the considered task, we have
two redundant DOF. The secondary task is to minimize the
vertical distance p3,y, of the third joint to a horizontal plane
located at y0 = 0.5 m. The tertiary task is the minimization

of the reflected mass perceived at the end-effector like in the
previous experiment.

The simulation results are illustrated in Fig. 4. Both auxil-
iary tasks converge to their local minimum (y3,d on level two
and mu,d on level three), which verifies that the definition
of eH,i is consistent in terms of the task prioritization
framework. This ensures that time scaling is only enabled
when a potential improvement in the performance index on
level i is possible. When using time scaling, all auxiliary
tasks achieve better performance and converge faster to the
local minimum than without using time scaling.

VI. CONCLUSION

In this work, we investigated how the trajectory of the
robot’s primary task can be relaxed by time scaling such
that the performance of one or multiple auxiliary null space
task(s) in terms of minimizing a performance/safety criterion
can be improved. By temporarily limiting the velocity of
the main task based on a suitable error in the performance
index, the null space task is given more time to achieve its
objective. In this work we proposed schemes, which can be
implemented with minimal effort and leave the existing pri-
mary and null space controller unchanged. The schemes were
verified experimentally using a DLR/KUKA Lightweight
Robot. The concept was extended to the more general case
of multiple prioritized task control and verified in simulation
using a 4R planar robot. In summary, time scaling is a simple,
yet effective method to improve the task achievement of the
auxiliary tasks at the cost of slight primary task relaxation
and therefore some extra cycle time. The developed method
is an efficient alternative to existing task transition or priority
switching schemes, as the geometric description of the main
task remains unchanged. However, such schemes may also
be combined with time scaling as mentioned in [12]. Future
work will consider the stability analysis of the proposed
concept.
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