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Abstract—Generating short and safe paths for mobile robots
operating in crowded spaces is a hard task due to the high
uncertainty of each person’s future behaviour. Classical path
planning approaches often result in an over-constrained or
overly cautious robot that fails to produce a feasible, safe path in
the crowd, or plans a large, sub-optimal detour to avoid people
in the scene. This work addresses these issues by exploiting
long-term predictions of humans’ activities to plan short and
safe paths for mobile robots in social spaces. We introduce a
Markov Decision Process based motion prediction approach,
which extends the baseline works by better adapting online to
the observation of the pedestrian speed (policy cutting technique)
and by introducing a fast random-walk based method (stochastic
policy sampling) to generate predictions. Moreover, differently
from the baselines, we evaluate several ways to incorporate
predictions in path planning algorithms, and choose the most
promising one. Through an extensive evaluation, using both
simulated and real-world datasets, we show that our approach
can accurately predict human motion and improve the quality
of robot’s path planning.

I. Introduction
Real-time path and motion planning in crowded and

dynamic environments is a well-studied, but still an open
problem even in low dimensional configuration spaces. Ex-
isting works are unable to cope with dynamic situations in
real time and to generate smooth, natural motion without
causing inconveniences or hindrances to humans in the scene.
The difficulty of the task arises due to high uncertainty
of each person’s future behaviour. Common problems that
motion planning methods face in very complex, dynamic
environments include freezing and dancing of the robot. Be-
ing involved in a replanning architecture, the path planning
method may return a solution that is noticeably distinct from
the optimal solution of the previous replanning iteration. In
general this prevents smooth transition on-the-fly from the
previous plan, sometimes making the robot stop and turn
on its place, preparing to execute the new optimal plan. As
the complexity of the environment increases, the robot fails
to traverse significantly any of the current plans, before it
becomes invalid and replaced by the updated replanned path.
This problem is referred to as the “dancing robot” problem.
The limiting case of the dancing robot problem is the state
of a “freezing” robot [1]: the robot is too “polite” to move
anywhere and it is therefore blocked into the crowd.

Motion and path planning methods typically rely on
a static grid map of obstacles, updated with the current
positions of dynamic objects in a periodical replanning
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Fig. 1. Predictive planning in the Social Robotics Laboratory scenario.
There are three people detected in the environment, individual predictions
are shown in top row and bottom left. Observed tracks are depicted in
red, predicted future trajectory is represented with a heatmap (warmer
colors correspond to higher probability of visiting a location). Bottom
right: the robot is located in the top left corner of the room, its goal is
in the bottom right corridor. Using the Inferring Collision Points predictive
planning algorithm, the robot iteratively plans three paths (in red, orange
and blue), before it finds the green path with no predicted collisions.

fashion. We anticipate that using information about temporal
evolution of the map in the future might improve the robot’s
motion planning and reasoning of its own path, in a way
similar to what humans do naturally and intuitively.
In this work we enhance classical path planning techniques

with long-term predictions of human trajectories. To this end
we present our own method for predicting future locations of
humans based on the works of Ziebart et al. [2] and Karasev
et al. [3], review and compare several promising techniques
for exploiting the forecast in a path planner [4], [2], [5]. Our
prediction method is based on the assumption that people
essentially behave like planners by finding an optimal way
through the environment. To generate purposeful motion
predictions we use a goal-directing motion strategy obtained
from solving a Markov Decision Process (MDP) problem.
Having estimated the state of the person at the future time
moment, we exploit this information in a time-dependent
costmap of the environment for predictive planning.

Through an extensive evaluation, using both simulated and
real-world recorded human trajectories, we show that our
approach can accurately predict human motion and improve
the quality of robot’s path planning. Following an initial plan
of better quality, the dancing and freezing robot problems are
reduced, contributing to more stable and efficient behaviour
in social spaces.

We claim the following contributions in this work:
• A simple and efficient method for predicting long-term
future trajectories of humans based on [2] and [3].

• Evaluation of several promising methods for incorporat-
ing predictions in path planning algorithms.



• Extensive evaluation with appropriate metrics to show
the effectiveness of predictive planning approach, com-
pared to standard non-informed planning methods.

The paper is structured as follows: in Sec. II we review the
related works and provide the motivation for our approach,
presented in Sec. III. Experiments with the new method and
its performance evaluation are given in Sec. IV, followed by
the results in Sec. V and the discussion in Sec. VI.

II. Related Work
Learning typical patterns to model human motions is

a widely used method for predicting how people move
in known environments. Bennewitz et al. [4] propose a
technique for learning motion patterns and environment-
specific locations that people might be interested in. The
method learns the typical patterns from sample trajectories
by using Expectation Maximization and it adopts Hidden
Markov Models to maintain a belief about the positions
of persons. Motion patterns learning methods often suffer
from implicit drawbacks: they fail to predict new trajectories
unseen in the training set; have poor adaptivity to changes in
environment’s configuration (predicting trajectories through
closed doors) and do not generalize to other environments.

Formalization of social interaction is another approach for
predicting future behaviour of humans. Trautman et al. [1],
making the assumption that people are involved in natural
“joint collision avoidance”, propose to jointly estimate most
likely future trajectories of the humans and the robot with a
nonparametric statistical model based on Gaussian processes.
A similar approach is used by Kuderer et al. [6]: unlike [1],
they propose to learn typical human navigation behaviour
from a set of sample trajectories. Joint trajectory estima-
tion methods assume cooperation between agents. In reality
agents often fail to demonstrate the optimal joint behaviour,
predicted by the methods. Additionally, Kuderer’s method
needs a large learning set to adequately generalize human
motion behaviour. It is unclear whether it scales well with
the number of humans, given that all topological variants of
the scenario are considered.

Rehder et al. [7] present a method for probabilistic goal-
directed pedestrian prediction, that uses a grid representation
of the estimated probability distribution. Dynamics of the
pedestrian and environment-based constraints are handled
by convolving the probability grid with the dynamics-based
transition kernel. Presented results suggest predictive perfor-
mance on the level of a simple Kalman Filter, only on short-
term prediction horizons (up to 2.5 seconds) and with straight
ground-truth paths in obstacle-free space. It is not clear
whether the method can deal with cluttered environments
without degrading into a uniform probability distribution.

Recently, MDP based approaches for predicting human
behaviour have received a notable amount of attention.
Ziebart et al. [2] model the goal-directed trajectories of
pedestrians using the maximum entropy inverse optimal
control. A soft-maximum version of the MDP, that accounts
for alternative ways to reach the goal, is then used to
predict future trajectories. The learned feature-based cost
function generalizes to changes in the obstacles placement

and new environments, described with the same features
(obstacles locations). Obtained predictions are used in a novel
incremental predictive planner that simulates the predictions
forward in time and finds possible points of collision with
the planned robot’s path.

Kitani et al. [8] extend [2] to handle noisy tracker ob-
servations and include vision-based physical scene features.
Furthermore, Karasev et al. [3] provide an interpretation of
models from [2], [8] as jump-Markov processes with the
goal represented by a hidden variable. Agents’ behaviour is
interpreted as switching nonlinear dynamical systems, with
the latent goal variable governing the switches and the policy
describing the nonlinear motion dynamics. Environmental
constraints and biases are included as an explicit, hand-
crafted semantic map of the environment. Vasquez [9] ex-
tends the MDP-based approach by enabling any cost-to-go
planning algorithm to represent the uncertainty related to
human motion instead of the value function of MDP. The use
of a velocity-dependent probabilistic motion model allows
estimation of the agent’s future position for any given time
moment. A gradient-based goal prediction approach, which
does not rely on filtering, makes the method capable of
quickly recognizing intended destination changes.

Our MDP-based method for predicting human motion is
inspired by the works of Karasev et al. [3] and Ziebart
et al. [2]. The approach in [2] assumes a fixed goal and
constant-length steps - it does not adapt to the observations
of the pedestrian speed. We deal with this limitation using
a novel policy cutting technique and an efficient stochastic
policy sampling algorithm based on random walks. For
goal inference we adopt an observed track processing strat-
egy similar to [9]. Similarly to [3], we dispense with the
IRL method for learning the cost function that humans
are assumed to optimize: results from [2] suggest that the
learned cost function represents essentially the blurred map
of obstacles, i.e. in reality humans are optimizing euclidean
length. Moreover, defining a semantic map for a uniform
terrain, e.g. indoor environment, is not as straightforward, as
it is for an urban scenario [8], [3]. Our prediction method
does not need a set of sample trajectories. It provides very
general and flexible estimation of the person’s future position
based on environment-constrained, goal-directed transition
modeling, that takes dynamics of the person into account.
The resulting probability distribution in the form of predicted
occupancy map allows seamless integration with the standard
motion planning techniques. Finally, the simple implemen-
tation and clear modular structure gives room for the future
improvement of method’s components.

III. Our Approach
This section presents our human motion prediction tech-

nique and different methods to incorporate the latter into
classical path planning algorithms.

A. MDP-based Predictions
Markov Decision Processes (MDP), that provide a math-

ematical framework for modeling the decision making prob-
lem for a discrete time stochastic control process, are well



suited for modeling the path planning task. Formally, the
MDP is described with a tuple 〈S,A,T ,R, γ〉 where S and
A are finite sets of agent’s states and actions respectively.
The transition function T (s, s′,a) defines the probability of
getting to state s′ from state s when executing the action a.
The reward function R (s,a) specifies the immediate reward
gained for taking the action a in state s. The discount
factor γ controls the importance of future rewards, relative
to immediate rewards. The agent’s policy π :S→A, defines
the action the agent should take in each state. The optimal
policy π∗, which maximizes the cumulative expected future
rewards (Eq. 2), is obtained alongside with the state V ∗(s)
and action Q∗(s,a) values by solving the recursive Bellman
equations (Eq. 1), e.g. using the value iteration algorithm.




Q∗(s,a) = R (s,a)+γ
∑
s′

T (s, s′,a)V ∗(s′)

V ∗(s) =max
a

Q∗(s,a)
(1)

π∗(s) = argmax
a

Q∗(s,a) (2)

1) Our Representation: The state of the person in our
MDP is represented with the 2D (x, y) Cartesian coordinates,
which essentially means that the agent’s action only depends
on the current position. The goal-directed motion of the
person is encoded by assigning negative rewards to all states
and actions except for the goal state, which only has one self-
transitioning action with zero reward (called the absorbing
zero state). For modeling the action space, we assume that
the human motion is unconstrained in terms of orientation
and acceleration. Therefore we allow motion in any direction
θ with any speed ν below the speed limit νmax - a large
value that exceeds the expected speed of people in particular
environment by a safety margin. Handling the observed per-
son’s individual speed is discussed later in Sec. III-A.4. We
describe the action space with the 〈θ, ν〉 orientation-velocity
pair, which reads as “making a move in direction θ with
velocity ν”. We assume deterministic action outcome, i.e.
∀s ∈ S, ∀a ∈ A ∃!s′ : s

a
→ s′. This assumption, common with

[2] and [3], implies that humans accurately execute desired
actions, i.e. know where they are going. For convenience
we denote the transition function with deterministic action
outcomes as T (s,a) : S ×A → S. For the origin state s =
(sx, sy ) and action a = (θ, ν), transition s

a
→ s′ is calculated

as s′x = sx + ν cos(θ), s′y = sy + ν sin(θ).
In a fashion similar to probabilistic localization, we frame

the task of predicting a person’s future location as estimating
the probability p(s |t) that the person will be in state s at
the time moment t, ∀si ∈ S, t0 < t < T , where t0 is the
current time and T is the prediction horizon. We make the
assumption that the person stays in S. As we use a 2D
map of the environment, the estimated value p(s |t = ti) is a
probability distribution over the map. A static costmap C(s)
carries the unitary cost of each state, which is set to ∞ for
occupied cells and to a small value ε > 0 for free states.

In the known environment we assume that the possible
goal states (motion destinations) are known a-priori. Using
the set of goals, denoted as G, we prepare and solve |G|

Algorithm 1 Random Walk Stochastic Policy Sampling
1: function SPolicySampling(s0, πg (s),K,T )
2: for i = 1, ...,T do
3: OCi ← zeros( |S |)
4: end for
5: for k = 1, ...,K do
6: sn ← s0
7: t ← 0
8: while sn , g and t < T do
9: t ← t +1
10: repeat
11: a← sample(πg (sn ))
12: sn+1← T (sn, a)
13: until lineOfSight(sn, sn+1)
14: OCt (sn+1)←OCt (sn+1)+1
15: sn ← sn+1
16: end while
17: end for
18: for i = 1, ...,T do
19: OCi ← normalize(OCi )
20: end for
21: return OC

MDP problems with the goal-dependent reward function
Rg (s,a) and acquire the unique optimal policy π∗g for each
goal, as well as the goal-dependent V ∗g (s) and Q∗g (s,a) value
functions. Rg (s,a) is constructed as follows:

Rg (s,a) =



−(w1C(s′)+w2 | |s− s′ | |+w3 | |s′−g | |), if s , g
0, otherwise

(3)
where s′ = T (s,a) and w1,w2,w3 > 0 control the relative
importance of each component: the unitary cost of s′, Eu-
clidean distance | | · | | covered with the action a and estimated
distance to the goal to encourage the agent to perform faster
actions with larger ν. Since the reward function is negative
everywhere except the goal state, the MDP can be solved
with γ = 1 in Bellman equations [10]. Therefore the V ∗g (s)
value of a state is actually the cost-to-go from s to g.
To predict also alternative paths to the goal and to allow

deviations from the optimal policy, we relax the obtained π∗g
with the stochastic Boltzmann policy (Eq. 4) that assigns to
each action a probability to be executed in a particular state
s proportional to its value Q∗g (s,a). Parameter α controls the
level of stochasticity, i.e. to what extent sub-optimal actions
are considered. We denote the stochastic policy as πg.

a ∼ πg (s) with prob. ∝ exp(α(Q∗g (s,a)−V ∗g (s))) (4)

2) Stochastic Policy Sampling Using Random Walks: To
make predictions using the stochastic policy πg, we propose a
simple random walk based algorithm (Alg. 1) that samples K
paths, each starting in the initial state s0. The position of the
particle at each time t is saved in the corresponding time layer
OCt of the occupancy map (OC), that is shared among K
iterations of the random walk. Each layer is then normalized
to properly represent the probability distribution p(s |t,g) of
the person’s possible location at time t. Illustration to the
Random Walk Sampling process is given in Fig. 2.
3) Goal Inference: Having observed the person moving

in the environment, we predict the final destination based
on the observed trajectory ζ = 〈s(t0), s(t1), ..., s(ti)〉 up to the



ζ1 ...

p(s|t=1) p(s|t=2) p(s|t=3) ...

ζ2 ζ3 ζK

Fig. 2. Example of the random walk stochastic policy sampling. For
each of the K sampled paths ζ1...ζK , location at time ti is added to the
corresponding time layer p(s |t = ti ), which is then properly normalized.
The path is depicted in blue, with the red starting point s0 and green goal
point. Probability distribution is represented with the shades of gray, darker
areas mean higher probabilities.

current time ti . Similarly to [2] and [9], for each goal g ∈G
we estimate the gradient of the value function V ∗g (s) along
ζ as a difference between values at t0 and ti using a softmax
function:

p(g) ∝ exp
(
τ
(
V ∗g (s(ti))−V ∗g (s(t1))

))
(5)

Parameter τ defines to what extent alternative, less likely
goals are considered. Goals’ probabilities are combined with
the goal-specific prediction, obtained with Alg. 1, to get the
final estimation of person’s location at time t:

p(s |t) =
∑
g∈G

p(s |t,g)p(g) (6)

4) Policy Cutting For Preferred Speed Selection: So far
we have trained a policy that allows actions up to a very large
νmax . In reality humans are moving with certain preferred
speed, which is usually less than νmax . In absence of other
cues, it is natural to predict that the human, observed at νobs ,
will continue moving with the same speed. One possible way
to handle the observed person’s speed correctly is to solve
an appropriate individual MDP problem with νmax = νobs .
This approach suffers from two drawbacks: firstly, increased
computational burden during online operation and secondly,
lack of ability to predict motion faster than νobs . Instead,
we propose to solve an MDP problem with large νmax to
obtain πg, applicable to all people, and use a simple policy
cutting technique to incorporate the information about νobs
into our prediction algorithm. We redefine the action space
for the observed person as Â(νobs) = 〈θ, ν〉 with θ ∈ [0,2π)
and ν ∈ (0,2νobs]. The policy π̂g is then defined as

a = 〈θ, ν〉 ∼ π̂g (s) with prob. ∝



πg (〈θ, ν〉), if ν ≤ νobs,
πg (〈θ,2νobs − ν〉), if ν > νobs

(7)

Intuitively, we assign the probability of faster actions with
ν > νobs the same as for the symmetrically slower action
with ν < νobs . The original policy πg is “cut” at the point
of νobs and “mirrored” backwards, hence the name policy
cutting. Using the updated π̂g as an input to Alg. 1, we get
predictions for each person at the corresponding speed νobs .

Alg. 2 summarizes our method for prediction. Its inputs
are: the occupancy map M of the environment, set of goals
G, observed trajectory ζ . The algorithm has the following
parameters: prediction stochasticity α, goal uncertainty τ,

Algorithm 2 Motion Prediction
1: function MotionPrediction(M, ζ,K,T,G, ε )
2: for all g ∈ G do
3: compute Rg (s, a) as in Eq. 3
4: V ∗g, Q∗g, π

∗
g ← ValueIteration(Rg (s, a), ε )

5: compute πg as in Eq. 4
6: end for
7: for all g ∈ G do
8: compute p(g) as in Eq. 5
9: compute π̂g as in Eq. 7
10: p(s |t, g)← SPolicySampling(ζend, π̂g,K,T )
11: end for
12: compute p(s |t) as in Eq. 6
13: return p(s |t)

prediction horizon T , and K samples for the stochastic policy
sampling. To speed-up the value iteration convergence, we
process the states in the order of increasing distance to
the goal: convergence is still guarantied in this case [11].
Example of predictions obtained with our method is given
in Fig. 1.

B. Robot Motion Planning Using Predictions

The general form p(s |t) of the obtained solution to the
prediction problem allows simple integration with standard
motion planning techniques, such as A* or RRT. The key idea
is to generate a temporal costmap of the environment that
would penalize presence of the robot in the regions probably
occupied by humans at that moment. In the following we
detail the temporal costmap construction and review several
discrete-search based algorithms for predictive planning.

If there are N people present in the environment, we run
N times Alg. 2 to obtain prediction pi (s |t) for each person
i individually. These predictions are used to prepare a 3D
spatio-temporal costmap (C3D) with T future time layers:

C3D (t j ) = cp
N∑
i=1

pi (s |t = t j ), j = 1...T (8)

where cp is the cost of the person. The C3D is then aug-
mented with appropriate costmap of static obstacles CSO.

1) Spatio-temporal Planning: The most straightforward
way to plan the robot path using C3D is to perform the
discrete search (e.g. A*) in x,y and t dimensions (e.g. used
in [4]). The costmap CDS for spatio-temporal planning is
constructed as follows:

CDS (ti) =



CSO +C3D (ti), if i <= T,
CSO, otherwise

(9)

While delivering the optimal solution given the available
prediction, the 3D A* suffers from increased runtime due
to the extra planning dimension. Therefore we consider two
alternative approaches: the Costmap Inflation and Inferring
Collision Points (ICP).
2) Costmap Inflation: It is a simple approach to in-

corporate human motion predictions in the robot motion
planning, suggested by Bai et al. [5]. Authors propose to run
A* planning on the 2D costmap of the environment (CI ),
augmented with people trajectories predictions, integrated



Algorithm 3 Inferring Collision Points
1: function ICP(sst ar t, sgoal, CSO, C3D, thrs, Z, β, σ)
2: C←CSO

3: RP ← ∅

4: for i = 1, ..., Z do
5: 〈P, c〉 ← DescreteSearch(sst ar t, sgoal, C)
6: RP ← RP ∪〈P, c〉
7: n← 0
8: for all 〈p, t〉 ∈ P do
9: if C3D (p, t) > thrs then
10: C←C +β · N (p, σ)
11: n← n+1
12: end if
13: end for
14: if n = 0 then
15: break
16: end if
17: end for
18: Pmin ←minc RP

19: return Pmin

over a short time period as follows:

CI = CSO +

T∑
i=1

λi ·C3D (ti) (10)

where λ ∈ (0,1] is a discounting factor for C3D layers,
corresponding to more distant future. Intuitively, the robot
avoids regions of the space currently occupied by humans,
but is more confident to “cross ways” with people in more
distant future.

3) Inferring Collision Points (ICP): Another promising
approach, presented in [2], provides a balanced trade-off
between the solution’s quality of the full spatio-temporal
planning and the fast operation of the time-independent
planning approach. The method, detailed in Alg. 3, es-
sentially iteratively shapes a time-independent navigational
cost function to remove known points of hindrance. It is
initialized with the static costmap (CSO). At each iteration the
discrete-search method solution under the current costmap C
is obtained (line 5 of Alg. 3) and simulated forward in time to
predict the points of possible interference with people, based
on the probability of hindrance at each location (lines 8-13).
Adding cost (a Gaussian N with variance σ and magnitude
β, centered in the point of collision p) to those regions of
the map prevents the subsequent plans (P with cost c) from
visiting those locations. The “planning - map update” cycle
is iterated Z times, or until a path with no collision is found.
Example of predictive planning with the ICP algorithm is
given in Fig. 1.

IV. Experiments
In this section we present a series of experiments, con-

ducted to evaluate our prediction and predictive planning
methods. All algorithms are implemented in Matlab, running
on a laptop with 2.3 GHz Intel Core i5 and 4 GB of RAM.

Values of w1,w2,w3 in the reward function R (s,a) are
informally estimated to match the expected behaviour of
the pedestrian: w1 = 1,w2 = 1,w3 = 0.01 and the cost of the
free space is ε = 10−10. Action space parameters are set as
follows: angular discretization of θ is π/10 for all simulated
scenarios and π/20 for the Edinburgh scenario; translational

Fig. 3. Edinburgh scenario. Left: Testset 1 contains 22 recorded trajecto-
ries. Middle: 16 simulated trajectories in the Testset 2. Right: Edinburgh
with obstacles scenario with 34 simulated trajectories in the Testset 3.

discretization of ν is 0.13 m/s, ν ∈ [0.22,4.95] m/s. Physical
space per cell discretization is 0.1 m. Temporal discretization
of predictions is 4.5 Hz. Prediction horizon T for each
experiment is specified if relevant, otherwise prediction in
Alg. 1 is made until the goal state is reached. Number of
random walk samples K is typically 50-100 for each goal.

A. Experiment 1: Prediction Evaluation
The first experiment aims to evaluate the predictive ability

of our approach and test how well it can predict the future
trajectories of humans. For this purpose we have selected 22
diverse trajectories (Testset 1) from the Edinburgh1 dataset,
with different starting points, motion speed and destinations,
both accounted and unaccounted for. Additionally we have
prepared Testset 2 with 16 hand-crafted trajectories of con-
stant velocity. Finally, to test the ability to predict non-
straight paths, we have added several large obstacles to the
map of Edinburgh campus and prepared 34 trajectories in
this setting (Testset 3). Beginning of each trajectory was used
as the observed track, and the rest as the ground truth for
evaluation. Test sets are presented in Fig. 3.

We evaluate the predictive performance of the algorithm
based on the following metrics:
• Negative Log-Likelihood (NLL) [9] of the path is a
measure of the probability that it is generated by the
stochastic policy. Lower value corresponds to higher
probability of path generation.

• Modified Hausdorff Distance (MHD) [8] is a geometric
measure of distance between the ground truth path and
the most probable path in the stochastic policy. Lower
value corresponds to smaller distance between paths.

Optimal values of α = 100 and τ = 5 are determined
prior to the main experiment using the paths from Testset 1.
Next, we evaluate predictions obtained by our method based
on the NLL and MHD metrics for all three testsets. We
compare the predictive performance of our approach to two
baselines: the Constant linear velocity and Random walk
predictions. Constant linear velocity assumes that the person
will continue moving in the same direction with average
observed speed. Only MHD measure is applied to this non-
probabilistic method. Random walk assumes that the person
will each step choose the action a ∈ Â(vobs) at random. We
only calculate the NLL measure for the this method.

In the end we specify the time needed to get predic-
tions in the Edinburgh scenario using our algorithm with
the following parameters: observation period OP = 7, T =
15, K = 50, |S| = 130× 94 states, |A| = 40 orientations×

1http://homepages.inf.ed.ac.uk/rbf/FORUMTRACKING/



Fig. 4. Scenarios for predictive planning methods comparison. Left: Large
empty room. Middle: Two homotopy classes. Right: Polygons.

35 velocities. Additional runtime calculation is made for an
action space with coarser discretization |A| = 20×18.

B. Experiment 2: Planning Methods Comparison
In the second experiment we compare the three predictive

path planning methods from Sec. III-B. To this end we use
three scenarios of increasing complexity: Large empty room
with no obstacles, Two homotopy classes with a large obstacle
in the middle, and Polygons cluttered with many polygonal-
shaped obstacles. The size of each scenario is 8 × 8 m2,
discretized into 40×40 cells gridmap. For each scenario we
run 100 randomized trials and plot them on the X axis in 3
separate plots, one for each evaluation criteria. We consider
a trial to be “complex” if the ICP method performed at least
one iteration of the “planning - map update” cycle. Such
trials are marked with a black ∗ sign on the X axis.
We evaluate the paths returned by the three predictive

planning methods based on the following metrics: Euclidean
length of the path, its social cost, computed as the sum of
C3D values along the path, and the algorithm’s runtime.
Each run of the experiment featured 4-8 people, number
chosen at random. People’s and robot’s start and goal points
were also drawn randomly, but spatially well separated,
to avoid non-representative experiments where no human-
robot interaction occurs. For each person i an A* path
ζi =

〈
s(t0), s(t1), ..., s(t |ζi |)

〉
was computed, position s(tk )

was blurred to imitate uncertain predictions pi (s |t = tk ).
Parameters used in this experiment: cp = 2 in the C3D

(Eq. 8); λ = 0.8 in the Costmap Inflation method; thrs = 0.3,
Z = 10, β = 0.7, σ = 0.15 in ICP.

C. Experiment 3: Planning Evaluation
In the third experiment we evaluate the solution quality of

the ICP predictive planning method, compared to a standard
socially-uninformed A* planner. For this purpose we use the
Testset 2 from Experiment 1 and an extended version of
Testset 1 that includes 51 recorded trajectories. Each trial
featured 4-5 random people from the testset, beginning of
the trajectory was used as the observed track for prediction
algorithm and the rest served as the ground truth future
trajectory for evaluation. Robot’s start and goal points were
drawn randomly as in Experiment 2. We counted “complex”
trials, until the total number of 200 trials was reached. To
obtain the prediction input, we used Alg. 2 with observation
period OP = 7, T = 15, α = 100 and τ = 5. Following metrics
are used for evaluation: Euclidean length and social cost
of the solution, computed using the ground truth trajectory,
minimum and average distance to the closest human the robot
reaches during its planned trajectory execution.

T = 5 T = 10 T = 20
Testset 1

NLL Our approach 10.78 ±3.52 22.27 ±6.09 47.63 ±11.6
Random walk 18.70 ±2.56 37.03 ±4.84 73.63 ±10.7

MHD Our approach 2.69 ±1.37 5.59 ±3.37 10.74 ±7.99
Linear 3.43 ±1.87 6.98 ±4.33 13.62 ±10.2

Testset 2

NLL Our approach 8.12 ±1.44 17.34 ±3.59 34.00 ±7.04
Random walk 22.83 ±5.34 44.57 ±9.80 76.70 ±13.3

MHD Our approach 0.15 ±0.42 0.16 ±0.44 0.27 ±0.55
Linear 0.29 ±0.67 0.52 ±1.16 1.36 ±2.76

Testset 3

NLL Our approach 17.47 ±6.10 36.18 ±9.78 75.48 ±18.1
Random walk 25.07 ±1.70 49.59 ±2.15 98.30 ±4.19

MHD Our approach 4.43 ±1.74 8.85 ±4.49 25.72 ±15.2
Linear 4.27 ±2.75 13.86 ±6.24 43.99 ±21.2

TABLE I
Prediction Evaluation Results

V. Results
Table I summarizes results of the first experiment for

OP=5. Similar results are present for other values of obser-
vation period, which means that we need only a short obser-
vation (∼ 1.1 sec.) to correctly infer the person’s intention.
In the Testset 2 with 16 simulated trajectories our method
expectedly delivers much better NLL results, compared to a
random walk, while the MHD results are very high for both
methods, as the trajectories in the set are straight. Similar
results are seen for the real trajectories from Testset 1. Results
for the scenario with obstacles (Testset 3) confirm, that our
method performs considerably better than the random walk
predictions, and also delivers an improvement over linear
constant velocity predictions for longer prediction horizons.

Runtimes of our algorithm using the action space |A| =
40 orientations×35 velocities are as follows: value iteration
(lines 3 and 4 of Alg. 2) takes ≈ 500 seconds for each goal;
stochastic policy computation (line 5 of Alg. 2) takes ≈ 261
seconds for each goal; stochastic policy sampling (lines 7-11
of Alg. 2) takes ≈ 3.9 seconds for each person, considering
10 goals in the environment. For the coarser discretization
of |A| = 20×18, the execution times are ≈ 130, 67.6 and 3.7
seconds respectively.

Result of the second experiment in the Two homotopy
classes scenario are presented in Fig. 5, with similar trends
present in the other two testing environments. The 3D A*,
while delivering the optimal solution, requires a considerably
longer runtime. The Costmap Inflation method, on the other
hand, quickly delivers solution, but fails to reach high quality
in many trials. The ICP method provides a very attractive
trade-off between runtime and solution’s quality: path length
and cost are optimal in most cases and the computational load
is greatly decreased as compared to 3D A*, on par with the
Costmap Inflation method.

Results of the third experiment are presented in Table II.
The predictive planner, which uses the ICP method, finds a
much better trajectory of the same length, compared to the
uninformed A* planner (social cost of the solution is lower).
Additionally the robot, equipped with the predictive planner,
on average keeps higher distance from the closest human,
which is especially prominent if the motion of humans is
more predictable, as seen in the case of simulated trajectories.
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Fig. 5. Predictive planning methods comparison in the Two homotopy
classes scenario. Same trends are visible in the other scenarios.

ICP Uninformed A*
Extended testset 1
Social cost 6.4 ±7.58 8.42 ±10.8
Euclidean length 10.79±2.11 10.45 ±2.10
Min. distance to a human 8.58 ±7.06 7.8 ±7.20
Avg. distance to a human 23.81±9.38 23.33 ±9.31
Testset 2
Social cost 3.38 ±4.04 5.93 ±6.31
Euclidean length 10.76±2.03 10.51 ±2.08
Min. distance to a human 10.72±5.63 7.58 ±5.82
Avg. distance to a human 24.62±9.48 23.13 ±9.73

TABLE II
Predictive Planning Evaluation Results

VI. Conclusions
In this work we present a method for predicting human

trajectories and exploiting predictions to improve the robot
path planning in social spaces. For prediction, we model
purposeful motion as a goal-directing strategy obtained
from solving an MDP problem. Uncertainty in a person’s
motions is modeled via stochastic policy, future locations
are estimated with a novel random walk stochastic policy
sampling algorithm and intention is derived from the ob-
served trajectory. We exploit obtained predictions to build
a time-dependent costmap of the free space, that is used
for predictive planning. We review three particular discrete-
search based solutions for predictive planning and conclude
that the ICP algorithm delivers a good trade-off between
runtime and solution’s quality.

An important benefit of our method is its simplicity: for
deployment one needs only a grid-map of obstacles, a value
iteration algorithm and a discrete search algorithm (e.g.
A*) implementation. Our approach is highly modular: it is
possible to update individual components to achieve better
performance. The Policy cutting technique is another novel
aspect of our solution: we solve the MDP problem only
once and adapt the obtained policy to the observed speed
of each person. Experimental results show that the adapted
policy accurately predicts trajectories of people, for a variety
of currently observed speeds. Prediction method’s runtime
scales linearly with the number of observed people and,
once the spatio-temporal costmap is built, the ICP runtime
is independent of the number of people. Furthermore, our
experiments with the replanning framework suggest that the

“dancing” problem is reduced. A good, predictive initial plan
limits the effect of replanning to small, incremental changes
in the path, avoiding large jumps to a plan that belongs e.g.
to a different homotopy class.

The workload of the value iteration algorithm and stochas-
tic policy estimation includes processing each action in each
state, (∼ 107 operations in the Edinburgh scenario with 94×
130 states× 40× 35 actions). For faster online performance
it is possible to pre-compute stochastic policies (lines 2-
6 of Alg. 2) and only perform the sampling operations
(lines 7-12) online, assuming, of course, that the map of
static obstacles does not change. The workload could be
considerably reduced when iterating directly over target states
s′ instead of considering every pair of θ and ν from A. In the
Edinburgh scenario with the given discretizations it would
mean a decrease from iterating over 40×35 = 1400 actions
to only 253 states, reachable with those actions.
There are several promising points on which the predic-

tion method could be improved. Finding a way to sepa-
rate angular and translational stochasticity may bring more
flexible control of the person’s future speed and path un-
certainty. Expanding the MDP state-space to include the
current orientation θ may potentially lead to smoother, more
precise predictions, obtained with less particles in Alg. 1.
The main direction of our future work is a practical C++
implementation of our method, followed by the evaluation in
the real-world experiments. We intend to conduct a formal
comparison with the state-of-the-art prediction algorithms.
An interesting extension of the method would be dealing
with joint predictions for all humans in the scene.
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