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Abstract
Matching and merging overlapping point clouds is a common procedure in many applications,

including mobile robotics, three-dimensional mapping, and object visualization. However, fully

automatic point-cloud matching, without manual verification, is still not possible because no

matching algorithms exist today that can provide any certain methods for detecting misaligned

point clouds. In this article, we make a comparative evaluation of geometric consistency meth-

ods for classifying aligned and nonaligned point-cloud pairs. We also propose a method that com-

bines the results of theevaluatedmethods to further improve the classificationof thepoint clouds.

We compare a range of methods on two data sets from different environments related to mobile

robotics andmapping. The results show thatmethods based on aNormal Distributions Transform

representation of the point clouds perform best under the circumstances presented herein.

K EYWORDS

perception, mapping, position estimation

1 INTRODUCTION

Point-cloud registration is a central aspect of robot perception. It is

used in numerous applications of mobile robotics, including mapping,

object detection,manipulation, etc. Point-cloud registration canbe for-

mulated as the problem of finding the relative transformation (i.e., a

translation and rotation) between two three-dimensional (3D) point

clouds that best aligns them.However, no existing point-cloud registra-

tion algorithm will always perfectly align a pair of point clouds. There-

fore, methods for automatic detection of misaligned point clouds are

important, but this is a problem that has not been thoroughly studied

as of yet.

The problem is visualized in Figures 1 and 2: two point clouds that

are aligned are shown in Figure 1 and two point clouds that are mis-

aligned are shown in Figure 2.

In this article we will present an investigation of methods that can

be used for automatic detection of misaligned point clouds.

In related work, some authors have previously proposedmeasuring

global map quality by comparing the output of a mapping algorithm to

a ground-truth reference. References 1 and 2 proposed a formal def-

inition of map brokenness, and an algorithm for measuring how many

such inconsistencies are present in a map. However, being dependent

on a given referencemap is a severe limitation in autonomousmapping

and localization applications. In the present paper, we will only investi-

gatemethods for determining whether two point clouds are aligned or

not, without requiring a comparison to a ground-truth estimate.

The typical work cycle when doing metric mapping with, for exam-

ple, a mobile robot is to acquire consecutive, overlapping 3D point

clouds and to merge them together using a point cloud registration

algorithm. Such algorithms try to find the best relative transformation

between two point clouds, starting from an initial alignment estimate.

All currently available local and global registration algorithms can

fail to find the correct alignment. For challenging data sets, both local

and global state-of-the-art registration algorithms can have relatively

low success rates.3 The predominant causes of failure are bad initial

alignment or small overlap of the point clouds. Typically, the registra-

tion algorithm gets trapped in a local minimum (with respect to its

objective function) in the failure cases.

In any scenario where the process of aligning point clouds is

intended to be automated, a reliable method for verifying the point

cloud alignment is required.

There are a number of popular methods available in the literature

that approach this problem (see Section 2), however there is currently

no consensus regarding which method is most reliable. To the best of

our knowledge, no methodical evaluation of these measures has yet

been carried out.We are going to evaluate some commonmethods for

point cloud misalignment detection, as well as some less established

ones, by assessing how well they can be used to discriminate between

well-aligned andmisaligned scans on two labeled large-scale data sets.

The methods presented in this article can be applied to any sit-

uation where an automated method for determining whether two

point clouds are aligned or not is required, although the datasets
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F IGURE 1 Two point clouds, one in red and one in green, that are
well aligned

F IGURE 2 Twopoint clouds, one in red and one in green, that are not
well aligned

chosen for the work herein are connected to localization in mobile

robotics.

Wewill refer to amethod capable of determiningwhether twopoint

clouds are aligned or not as a “classifier,” for the simple reason that

what it does is to “classify” the point clouds as aligned or not aligned.

This article provides twomain contributions:

• Evaluations of several existing methods for detecting whether two

point clouds are aligned or not.

• The use of boosting to learn a strong classifier by combining the

weaker individual classifiers.

2 ALIGNMENT QUALITY MEASURES

This section briefly lists the methods that we have studied. More

details of each method can be found in Section 3. Alignment quality of

point clouds can be investigated at different levels, frommaps consist-

ing of many point clouds to point cloud pairs.

Alignment quality measures for point cloud pairs can roughly be

divided into two classes: those that can be used directly upon any pair

of point clouds, and those that rely onmeasures taken both before and

after a point cloud registration, thus measuring how the alignment of

the point clouds has changed as a consequence of the registration. The

second class is based on the assumption that a point cloud pair where

an alignment quality measure generates a better result after registra-

tion than before indicates that the pairs' alignment has been improved.

Sincewe are interested inmethods that can classifywhether two point

clouds are aligned or not in all contexts, without requiring registration,

wewill not consider the second class of methods here. It is also precar-

ious to evaluate point cloud alignment before and after registrations

using the samemeasures as used by the registration algorithm.Wewill

discuss this more thoroughly in Section 5.1.3.

A common property of all point cloud alignment measures is that

the result is dependent on the scene being evaluated. Therefore,

no method provides a universal solution that is capable of correctly

describing the alignment of any point cloud pair.

Previous work in the area of evaluating the performance of dif-

ferent point cloud alignment measures is scarce. Notable, however,

is Ref. 4, in which evaluations were recently done on four measures

and also a combined measure was performed using a multiclass sup-

port vectormachine. The evaluations show that the combinedmeasure

achieves better results than the single measures at the cost of requir-

ing a larger training set.

RMS

A popular method5 is to use the root-mean-squared (RMS) point-to-

point distance between the point clouds,which also is the function that

is minimized by iterative closest point (ICP) registration.6 ICP regis-

tration will be further introduced in Section 5.1.3. The RMS distance

is a measure of the average distance between the nearest-neighbor

point pairs in twopoint clouds. Point clouds that arewell aligned should

receive a small positive RMS value.

However, as demonstrated by, for example, Ref. 7, the mean-

squared error is not always a good measure of alignment quality—

especially not for detecting small errors, since it does not reveal any

information concerning the distribution of the errors.

When computing the RMS distance, care has to be taken not to

include outlier points, or points from nonoverlapping regions, because

such points can influence the computed value drastically, even for oth-

erwise well-aligned point clouds. Therefore, points that do not have a

neighbor in the other point cloud within a threshold distance are con-

sidered outliers and removed.

NDT Score

NDT, the normal distributions transform,8–10 can be used to acquire a

measure of point cloud alignment. In the NDT representation, one11

or both12 point clouds are represented by a combination of Gaussians,

describing the probability of finding part of the surface at any point in

space. The level of alignment can then be measured by evaluating the

NDT representation for the point clouds as described in detail in Sec-

tion 3.2.
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NDTHessian

The inverse Hessian matrix of the NDT score function can be used as

an estimate of the covariance matrix of the pose parameters, and as

such gives an indication of the certainty by which each pose parame-

ter can be determined. Although the NDT is often used for point cloud

registration,3,8 the score andHessian, given a pair of point clouds and a

relative transformation, can be computed without actually performing

a registration.

Well-aligned point clouds should have an inverse NDT Hessian

where all eigenvalues are small.

Plane extraction

References 13 and 14 train a conditional random field to detect “suspi-

cious” and “plausible” areas of a map. The suspicious areas, in this case,

are those that contain intersecting plane patches or parallel planes in

close proximity. This work is one of fewwhere the accuracy of the pro-

posed method is evaluated. In their evaluations on 3D-laser data, the

percentage of correct classifications reaches approximately 80%. We

have made an attempt to adapt the method to work on point cloud

pairs in Section 3.4.

Partitionedmean normals

The partitioned mean normals measure, used by Ref. 15, uses consis-

tency between normals as the alignment measure. Normals are cal-

culated for each point in a point cloud by using a number of nearest-

neighbor points within a specified radius. The space containing each

point cloud is voxelized and themean of the normals value is calculated

for each voxel. By comparing the mean normals of the corresponding

voxels in two point clouds, a consistency value can be computed.Well-

aligned point clouds should have a small mean difference between cor-

responding voxel normals.

Surface interpenetrationmeasure

Reference 7 proposes a surface interpenetration measure, based

on the observation that well-aligned point clouds should present a

“splotchy” surface, where coinciding surfaces from the point clouds

cross over each other repeatedly. The alignment measure can be

acquired by identifying and counting “interpenetrating” points

between two point clouds, i.e., points where surfaces are intersecting.

Well-aligned point clouds should have a high number of interpenetrat-

ing points.

3 POINT CLOUD ALIGNMENT

CLASSIFICATION

Point cloud alignment classification is the method of classifying the

alignment of point clouds into two or more “classes.” The aim of

the classification is to detect whether the point clouds are correctly

aligned (within some tolerancemargin) or not. The scope of our evalua-

tionof point clouds is tomake abinary classificationof eachpoint cloud

pair as “aligned” or “not aligned.” It would also be possible to treat the

problem as a continuous one where a value could be used to describe

the degree of misalignment, however since we evaluate several differ-

ent classifiers with different objective functions it could be difficult to

find a commonmeasure that applies to all classifiers. To do binary clas-

sification, we wish to find a quantitative measure of “alignedness” that

we can threshold. Each classifier has been designed to provide such

a measure. By using AdaBoost we find a suitable threshold for each

classifier on a subset of the available data. The threshold is then used

to evaluate the remaining part of the dataset. It is in general not possi-

ble to find a single threshold suitable for all classifications for any clas-

sifier, but by training on relevant datasets we can find thresholds that

provide a suitable tradeoff between classification precision and recall.

In this section we will describe, in detail, all the alignment mea-

sures that wewill be evaluating, and the parameters we select for each

classifier.

3.1 RMS distance classifier

The neighbor threshold distance, explained in Section 2, has a major

impact on the behavior of the RMS-distance classifier, and also affects

the magnitude of the errors that it can classify. A too small threshold

might remove misaligned but overlapping points (which should not be

considered outliers) leading to an overconfident error measure. A too

large threshold might include those points that are truly outliers, i.e.,

points in nonoverlapping parts of the point clouds, and consequently

classify well-aligned point cloud pairs as not aligned.We have included

a set of six thresholds, chosen to range from fine to coarse errors (in the

context of our datasets), and we have also included an RMS classifier

with a statistical threshold suggested by Ref. 16. The statistical thresh-

old is defined as 2.5 standard deviations from the mean RMS-distance

of all points.

The RMS-classifiers and their respective thresholds are specified in

Table 1.

3.2 NDT score classifier

Essentially, a 3D-NDTrepresentation is constructedby creating a voxel

grid over a point cloud, and for each voxel we compute the mean and

covarianceof thepoints in it (that is, theparameters of aGaussian func-

tion).

Consider two point clouds  and , i.e., two unordered sets of 3D

points. We compute an NDT grid for the points in, and keep the

point cloud representation of = {𝐱1,… , 𝐱n}.
Using the coordinate frame of , we express the likelihood of 

being alignedwithwith the NDT score function

s(,,𝐩) = −
∑n

k=1 p̃(T(𝐩, 𝐱i))
n

, (1)

where p̃ is the Gaussian of the closest voxel of 𝐱i in, 𝐩 is the pose of
 in the coordinate frame of, T is a function that transforms point 𝐱i
according to 𝐩, and n is the number of points in the point clouds.

As described by Ref. 9, p̃ is a Gaussian that approximates the loga-

rithm of a linear combination of two probability functions: the normal

distribution of the points of  that are contained in the voxel, and a

constant distribution that is used for modeling outliers.

The sum s(,,𝐩) corresponds to the negative log-likelihood that

point cloud lies on the surface of point cloud, (Ref. 11, Chap. 6), and

is used directly as the alignment quality measure.
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TABLE 1 A summary of all classifiers and their abbreviations used
in the evaluations

Name Description

RMS1 Root-mean-square classifier with nearest-neighbor
threshold 4m.

RMS2 Root-mean-square classifier with nearest-neighbor
threshold 2m.

RMS3 Root-mean-square classifier with nearest-neighbor
threshold 0.5m.

RMS4 Root-mean-square classifier with nearest-neighbor
threshold 0.25m.

RMS5 Root-mean-square classifier with nearest-neighbor
threshold 0.15m.

RMS6 Root-mean-square classifier with nearest-neighbor
threshold 0.05m.

RMS7 Root-mean-square classifier with statistical
nearest-neighbor threshold.

NDT1 NDT Score classifier with standard implementation.

NDT2 NDT Score classifier with removed ground floor.

NDT3 NDT Score classifier with overlap evaluation.

NDT4 NDT Score classifier with both removed ground floor and
overlap evaluation.

HEST NDTHessian translation parameters classifier.

HESR NDTHessian rotation parameters classifier.

PLEX Plane extraction classifier.

NORM Partitionedmean normals classifier.

SIM1 Surface interpenetrationmeasure classifier with standard
implementation.

SIM2 Surface interpenetrationmeasure classifier with overlap
scaling.

ADA AdaBoost classifier.

A good alignment should attain a large negative value. The closer to

zero the NDT score is, the worse is the alignment.

A characteristic weakness of the described implementation of this

classifier is that theevaluation scorewill bebetter for point cloudswith

a large overlap andworse for point clouds with a small overlap.We are

using four different variations of the NDT Score classifier to account

for such effects: the standardNDT implementation as described above

and three different methods of point-cloud segmentation described

below. The voxel size for the normal distribution calculation has been

set to 0.5m for all classifiers. In our experience, this voxel size provides

a good tradeoff between the number of points in each voxel and the

NDT representation accuracy.

3.2.1 Remove ground floor

A common scenario is the acquisition of point clouds by amovable sen-

sor in urban or indoor environmentswhere the ground floor is flat. The

errors that appear when trying to fit point clouds in similar environ-

ments are typically translations parallel to the ground floor and rota-

tions around the ground floor normal since those are the major move-

ment directions. Translations along the normal of the ground floor and

rotations around any axis in parallel with the ground floor are often

orders of magnitude smaller. Even with a large pose error between the

two scans, the ground floor is still often well aligned (for ground vehi-

cles). The ground points then risk outweighing the other structures

in the scene that better show the pose error. Reference 17 proposed

using a Gaussian process model to remove ground points before regis-

tration. For the data sets evaluated here, the ground is smooth enough

so that it is reliably removed by filtering out all points with a vertical

normal vector. The normal is computedusing the10nearest neighbors.

All points that have a normal in close proximity to the vertical axis, i.e.,

where the dot product of the normal and a vector of the same length

along the vertical axis exceeds 0.9, are removed from the point cloud.

3.2.2 Overlap evaluation

Another subsampling strategy is to only evaluate those voxels where

the point clouds overlap. By taking Eq. (1) and replacing the denom-

inator n with m, where m is the number of points from B that are in

the occupied voxels ofM, we get a measure that is less sensitive to the

amount of overlap.

This method does have an increased risk, in comparison with the

standard implementation, of classifying point cloud pairs with bad

alignment as well-aligned as long as a small portion of the point clouds

are aligned.

3.2.3 Ground floor removal and overlap evaluation

Finally, we also evaluate a classifier that removes the ground floor and

only evaluates the overlapping parts of the point clouds. The risk here

might be that excessive subsampling leaves not enough data to make a

reliable classification.

3.3 NDTHessian classifier

TheNDTHessian is also suitable as a binary classifier.We have divided

it into two classifiers:

1. TheHessian translation classifier.

2. TheHessian rotation classifier.

The reason for this is because there is a distinct difference in mag-

nitude between the eigenvalues related to the translation parameters

and the eigenvalues related to the rotation parameters. This means

that a single threshold value would be severely biased toward either

the translation or rotation parameters. Both classifiers do work, how-

ever, according to the same principle, where the alignment measure is

the largest of the threediagonal elements in the inverseHessianmatrix

related to the translational and rotational parameters, respectively.

The Hessian is calculated as follows:

Hij =
𝛿
2s

𝛿pi𝛿pj
, (2)

where pi and pj are elements from the pose vector 𝐩 in Eq. (1) and s is

the score function in Eq. (1). The voxel size for the Hessian classifiers is

the same as for the NDT score classifiers.

3.4 Plane extraction classifier

Furthermore, we have investigated a method that is a modification

of the plane extraction method of Refs. 14 and 13. Similarly to the
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ALGORITHM 1 Patch clustering

work of Chandran-Ramesh and Newman, this method approximates

the point cloud as a set of plane patches. However, in our implemen-

tation, instead of classifying the relations between patches within a

single point cloud map, we perform pairwise evaluation between two

scans. Knowing which points belong to which scan makes the condi-

tional random field used by Chandran-Ramesh and Newman superflu-

ous, and thuswe focus on scoring plane patch alignment. The approach

can be split into two steps: plane extraction and scoring.

Plane extraction

This step is a modification of Ref. 18, which also is part of the pipeline

of Refs. 14 and 13. The underlying idea is to split plane fitting into

subproblems. Given a 3D point cloud, we split it into a regular voxel

grid. Each voxel contains the points within its boundaries. Next, for

each nonempty voxel we find the best fitting plane surface using least-

squares. The last step is to define patch vertices by finding the points

where the plane surface intersects with the voxel edges. In this waywe

obtain a set of plane patches. Algorithm1 shows how to cluster adja-

cent patches that belong to the same surface (having the same label)

into setsΠLi = {P[Li]|P ∈ }.
Thenext step is toperformplane reconstruction for eachpatch clus-

terΠLi . Reference 18 solves this problem bymerging patches into con-

vex polygons. This approach will cause windows, doors, etc. to disap-

pear. To prevent this problem we have decided to replace this patch

merging with an algorithm based on 𝛼-shapes.

The 𝛼-shapes were first introduced in Ref. 19. The idea behind 𝛼-

shapes is to build a hull enclosing all the points in the data set. Refer-

ence 20 describes the intuition for this procedure as follows. We start

with a hull enclosing all the points with some big margin. In each step

we remove a chunk of hull of radius 𝛼 that is not enclosing any of the

points in the data set. In this method we can remove also part of the

hull, even if such a chunk is isolated from the other removed ones.

First, for eachΠLi wecompute thebest fitting plane, using thepoints

from the voxels corresponding to the patches inΠLi . Nextwe fit a least-

squares plane to those points. Afterwards we project the points in

the affected voxels onto the obtained surface and employ 𝛼-shapes in

2D.21

Scoring alignment quality

After we extracted planar polygon segments in both point clouds, we

measured thealignment andoverlapof all segmentswith their nearest-

neighboring segment in the other point cloud. The final score is com-

puted based on three factors:

1. Distance—The difference in distance between the origin and cen-

ter of gravity for both patches along the normal for each plane:

|𝐧i ⋅ 𝐜𝐨𝐠i − 𝐧j ⋅ 𝐜𝐨𝐠j|. The distance is normalized based on the size of

the considered point cloud. As the furthest distance between the

origin and the center of gravity of the furthest patch—Df .

2. Orientation—The dot product of the normals of a plane pair. Since

the dot product of two unit vectors is always between 0 and 1, this

factor does not require normalization.

3. Size—The difference in size between two neighboring patches. This

factor is normalized in respect to the biggest patch in the given data

set Af . The impact of this factor requires fine tuning. The difference

in the size of the patches if addressed carelesslymight lead to skew-

ing the score. However, we should keep in mind that we are facing

a real environment where dynamic changes can occur. In such cir-

cumstances we need to consider all the differences that will help to

filter out information coming from such distortions.

To compute the final score, we use the samemethod as Refs. 14 and

13, andwe employ the following equation:

S = 1
N

N∑
i1

√
(DS

i
)2 + (AS

i
)2 ⋅ (1 + OS

i
)√

D2
f
+ A2

f
⋅ 2

, (3)

where DS
i
, AS

i
, and OS

i
are the distance, size, and orientation scores,

while the normalization factors areD2
f
and A2

f
. We normalize the score

by the number of plane pairs to obtain a score between 0 and 1.

3.5 Partitionedmean normals classifier

In our implementation of the partitionedmeannormals classifier,15 the

normals are computed using the 20 nearest neighbors within a speci-

fied radius. In our experiments, we have set the neighborhood radius

to 0.5 m, which is consistent with the general sample density and scale

of structures in our data sets. The voxel grid used by this classifiermust

be static for all point clouds so that corresponding voxels covering the

same space can be found between both point clouds in a point cloud

pair. Point clouds that are well-aligned should receive a small absolute

value from this classifier.

3.6 Surface interpenetrationmeasure classifier

Given two point clouds  and , the set of interpenetrating points,

C,, is defined as all points 𝐱 inwhose local neighborhood includes

at least one pair of points that are separated by the local tangent plane

computed at the closest neighbor of 𝐱 in point cloud . The surface
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interpenetration measure, SIM, is calculated as the fraction C, of

interpenetrating points in according to Eq. (4).

SIM =
|C,|


(4)

Well-aligned point clouds should have a high rate of interpenetra-

tion points.

Wehave included twovariants of the surface interpenetrationmea-

sure classifier:

1. SIM1: This classifier is implemented from Ref. 7 without modifica-

tions.

2. SIM2: The measure in this classifier is scaled by the amount of

points that have any neighbors within the specified threshold, i.e.,

the part of the point clouds that overlap, thus making it less sensi-

tive to differences in the amount of overlap betweendifferent point

cloud pairs.

3.7 AdaBoost classifier

To achieve a stronger classification, we propose a combined classifier

created usingAdaBoost.22 A complete explanation of this classifierwill

be given in Section 4.

In total we use 17 different classifiers in our evaluations. All classi-

fiers are listed in Table 1 together with their respective abbreviation.

4 ADAPTIVE BOOSTING OF QUALITY

MEASURES

Adaptive boosting, or AdaBoost,22 is a method for iteratively adding

weak binary classifiers to build a stronger “expert” classifier. Each clas-

sifier emits a binary opinion, which, in this work, is whether two point

clouds are aligned or not. A labeled training set (x1, y1),… , (xm, ym),
where yi is the label associated with feature xi, is used as input to the

algorithm. For each iteration we find the classifier ht from the collec-

tion of weak classifiers Ht that improves the classification the most;

that is, itmaximizes thedifferenceof the correspondingweightederror

rate 𝜖t and 0.5 (which is the error rate of a random classifier). A distri-

bution of weights, Dt , that indicates the importance of each feature is

updated for each iteration round. The weights for the correctly classi-

fied features are decreased and the weights for the incorrectly classi-

fied features are increased, so the classifier focuses on the misclassi-

fied features. The procedure is repeated for T iterations, thus adding T

classifiers. The set of classifiers with their respective weights 𝛼 consti-

tutes the strong classifier. The decision of the strong classifier is deter-

mined by the sign of the weighed sum of all classifiers. The algorithm is

described in Algorithm 2.

Threshold selection

We use a straightforward method, adapted from Ref. 23, to train the

threshold for each classifier in each evaluation round. The method

is described in Algorithm 3. In short, we sort the results from the

training set in ascending order and find the threshold where the num-

ber of incorrect classifications is minimized.

5 EXPERIMENTS

In this section, we will present the procedures and the results of the

evaluations.

5.1 Environments

The applications of point clouds as spatial representations range from

describing very small objects to vast landscapes. The selection of envi-

ronments for this work, however, is made from the outdoor mobile

robotic perspective. We have selected two environments: The first

environment, the Kjula set, is situated at an asphalt manufacturing

plant featuring a slightly hilly landscape with an abundance of gravel

piles and some structures. The second environment, the Hannover set,

is from a campus with buildings, streets, and other regular geomet-

ric features (i.e., objects with flat surfaces and/or well-defined edges).

The environments have been chosen in order to validate how well the

methods apply in very different environmentswhile still being relevant

in a field robotics context. Further, the sensor setup also differs where

the Kjula data are acquired with a 180 by 40 degree field of view with

high resolution while the Hannover data are using a spherical field of

view with lower resolution. The Hannover set is heavily featured with

flat surfaces and rectangular shapes while the Kjula environment fea-

tures convex and concave structures with rugged surfaces. We have

assumed that the environments are static (however there are some

moving persons in one of the sets, but the vast majority of the environ-

ment is static).

5.1.1 Kjula

The Kjula data, seen in Figure 3, were acquired at an asphalt manu-

facturing plant near a village called Kjula just outside the city of Eskil-

stuna in Sweden. The asphalt plant is a combined gravel pit and pro-

duction unit for asphalt. The work at the plant is performed by con-

struction equipment such as wheel loaders, dumpers, and excavators.

The scans were acquired with a midsize Volvo wheel loader equipped

with anactuatedSICKLMS291 laser scanner. Figure4 shows thewheel

loader in the Kjula asphalt plant.

The horizontal resolution of the scanner was set to 1 degree and

the vertical field of view was −40 degrees to +10 degrees, with 0

degrees being the horizontal line. The range of the scanner setup in

the asphalt plant environment was approximately 30–50m depending

on the reflectivity of the surface. Each point cloud was acquired while

standing still during the entire scanner sweep. Each point cloud con-

tains between 60 000 and 120 000 readings.

We have used 65 scans from the Kjula plant to generate 132 point

cloud pairs, where 64 are well aligned and 64 are not well aligned.

These point cloud pairs have been used to generate a number of data

sets, all containing the same 132 point cloud pairs, but each with a dif-

ferent set of error offsets.
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ALGORITHM 2 AdaBoost algorithm

ALGORITHM 3 Parameter search algorithm

F IGURE 3 Overhead view of the Kjula data set. The set covers an
area of approximately 150 by 150m

5.1.2 Hannover

TheHannover set is a publicly available set of point clouds∗ acquired at

theuniversity ofHannover (seeFig. 5). It is acquiredwith amovingplat-

formequippedwith two continuously rotating SICK scannersmounted

back to back and odometry sensors. Each point cloud features one half

∗ http://kos.informatik.uni-osnabrueck.de/3Dscans/

revolution of the scanners (i.e., 360 degrees of readings) and the points

are compensated for the platform's movement by using the odometry.

The speed of the platform is low enough in relation to the accuracy of

the odometry to not cause any significant movement errors. The den-

sity of these point clouds ismuch less than theKjula setwith only 4000

to 10 000 points in each point cloud.We have used 801 scans to create

1600point cloud pairswhere 800 arewell aligned and 800 are notwell

aligned in the samemanner as for the Kjula set.

5.1.3 Ground truth datasets

One crucial aspect of evaluating point cloud alignment is how the

aligned ground truth data are created. We used registration methods

to align point clouds to each other, and afterward we made visual con-

firmations of the results. There are of coursemore sophisticatedmeth-

ods of acquiring ground truth data, such as using GPS or camera based

motion capture (e.g., Vicon), howeverVicon is not feasible in large envi-

ronments since the volume must be in full view of the cameras. GPS

might have been beneficial for the Kjula set, but it would probably be

challenging to use in theHannover set due to the possibility ofmultiple

reflections when driving close to walls.

When verifying the registrations there can be variations in align-

ment that are not obvious upon visual inspection. Therefore, we have

compared two common registration methods, NDT registration and

ICP registration, since some of the classifiers explicitly use the objec-

tive function of NDT and some use the objective function of ICP (the

RMSerror).Whena specific registrationmethod is used toproduce the

http://kos.informatik.uni-osnabrueck.de/3Dscans/
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F IGURE 4 TheVolvo L120Fwheel loader at the asphalt plant inKjula. The laser scanner (see the inset) ismountedon topof the cabin underneath
the gray protection shield

F IGURE 5 Overhead view of the Hannover data set.24 The data set covers an area of approximately 180 by 200m

ground truth data sets, it might be the case that this introduces a bias

toward certain classifiers.

To quantify this bias, we have created two ground truth datasets

each, for the Hannover and Kjula point clouds, respectively: one using

NDT registration and one using ICP registration. We have made eval-

uations with both to see how the differences affect the performance

of the classifiers. The failure rate (identified by visual inspection) of

the registration methods was approximately 20% for the Kjula point

cloud pairs and 1.4% for the Hannover pairs. In those cases we have

used the registration of the nonfailing method as a replacement. Luck-

ily both methods never failed for the same point cloud pair. The envi-

ronment in Kjula is much less structured than the Hannover campus,

which explains the higher number of failed registrations.

The magnitudes of the difference between the resulting transfor-

mations after applying the two registration algorithms have been cal-

culated. The box plots in Figures 6, 7, and 8 show the differences. The

resulting transformations for most of the point clouds differ by less

than 0.05 m in translation, and the rotations differ by less than 0.032
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0 0.05 0.1 0.15 0.2 0.25 0.3

Hannover

Kjula

Translation difference in meters

F IGURE 6 The box plots show the distribution of the translation dif-
ferences, comparing the transformations given by NDT and ICP regis-
tration on the Hannover and Kjula data set, respectively

0 0.01 0.02 0.03

HannoverZRot

HannoverYRot

HannoverXRot

Rotation difference in radians

F IGURE 7 The box plots show the distribution of the rotation differ-
ences, comparing the transformations given by NDT and ICP registra-
tion on the Hannover data set

0 0.001 0.002 0.003 0.004 0.005 0.006

KjulaZRot

KjulaYRot

KjulaXRot

Rotation difference in radians

F IGURE 8 The box plots show the distribution of the rotation differ-
ences, comparing the transformations given by NDT and ICP registra-
tion on the Kjula data set

radians for all point clouds.However, 25%of thepoint cloudpairs in the

Hannover set differ by 5–30 cm, which could introduce a bias toward

some classifiers, but our evaluations in Section 5.3.2will show that this

is not the case. Errors of up to 30 cm would be clearly visible in most

cases, but the ones encountered here are in such areas that the correct

alignment is not obvious, for example in corridor-like areas.

5.1.4 Induced errors

To generate datasets with both correctly aligned point cloud pairs and

misaligned pairs, which is needed for training of the classifiers, we have

manually added errors. To cover a wide set of scenarios, we have cre-

ated datasets with several error types andmagnitudes.

The added errors are made up of two components, a translational

part and a rotational part. One of the point clouds in each pair has been

translated and rotated to put it out of alignment with the other point

cloud.

Further, we have defined three different error magnitudes with

the aim of creating three distinct difficulties. The translational part is

defined as a static distance with a random direction, meaning that the

magnitude of the error will always be the same but the direction in

which the error is applied will be random. The rotational part of the

added errors is defined as a rotation with static magnitude but ran-

dom direction (clockwise or counterclockwise). Each point cloud with

an added error has first been translated followed by a rotation.

• Small errors: These errors are approximately twice themagnitude of

the upper quartile of the difference we measured between ICP and

NDT registration in Section 5.1.3. This magnitude is selected to be

(just) distinguishable fromnoise occurring in point cloud registration

methods. The error is only applied in three degrees of freedom to

simulate how odometry errors often behave. The small translational

error is 0.1m in the X-Y plane. The small rotational error is 0.01 radi-

ans (0.57 degrees) around the vertical axis. These errors are most

difficult to detect. Figure 9 shows a point cloudwith a small error.

• Medium errors: These errors are chosen to be less of a challenge for

the classifiers. They are also limited to three degrees of freedom but

with a bigger magnitude. The medium translational error is 0.3 m

in the X-Y plane. The medium rotational error is 0.03 radians (1.72

degrees) around the vertical axis.

• Large errors: These errors are chosen to be easy to detect for any

reasonably good evaluation method. The errors are, in contrast to

the small and medium errors, applied in six degrees of freedom and

the magnitude is even larger. The large translational error is 0.5 m.

The large rotational error is 0.05 radians (2.86 degrees).

By using manually verified datasets to create the datasets with

errors, we also get a correct labeling, i.e., whether the point cloud pair

is aligned or not, of all point cloud pairs. A correct labeling is a require-

ment for both training and evaluation of the classifiers.

5.2 Evaluationmethods

We denote a point cloud pair that is classified as aligned as a posi-

tive result of the classifier, and a point cloud pair that is classified as
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F IGURE 9 Two point clouds, one in red and one in green, from the
Hannover data set that are misaligned with a small 10 cm error. The
two vertical lines in the square marking in the figure are both forming
the samewall but are clearly not alignedwith each other

unaligned as a negative result. A true positive (tp) is a point cloud pair

that is detected as aligned, and is indeed successfully aligned, accord-

ing to our manually labeled ground truth. A false positive (fp) is a point

cloud pair that is detected as aligned, but that is, in fact, not properly

aligned. True and false negative (tn, fn) classifications are symmetrically

defined.

The primary evaluation metrics used in this article is accuracy, for-

malized as follows:

A = tp + tn
tp + fp + tn + fn

. (5)

The accuracy measures the overall quality of a binary classifier,

regarding both true positives and true negatives. The accuracy is also

the measure that AdaBoost seeks to maximize. The range of the accu-

racy goes from0 to1,where0means that all evaluations are false and1

means that all evaluations are true. Random classifications should end

upwith an accuracy of 0.5.

We also investigate the sensitivity to threshold selection for each

classifier.We use receiver operator characteristic (ROC) plots to show

how the performance of each classifier is affected by changes to the

threshold. The step size for all single classifiers has been chosen by

making a linear distribution of 100 steps between the maximum and

minimum result from the classifier in the associated evaluation round.

The boosted classifier is a special case where the returned value

is a mixture of several classifiers that varies for different datasets.

To produce the ROC-plot for the boosted classifier, we use Eq. (6),

where 𝛼 and ht are the classifier weight and corresponding classifier,

respectively, as introduced in Section 4, to normalize the output and

then change the threshold between −1 and 1 with increments of 0.02,

thus creating 100 steps,

∑T
t=1 𝛼tht(x)∑T

t=1 𝛼t
. (6)

TABLE 2 The error types used in the evaluations

Error name Error description

small Small translational and rotational errors

medium Medium translational and rotational errors

large Large translational and rotational errors

varying Evenly distributed small, medium, and large combined
errors

5.3 Evaluations

5.3.1 Classifier performances

Wehaveevaluated theperformanceof the classifiers using k-fold cross

validation.

A requirement for all weak classifiers used in AdaBoost is that they

perform better than random. Therefore, we remove from the boosting

all classifierswhose performance is inside a 95% confidence interval of

random accuracy. The outcome of a classifier is considered to be a ran-

dom variable following a binomial distribution with n samples, where n

is the number of point cloud pairs. Using the normal approximation, we

can use the following equation:

Ip = pobs ± 1.96 ∗
√
pobs(1 − pobs)∕n. (7)

With the observed probability pobs = 0.5, the 95% confidence inter-

val Ip is 0.4755–0.5245 for the Hannover set and 0.4147–0.5853 for

theKjula set.We use these numbers to disqualifyweak classifiers from

use by the AdaBoost classifier to avoid random classifiers.

To evaluate the performance of the classifiers, we have been run-

ning cross-validation for all classifiers on the ten datasets (five error

distributions for each of the two environments). The error types are

described in Table 2. On the Hannover-sets, consisting of 1600 point

cloud pairs, wemade an eightfold cross validation, i.e., training on 1400

pairs and evaluating on 200 pairs eight times. On the Kjula-sets, con-

sisting of 132 point cloud pairs, we made a threefold cross validation,

i.e., training on 88 pairs and evaluating on 44 pairs three times. In the

case of single classifier evaluations, the training phase is used to find

the classifier threshold as described in Section 4.

The performance of a classifier is determined by its accuracy. An

accuracy of 1 means that the classifier can properly classify all point

cloud pairs as aligned or not aligned. An accuracy of 0.5 means that

the outcome of the classifier is random.We expect to see the best per-

formance on the datasets with large errors and then declining perfor-

mance as the errors become smaller.

Hannover results

Figures 10 and 11 shows the classifiers' accuracy on the Hannover

datasets for all error types.

In Figure 10 we see that most classifiers obtain more than 90%

accuracy for large errors, which can be considered as a good result.

The NORM classifier manages well above a random result for large

errors but fails to classify the point cloud pairs with medium and small

errors, indicated by the accuracy of 50%, which implies a random

classification result. When dealing with smaller error magnitudes, the



672 ALMQVIST ET AL.

F IGURE 10 Classifier accuracy on theHannover data setwhere the erroneous point cloud alignments consist of small, medium, and large errors,
respectively

F IGURE 11 Classifier accuracy on the Hannover data set where the erroneous point cloud alignments consist of varying errors

difference between the mean normals is smaller and more sensitive to

noise and irregularities in the point clouds from for example rough sur-

faces, which could explain the poor performance for the NORM classi-

fier on small error magnitudes. The PLEX classifier fails to classify the

point cloudpairs completely,which could imply that this is, in the imple-

mentation we have used, an unsuitable classifier for this type of prob-

lem. The NDT3 and NDT4 classifiers have the highest accuracy for all

errormagnitudes togetherwith theADAclassifier. It is interesting how

the RMS-classifiers performdifferently, i.e., the best RMS-classifier for

large errors is not the best RMS-classifier when the error magnitude

changes. This indicates that it is important to select a suitable thresh-

old for RMS-classifiers.

If we look at the dataset with errors of all three magnitudes, shown

in Figure 11, we observe that the classifiers' performance is roughly

the mean value of the accuracy obtained over all error magnitudes in

Figure 10. This result suggests that the thresholds acquired during the

training phase of the classification process are relatively stable for all

classifiers even though error magnitudes vary.

Kjula results

Figures 12 and 13 show the classifiers' accuracy on the Kjula dataset

for all error types.

The results from the Kjula set in Figure 12 show a more spread out

result than the corresponding results in the Hannover set, indicating

the higher difficulty of the less structured Kjula environment. There

are still some classifiers that perform above 80% even on the small

error magnitudes, but there are more classifiers in the Kjula set that

perform closer to random than in the Hannover set.

It is worth noting that among the large error evaluations, the

boosted classifier (ADA) performed slightly worse than the NDT3

classifier. Our analysis suggests that this is due to overfitting. Even

if AdaBoost is rather robust against overfitting, the Kjula data sets

contain only 64 positive and 64 negative point cloud pairs. We have

observed that the NDT3 and NDT4 classifiers perform equally well

on the training data, but NDT3 performs better on the evaluation

data. The boosted classifier, as a consequence, uses a suboptimal com-

bination of the “weak” classifiers in this case. The effect of this on

the AdaBoost classifier can be seen in both Figures 12 and 13, as it

performs worse than NDT3 but better than or equal to NDT4. This

result emphasizes the risks of small training sets and also shows that

AdaBoost is not immune to overfitting.

We can also observe the same trend among the RMS-classifiers as

in the Hannover evaluations. The best RMS classifier for large errors is

not the best classifier for small errors, showing even further the impor-

tance of a suitable threshold for RMS-classifiers and that theRMSclas-

sificationmethod is sensitive to varying error magnitudes.

We further notice the same behavior as in the Hannover evalua-

tions when evaluating data with varying error magnitudes. The result
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F IGURE 12 Classifier accuracy on the Kjula dataset where the erroneous point cloud alignments consist of small, medium, and large errors

F IGURE 13 Classifier accuracy on the Kjula dataset where the erroneous point cloud alignments consist of varying errors

F IGURE 14 Accuracy of classifiers trained on datasets from the Kjula environment and evaluated on datasets from the Hannover environment

for each classifier is close to the mean value of the accuracy for small,

medium, and large errors.

Cross-dataset results

In this section we have evaluated classifiers that have been trained

on datasets from one of the two environments and evaluated on the

other. These evaluations are performed to investigate the classifiers'

sensitivity to the likeness between the training data and the evaluation

data.

Figures 14 and 15 show the accuracy for small, medium, and large

errors. In comparison to the evaluations with training and evaluation

data from the same environment, we see that many of the classifiers

produce random or close to random results. Some of the RMS clas-

sifiers perform well above random on large errors, but none perform
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F IGURE 15 Accuracy of classifiers trained on datasets from the Hannover environment and evaluated on datasets from the Kjula environment

F IGURE 16 Diagrams explaining the effects on accuracy for classifierswhenusing ground truth createdwith differentmethods. The top diagram
compares the change in accuracy for the classifiersNDT3andRMS6when evaluating datawithNDT-based ground truth (blue/dark) and ICP-based
ground truth (red/light). The bottom diagram shows the effect of themethod used to create the ground truth when the classifiers are compared to
each other with NDT-based ground truth to the left and ICP-based ground truth to the right

better than random on small errors. The NDT classifiers (NDT1–4) all

perform better than random. NDT3, using only overlapping points, and

including the ground plane, is the best classifier on large and medium

errors, and NDT4 is the best classifier on small errors. These results

suggests that NDT-based classifiers are the least sensitive classifiers

when the environment changes, and that the other classifiers aremuch

more sensitive to differences between the training data and the evalu-

ation data.

These results show that the above-mentioned classifiers generalize

rather well between two datasets that have different geometric char-

acteristics and different point-cloud resolutions. However, the results

might be different for denser point clouds (e.g., from land survey equip-

ment such as Faro Focus) or ones with a restricted field of view (e.g.,

from RGB-D sensors).

5.3.2 ICP vs NDT evaluations

In Section 5.1.3 we discussed the creation of ground truth datasets

and the possible problems with using a certain registration algorithm

to create such datasets. In this section, we compare evaluations made

where the ground truth datasets are created using either NDT regis-

tration or ICP registration.

Figure 16 shows the difference in accuracy for the best performing

NDT and RMS classifiers when evaluated on the Hannover set with
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F IGURE 17 ROC-plots of small, medium, and large errors from theHannover dataset for the NDT3, RMS6, RMS7, and AdaBoost classifiers. The
concentration of points along the curves shows the sensitivity for threshold selection for each classifier. A high concentration of points close to
the point 0,1 in each plot shows that the classifier is not sensitive to threshold selection, while a sparse concentration of points at 0,1 shows that
the classifier is sensitive to threshold selection

ground truth data created usingNDT registration and ICP registration.

The upper left diagram, NDT3 vs NDT3ICP, shows the accuracy for the

NDT3 classifier on the Hannover set with NDT-based ground truth

(blue/dark) and with ICP-based ground truth (red/light). The accuracy

is, as expected, highest for the evaluations made with NDT-based

ground truth. The upper right diagram shows in the same way the

accuracy for the RMS6 classifier on the same Hannover sets with

NDT-based ground truth and ICP-based ground truth. In this case, the

accuracy is better on the dataset with ICP-based ground truth. The

differences explained in the two upper diagrams show that themethod

used to create the ground truth data does have some effect on the

outcome of the evaluations. However, the effect of the method used

to create the ground truth is not significant enough in our experiments

to alter the outcome of the evaluations. This is shown in the lower

two diagrams in Figure 16 where the two classifiers NDT3 (blue/dark)

and RMS6 (red/light) are compared to each other with NDT-based

ground truth to the left and ICP-based ground truth to the right. The

diagrams are nearly identical since the differences in accuracy for the

classifiers aremuch larger than the effect of themethod used to create

the ground truth. It might be important, however, to take this effect

into account in a scenario where the difference in accuracy between

classifiers is very small.

5.3.3 Classifier threshold sensitivity

The threshold sensitivity evaluation is performed by inspecting ROC

plots of the classifiers performance when varying the threshold as

described in Section 5.3.1. It is preferable to have a low sensitivity to

threshold selection, as this increases the robustness of the classifier. A
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F IGURE 18 Sample ROC-plots of small, medium, and large errors from the Kjula dataset. Both classifiers show an even spread of samples along
the curves

low sensitivity is displayed as a high concentration of samples (dots) in

the upper left corner of the ROC plot, where the true positive rate is

high and the false positive rate is low.

Hannover dataset

In Figure 17 we show an example of ROC plots for the classifiers that

showed the best performance on the Hannover dataset. Each plot

shows ROC curves for each of the three difficulties on the combined

dataset. Thebest performance in termsof lowsensitivity is achievedby

the AdaBoost classifier in the bottom right corner where a large con-

centration of samples is found in the upper left corner of the diagram,

suggesting that a wide range of thresholds will result in a high perfor-

mance. The bottom left RMS7 classifier, on the other hand, shows only

a few samples along the curves, and the highest concentration is found

at the end points (close to 0,0 and 1,1). This suggests that the range

of acceptable thresholds is small. The other two classifiers, NDT3 (top

left) and RMS6 (top right), show an even spread of samples along the

curves, showing that the sensitivity of these classifiers is between the

RMS7 and AdaBoost classifiers.

Kjula dataset

In Figure 18 we see examples of ROC-plots for the Kjula set. The num-

ber of samples in the plots is lower because of the lower number of

point clouds in the entire data set. Both classifiers (NDT3 to the left

and RMS3 to the right) show an even distribution of samples along the

curves, suggesting that the classifiers have a similar threshold sensi-

tivity, which was also the case for the NDT3 and RMS6 classifiers in

Figure 17.

5.4 Conclusions

We can conclude from the data that NDTwith overlap evaluation (and

sometimes removing the ground floor), i.e., NDT3 and NDT4, are bet-

ter than any of the other single classifiers (including several variants

of the commonly used RMS measure as well as other proposed classi-

fiers from the literature) for classifying data from both structured and

unstructured outdoor environments.

In particular, the NDT score classifiers have been shown to be sub-

stantially more robust to changing environments than methods using

RMS classifiers or SIM classifiers. Even when trained on a small sam-

ple from an unstructured outdoor work site and evaluated in an urban

campus environment, theNDTclassifiers alone achieveover 80%accu-

racy for themost difficult set of scan pairs. TheNORMclassifier seems

to be more suitable for flat surfaces without irregularities and noise

since its performancedropped significantlywhen theerrormagnitudes

were smaller.

An AdaBoost classifier built by combining all these classifiers per-

forms on par with the best single classifiers (i.e., the ones using NDT),

suggesting that the classifiers do not complement each other in such a

way that improved performance can be achieved. However, the ROC-

plot evaluations suggest that AdaBoost might be less sensitive to

threshold selection than any single classifier.

6 SUMMARY AND FUTURE WORK

Thepresentwork is, to thebest of our knowledge, the first comparative

evaluation of geometric consistency methods for classifying aligned

and nonaligned point cloud pairs. Such classification methods can be

used, e.g., for detecting point cloud registration failures in applica-

tions of model reconstruction or localization and mapping. In partic-

ular, we have evaluated several variants of common classifiers in two

environments pertinent to mobile robots: an urban campus environ-

ment and an unstructured work site.

We hope that the results presented here can also be used as a

baseline for further research on automatically classifying point cloud

alignedness. In particular, we have identified two outstanding issues

that deserve further attention.

The first is to investigate existing classifiers more deeply in order to

better isolate the specific cases in which they perform better or worse,
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and to learn and evaluate optimal parameter selections for different

environment types and also investigate other aspects not considered

in this article, such as computational time of the different classifiers.

Depending on the application, it might be an advantage to sacrifice

some accuracy in favor of faster computational times. In this work, we

have tried to make a broad survey covering many methods. In future

work, we hope that more specific classifiers will be investigated in-

depth toprovide a good foundation for our second suggesteddirection.

The second direction is to perform more evaluations on other

datasets, common for other applications, as well as to investigate

further the impact of variations in the point clouds on classifiers to

evaluate classifier robustness. One such variation, for example, could

be different point cloud densities, where the results achieved on

sparse point clouds, such as the ones evaluated in this article, might

not be reproducible on dense point clouds, i.e., point clouds consisting

of millions of points. A special category of errors that we have left out

of this article is the output of scan registration failures (as opposed to

induced error offsets with fixed magnitudes), which happens when a

registration method converges to a local optimum instead of the best

relative pose. To create such datasets and evaluate themwould also be

a useful contribution.

In this work, we used AdaBoost to create a strong classifier. The

results are promising, but further research must be conducted in this

area. We also know that there are other methods that might prove

to be good candidates. We do encourage a deeper investigation into

combinations of several classifiers, both using AdaBoost and with

other methods.
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