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Kai O. Arras1 and Achim J. Lilienthal2

Abstract—Understanding human behavior is key for robots
and intelligent systems that share a space with people. Accord-
ingly, research that enables such systems to perceive, track, learn
and predict human behavior as well as to plan and interact with
humans has received increasing attention over the last years.
The availability of large human motion datasets that contain
relevant levels of difficulty is fundamental to this research.
Existing datasets are often limited in terms of information
content, annotation quality or variability of human behavior. In
this paper, we present THÖR, a new dataset with human motion
trajectory and eye gaze data collected in an indoor environment
with accurate ground truth for position, head orientation, gaze
direction, social grouping, obstacles map and goal coordinates.
THÖR also contains sensor data collected by a 3D lidar and
involves a mobile robot navigating the space. We propose a set of
metrics to quantitatively analyze motion trajectory datasets such
as the average tracking duration, ground truth noise, curvature
and speed variation of the trajectories. In comparison to prior
art, our dataset has a larger variety in human motion behavior,
is less noisy, and contains annotations at higher frequencies.

Index Terms—Social Human-Robot Interaction, Motion and
Path Planning, Human Detection and Tracking

I. INTRODUCTION

UNDERSTANDING human behavior has been the subject
of research for autonomous intelligent systems across

many domains, from automated driving and mobile robotics
to intelligent video surveillance systems and motion simula-
tion. Human motion trajectories are a valuable learning and
validation resource for a variety of tasks in these domains.
For instance, they can be used for learning safe and efficient
human-aware navigation, predicting motion of people for
improved interaction and service, inferring motion regularities
and detecting anomalies in the environment. Particular atten-
tion towards trajectories, intentions and mobility patterns of
people has considerably increased in the last decade [1].

Datasets of ground level human trajectories, typically used
for learning and benchmarking, include the ETH [2], Ed-
inburgh [3] and the Stanford Drone [4] datasets, recorded
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versity, Sweden {Tomasz.Kucner, Chittaranjan.Swaminathan,
Ravi.Chadalavada, Achim.Lilienthal}@oru.se

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Environment configuration. Participants, wearing tracking helmets, and
the robot are moving towards their goals in a shared space, tracked by the
Qualisys motion capture system (recorded motion in the bottom left corner).

outdoors, or the indoor ATC [5], L-CAS [6] or Central
Station [7] datasets (see Table I). While providing the basic
input of motion trajectories, these datasets often lack relevant
contextual information and the desired properties of data, e.g.
the map of static obstacles, coordinates of goal locations,
social information such as the grouping of agents, high variety
in the recorded behaviors or long continuous tracking of each
observed agent. Furthermore, most of the recordings are made
outdoors, a robot is rarely present in the environment and the
ground truth pose annotation, either automated or manual, is
prone to artifacts and human errors.

In this paper we present a human-robot interaction pro-
cedure, designed to collect motion trajectories of people in
a generic indoor social setting with extensive interaction be-
tween groups of people and a robot in a spacious environment
with several obstacles. The locations of the obstacles and goal
positions are set up to make navigation non-trivial and produce
a rich variety of behaviors. The participants are tracked with a
motion capture system; furthermore, several participants are
wearing eye-tracking glasses. “Tracking Human motion in
the ÖRebro university” (THÖR) dataset1, which is released
public and free for non-commercial purposes, contains over
60 minutes of human motion in 395k frames, recorded at
100 Hz, 2531k people detections and over 600 individual and
group trajectories between multiple resting points. In addition
to the video stream from one of the eye tracking headsets,
the data includes 3D Lidar scans and a video recording from

1Available at http://thor.oru.se
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Dataset Location Map Goal po-
sitions

Groups Head ori-
entation

Eye
gaze

Robot in
the scene

Sensors for
pose estimation

Frequency Annotation

ETH [2] Outdoors X X X Camera 2.5 Hz Manual
UCY [8] Outdoors X Camera Continuous Manual
VIRAT [9] Outdoors X∗ Camera 2,5,10 Hz Manual
KITTI [10] Outdoors X X Velodyne and

several cameras
10 Hz Manual

Edinburgh [3] Outdoors Camera 6-10 Hz
(variable)

Automated

Stanford Drone [4] Outdoors X∗ Camera 30 Hz Manual
Town Center [11] Outdoors X∗ Camera 15 Hz Manual
ATC [5] Indoors X Several 3D

range sensors
10-30 Hz
(variable)

Automated

Central station [7] Indoors Camera 25 Hz Automated
L-CAS [6] Indoors X X 3D LiDAR 10 Hz Manual
KTH [12] Indoors X RGB-D, 2D

laser scaner
10-17 Hz
(variable)

Automated

THÖR Indoors X X X X X X Motion capture 100 Hz Ground truth
* Unsegmented camera image.

TABLE I
DATASETS OF HUMAN MOTION TRAJECTORIES

stationary sensors. We quantitatively analyze the dataset using
several metrics, such as tracking duration, perception noise,
curvature and speed variation of the trajectories, and compare
it to popular state-of-the-art datasets of human trajectories.
Our analysis shows that THÖR has more variety in recorded
behavior, less noise, and high duration of continuous tracking.

The paper is organized as follows: in Sec. II we review
the related work and in Sec. III detail the data collection
procedure. In Sec. IV we describe the recorded data and
analyze it quantitatively and qualitatively. Sec. V concludes
the paper.

II. RELATED WORK

Recordings of human trajectory motion and eye gaze are
useful for a number of research areas and tasks both for
machine learning and benchmarking. Examples include per-
son and group tracking [2], [13], [14], human-aware motion
planning [15], [16], [17], [18], motion behavior learning [19],
human motion prediction [20], [21], human-robot interaction
[22], video surveillance [23] or collision risk assessment [24].
In addition to basic trajectory data, state-of-the-art methods
for tracking or motion prediction, for instance, can also in-
corporate information about the environment, social grouping,
head orientation or personal traits. For instance, Lau et al.
[13] estimate social grouping formations during tracking and
Rudenko et al. [21] use group affiliation as a contextual cue to
predict future motion. Unhelkar et al. [25] use head orientation
to disambiguate and recognize typical motion patterns that
people are following. Bera et al. [26] and Ma et al. [27] learn
personal traits to determine interaction parameters between
several people. To enable such research in terms of training
data and benchmarking requirements, a state-of-the-art dataset
should include this information.

Human trajectory data is also used for learning long-term
mobility patterns [28], such as the CLiFF maps [29], to enable
compliant flow-aware global motion planning and reasoning
about long-term path hypotheses towards goals in distant map
areas for which no observations are immediately available.
Finally, eye-gaze is a critical source of non-verbal information

about human task and motion intent in human-robot collab-
oration, traffic maneuver prediction, spatial cognition or sign
placement [30], [31], [32], [33], [34].

Existing datasets of human trajectories, commonly used
in the literature [1], are summarized in Table I. With the
exception of [5], [6], [7], [12], all datasets have been collected
outdoors. Intuitively, patterns of human motion in indoor and
outdoor environments are substantially different due to scope
of the environment and typical intentions of people therein.
Indoors people navigate in loosely constrained but cluttered
spaces with multiple goal points and many ways (e.g. from
different homotopy classes) to reach a goal. This is different
from their behavior outdoors in either large obstacle-free
pedestrian areas or relatively narrow sidewalks, surrounded
by various kinds of walkable and non-walkable surfaces.
Among the indoor recordings, only [6], [12] introduce a robot,
navigating in the environment alongside humans. However,
recording only from on-board sensors limits visibility and con-
sequently restricts the perception radius. Furthermore, ground
truth positions of the recorded agents in all prior datasets were
estimated from RGB(-D) or laser data. On the contrary, we
directly record the position of each person using a motion
capture system, thus achieving higher accuracy of the ground
truth data and complete coverage of the working environment
at all times. Moreover, our dataset contains many additional
contextual cues, such as social roles and groups of people,
head orientations and gaze directions.

III. DATA COLLECTION PROCEDURE

In order to collect motion data relevant for a broad spectrum
of research areas, we have designed a controlled scenario that
encourages social interactions between individuals, groups of
people and with the robot. The interactive setup assigns social
roles and tasks so as to imitate typical activities found in
populated spaces such as offices, train stations, shopping malls
or airports. Its goal is to motivate participants to engage into
natural and purposeful motion behaviors as well as to create a
rich variety of unscripted interactions. In this section we detail
the system setup and the data collection procedure.
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Goal 1

Goal 2Goal 3

Goal 4
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Podium
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Fig. 2. Overview of the environment. The Qualisys motion tracking system is
installed in a laboratory room, which is mostly empty except for some shelves
and equipment along the walls. A permanent obstacle in the middle of the
room is present in all recordings, while additional obstacles are only placed
in the “Three obstacles” scenario (see Sec. III-B for details). The position of
the camera is shown in the top left corner, and the position of the Velodyne
in the bottom right.

A. System Setup

Data collection was performed in a spacious laboratory
room of 8.4×18.8m and the adjacent utility room, separated
by a glass wall (see the overview in Fig. 2). The laboratory
room, where the motion capture system is installed, is mostly
empty to allow for maneuvering of large groups, but also
includes several constrained areas where obstacle avoidance
and the choice of homotopy class is necessary. Goal positions
are placed to force navigation along the room and generate
frequent interactions in its center, while the placement of
obstacles prevents walking between goals on a straight line.

To track the motion of the agents we used the Qualisys
Oqus 7+ motion capture system2 with 10 infrared cameras,
mounted on the perimeter of the room. The motion capture
system covers the entire room volume apart from the most
right part close to the podium entrance – a negligible loss due
to the focus on the central part of the room. The system tracks
small reflective markers at 100Hz with spatial discretization
of 1mm. The coordinate frame origin is on the ground level
in the middle of the room. For people tracking, the markers
have been arranged in distinctive 3D patterns on the bicycle
helmets, shown in Fig. 3. The motion capture system was
calibrated beforehand with an average residual tracking error
of 2mm, and each helmet, as well as the robot, was defined in
the system as a unique rigid body of markers, yielding its 6D
head position and orientation. Each participant was assigned
an individual helmet for all recording sessions, labeled 2 to
10. Helmet 1 was not used in this data collection.

For acquiring eye gaze data we used four mobile eye-
tracking headsets worn by four participants (helmet numbers
3, 6, 7, and 9 respectively). However, in this dataset we only
include data from one headset (Tobii Pro Glasses), worn by
the participant with helmet 9. The gaze sampling frequency of
Tobii Pro Glasses is 50Hz. It also has a scene camera which
records the video at 25 fps. A gaze overlaid version of this
video is included in this dataset. We synchronized the clocks
of each machine (the Qualisys system, the stationary Velodyne
sensor and the eye-tracking glasses) with the same NTP time

2https://www.qualisys.com/hardware/5-6-7/

Fig. 3. Equipment used in our data collection: Left: (1) bicycle helmet
with mocap tracking markers, (2) Tobii Pro Glasses, (3) boxes which were
carried by the participants as a part of the tasks. Right: Linde CitiTruck robot
projecting its current motion intent on the floor.

server. Finally, we recorded a video of the environment from
a stationary camera, mounted in a corner of the room.

The robot, used in our data collection, is a small forklift
Linde CitiTruck robot with a footprint of 1.56×0.55m and
1.17m high, shown in Fig. 3. It was programmed to move
in a socially unaware manner, following a pre-defined path
around the room and adjusting neither its speed nor trajectory
to account for surrounding people. For safety reasons, the
robot was navigating with a maximal speed of 0.34m s−1

and projecting its current motion intent on the floor in front
of it using a mounted beamer [34]. A dedicated operator
was constantly monitoring the environment from a remote
workstation to stop the robot in case of an emergency. The
participants were made aware of the emergency stop button
on the robot should they be required to use it.

B. Scenario Description and Participants’ Priming

During the data collection the participants performed simple
tasks, which required walking between several goal positions.
To increase the variety of motion, interactions and behavioral
patterns, we introduced several roles for the participants and
created individual tasks for each role, summarized in Fig. 4.

The first role is a visitor, navigating alone and in groups of
up to 5 people between four goal positions in the room. At
each goal they take a random card, indicating the next target.
As each group was instructed to travel together, they only take
one card at a time. We asked the visitors to talk and interact
with the members of their group during the data collection, and
changed the structure of groups every 4-5 minutes. There are
6 visitors in our recording. The second role is a worker, whose
task is to receive and carry large boxes between the laboratory
and the utility room. The workers wear a yellow reflective vest.
There are 2 workers in our recording, one carrying the boxes
from the laboratory to the unity room, and the other vice versa.

https://www.qualisys.com/hardware/5-6-7/
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Goal 1

Goal 2Goal 3

Goal 4

Trajectory of the robot
Trajectory of the laboratory worker

Motion patterns of the visitors

Goal 5

Trajectory of the utility worker

Fig. 4. Roles of the participants and their expected motion patterns. Visitors,
walking alone and in groups, are instructed to navigate between goals
1,2,3 and 4. Their motion patterns are shown with colored solid lines. The
laboratory worker, whose waiting position is at goal 3, picks up an incoming
box at goal 1, registers its ID at goal 3 and then places it at goal 5. The
utility worker, whose waiting position is at goal 2, picks up the box at goal 5,
registers it at goal 2 with a new ID and places it at goal 1. The patterns of both
workers are shown with dotted lines. The trajectory of the robot, circulating
around the obstacle in the middle of the room, is shown with a thick hollow
line.

The third role is the inspector. An inspector is navigating alone
between many additional targets in the environment, indicated
by a QR-code, in no particular order and stops at each target
to scan the code. We have one inspector in our recording.

There are several points to motivate the introduction of
the social roles. Firstly, with the motion of the visitors and
the workers we introduce distinctive motion patterns in the
environment, while the cards and the tasks make the motion
focused, goal-oriented and prevent random wandering. How-
ever, the workers’ tasks allocation is such that at some points
idle standing/wandering behavior is also observed, embedded
in their cyclical activity patterns. Furthermore, we expect that
the visitors navigating alone, in groups and the workers who
carry heavy boxes exhibit distinctive behavior, therefore the
grouping information and the social role cue (reflective vest)
may improve the intention and trajectory prediction. Finally,
motion of the inspector introduces irregular patterns in the
environment, distinct from the majority of the visitors.

We prepared three scenarios for data collection with dif-
ferent numbers of obstacles and motion state of the robot.
In the first scenario, the robot is placed by a wall and not
moving, and the environment has only one obstacle (see the
layout in Fig. 2). The second scenario introduces the moving
robot, navigating around the obstacle (the trajectory of the
robot is depicted in Fig. 4). The third scenario features an
additional obstacle and a stationary robot in the environ-
ment (see Fig. 2 with additional obstacles). We denote these
recording scenarios as One obstacle, Moving robot and Three
obstacles, accordingly. In each scenario the group structure for
the visitors was reassigned 4-5 times. Between the scenarios,
the roles were also reassigned. A summary of the scenarios
and durations is given in Table II.

Each round of data collection started with the participants,
upon command, beginning to execute their tasks. The round
lasted for approximately four minutes and ended with another
call from the moderator. To avoid artificial and unnatural

Scenario,
round

Visitors, groups
Helmet ID 2–10

Workers
Utility, lab

Inspector Duration

One 1 6,7,5 + 8,2,4 3 9 10 368 sec
obstacle 2 2,5,6,7 + 8,4 3 9 10 257 sec

3 6,7,8 + 4,5 + 2 3 9 10 275 sec
4 2,4,5,7,8 + 6 3 9 10 315 sec

Moving 1 4,5,6 + 3,7,9 2 8 10 281 sec
robot 2 3,5,6,9 + 7,4 2 8 10 259 sec

3 5,7,9 + 4,6 + 3 2 8 10 286 sec
4 3,5,6,7,9 + 4 2 8 10 279 sec
5 3,6 + 4,9 + 5,7 2 8 10 496 sec

Three 1 2,3,8 + 6,7,9 5 4 10 315 sec
obstacles 2 2,8,9 + 3,6,7 5 4 10 290 sec

3 2,3,7 + 8,9 + 6 5 4 10 279 sec
4 2,3,6,7,9 + 8 5 4 10 277 sec

TABLE II
ROLE ASSIGNMENT AND RECORDING DURATION IN THE THREE

SCENARIOS OF OUR DATA COLLECTION: (I) ONE OBSTACLE,
(II) MOVING ROBOT, (III) THREE OBSTACLES

motion due to knowing the true purpose of the data collection,
we told the participants that our goal is to validate the
robot’s perceptive abilities, while the motion capture data will
be used to compare the perceived and actual positions of
humans. Participants were asked not to communicate with
us during the recording. For safety and ethical reasons, we
have instructed participants to act carefully near the robot,
described as “autonomous industrial equipment” which does
not stop if someone is in its way. An ethics approval was not
required for our data collection as per institutional guidelines
and the Swedish Ethical Review Act (SFS number: 2003:460).
Written informed consent was obtained from all participants.
Due to the relatively low weight of the robot and the safety
precautions taken, there was no risk of harm to participants.

IV. RESULTS AND ANALYSIS

A. Data Description

The THÖR dataset includes over 60 minutes of motion in
13 rounds of the three scenarios. The recorded data in .mat,
.bag and .tsv format contains over 395k frames at 100Hz,
2531k human detections and 600+ individual and group
trajectories between the goal positions. For each detected
person the 6D position and orientation of the helmet in the
global coordinate frame is provided. Furthermore, the dataset
includes the map of the static obstacles, goal coordinates and
grouping information. We also share the Matlab scripts for
loading, plotting and animating the data. Additionally, the eye
gaze data is available for one of the participants (Helmet 9), as
well as Velodyne scans from a static sensor and the recording
from the camera. We thoroughly inspected the motion capture
data and manually cleaned it to remove occasional helmet ID
switches and recover several lost tracks. Afterwards we applied
an automated procedure to restore the lost positions of the
helmets from incomplete set of recognized markers. In Fig. 5
we show the summary of the recorded trajectories.

B. Baselines and Metrics

The THÖR dataset is recorded using a motion capture
system, which yields more consistent tracking and precise
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Fig. 5. Trajectories of the participants and the robot, recorded in the
“One obstacle” scenario (top), “Moving robot” scenario (middle) and “Three
obstacles” scenario (bottom). The robot’s path in the middle image is shown
in black.

estimation of the ground truth positions and therefore higher
quality of the trajectories, compared to the human detections
from RGB-D or laser data, typically used in existing datasets.
For the quantitative analysis of the dataset, we compare
the recorded trajectories to the several datasets which are
often used for training and evaluation of motion predictors
for human environments [1]. The popular ETH dataset [2]
is recorded outdoors in a pedestrian zone with a stationary
camera facing downwards and manually annotated at 2.5Hz.
The Hotel sequence, used in our comparison, includes the
coordinates of the 4 common goals in the environment and
group information for walking pedestrians. The ATC dataset
[5] is recorded in a large shopping mall using multiple 3D
range sensors at ∼26Hz over an area of 900m2. This allows
for long tracking durations and potential to capture interesting
interactions between people. In addition to positions it also
includes facing angles. In this comparison we used the record-
ings from 24th and 28th of October and 14th of November. The
Edinburgh dataset [3] is recorded in a university campus yard
using a camera facing down with variable detection frequency,
on average 9Hz. For comparison we used the recordings from
27th of September, 16th of December, 14th of January and
22nd of June.

Metric THÖR ETH ATC Edinburgh
Tracking
duration
[s]

16.7±14.9 9.4± 5.4 39.7±64.7 10.1±12.7

Trajectory
curvature
[m−1]

1.9± 8.8 0.18±1.48 0.84±1.43 1± 3.9

Perception
noise
[ms−2]

0.12 0.19 0.48 0.81

Motion
speed
[ms−1]

0.81±0.49 1.38±0.46 1.04±0.46 1.0± 0.64

Min. dist.
between
people [m]

1.54±1.60 1.33±1.39 0.61±0.16 3.97± 3.5

TABLE III
COMPARISON OF THE DATASETS

For evaluating the quality of recorded trajectories we pro-
pose several metrics:

1) Tracking duration (s): average length of continuous
observations of a person, higher is better.

2) Trajectory curvature (m−1): global curvature of
the trajectory T , caused by maneuvering of the
agents in presence of static and dynamic obstacles,
measured on 4 s segments based on the first
Tt = (x1, y1), middle Tt+2s = (x2, y2) and last
Tt+4s = (x3, y3) points of the interval: K(Tt:t+4s) =

| 2(x2−x1)(y3−y1)−(x3−x1)(y2−y1)
||x2−x1,y2−y1|| ||x3−x1,y3−y1|| ||x3−x2,y3−y2|| |. The

choice of 4 s path segments is motivated by the
standard motion prediction horizon in the related work
[23]. Higher curvature values correspond to more
challenging, non-linear paths.

3) Perception noise (ms−2): under the assumption that
people move on smooth, not jerky paths, we evaluate
local distortions of the recorded trajectory {Tt}t=1...M

of length M , caused by the perception noise of the
mocap system as the average absolute acceleration:
1
M

∑M
t=1 |T̈t|. Less noise is better.

4) Motion speed (ms−1): mean and standard deviation of
velocities in the dataset, measured on 1 s intervals. If the
effect of perception noise on speed is negligible, higher
standard deviation means more diversity in behavior
of the observed agents, both in terms of individually
preferred velocity and compliance with other dynamic
agents.

5) Minimal distance between people (m): average minimal
euclidean distance between two closest observed peo-
ple. This metric indicates the density of the recorded
scenarios, lower values correspond to more crowded
environments.

C. Results

The results of the evaluation are presented in Table III.
Our dataset has sufficiently long trajectories (on average 16.7 s
tracking duration) with high curvature values (1.9±8.8 m−1),
indicating that it includes more human-human and human-
environment interactions than the existing datasets. Further-
more, despite the much higher recording frequency, e.g.
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Fig. 6. Social interactions in the THÖR dataset with color-coded positions of the observed people. The current velocity is shown with an arrow of corresponding
length and direction. The past and the future 2 s trajectories are shown with dotted and dashed lines respectively. Goal locations are marked with gray circles.
Left column: at 104 sec the group (2,4,8) starts moving from the goal point, taking the line formation in the constrained space due to the presence of
standing person 10. Later, at 111.5 sec, person 10 has to adjust the path and slow down while the group (5,6,7) proceeds in the V formation [35], engaged
in communication. Middle column: person 8 is leaving the resting position at 61.5 sec and adapts the path to account for the motion of the robot, taking a
detour from the optimal way to reach the goal 5. At 66 seconds person 8 crosses person 3, who has to slow down, as compared to the velocity at time 61.5
and 71. The same maneuver of taking a detour due to the presence of the robot is performed by the group (5,7,9) at time 71. Right column: Group (2,3,7),
navigating in a constrained environment, at 57 sec has to make a detour around the obstacle while heading to goal 3. On the way back to goal 4 the group
splits at 67.6 sec, and reunites later on.

100Hz (THÖR) vs. ∼26Hz (ATC), the amount of perception
noise in the trajectories is lower than in all baselines. The
speed distribution of ±0.49m s−1 shows that the range of ob-
served velocities corresponds to the baselines, while the lower
average velocity in combination with a high average curvature
confirms higher complexity of the recorded behaviors, because
comfortable navigation in straight paths with constant velocity
is not possible in presence of static and dynamic obstacles.
Finally, the high variance of the minimal distance between
people (1.54±1.60m THÖR vs. 0.61±0.16m ATC) shows
that our dataset features both dense and sparse scenarios,
similarly to ETH and Edinburgh.

An important advantage of THÖR in comparison to the
prior art is the availability of rich interactions between the
participants and groups in presence of static obstacles and the

moving robot. In this compact one hour recording we observe
numerous interesting situations, such as accelerating to over-
take another person; cutting in front of someone; halting to
let a large group pass; queuing for the occupied goal position;
group splitting and re-joining; choosing a sub-optimal motion
trajectory from a different homotopy class due to a narrow
passage being blocked; hindrance from walking towards each
other in opposite directions. In Fig. 6 we illustrate several
examples of such interactions.

V. CONCLUSIONS

In this paper we present a novel human motion trajectories
dataset, recorded in a controlled indoor environment. Aiming
at applications in training and benchmarking human-aware
intelligent systems, we designed the dataset to include a
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rich variety of human motion behaviors, interactions between
individuals, groups and a mobile robot in the environment
with static obstacles and several motion targets. Our dataset
includes accurate motion capture data at high frequency, head
orientations, eye gaze directions, data from a stationary 3D
lidar sensor and an RGB camera. Using a novel set of metrics
for the dataset quality estimation, we show that it is less
noisy and contains higher variety of behavior than the prior
art datasets.
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[5] D. Brščić, T. Kanda, T. Ikeda, and T. Miyashita, “Person tracking in
large public spaces using 3-d range sensors,” IEEE Trans. on Human-
Machine Systems, vol. 43, no. 6, pp. 522–534, 2013.

[6] Z. Yan, T. Duckett, and N. Bellotto, “Online learning for human
classification in 3D LiDAR-based tracking,” in Proc. of the IEEE
Int. Conf. on Intell. Robots and Syst. (IROS), 2017, pp. 864–871.

[7] B. Zhou, X. Wang, and X. Tang, “Understanding collective crowd
behaviors: Learning a mixture model of dynamic pedestrian-agents,” in
2012 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2012, pp. 2871–2878.

[8] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,”
in Computer Graphics Forum, vol. 26, no. 3. Wiley Online Library,
2007, pp. 655–664.

[9] S. Oh et al., “A large-scale benchmark dataset for event recognition in
surveillance video,” in Proc. of the IEEE Conf. on Comp. Vis. and Pat.
Rec. (CVPR), 2011, pp. 3153–3160.

[10] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[11] B. Benfold and I. Reid, “Stable multi-target tracking in real-time
surveillance video,” in Proc. of the IEEE Conf. on Comp. Vis. and Pat.
Rec. (CVPR), 2011, pp. 3457–3464.

[12] C. Dondrup, N. Bellotto, F. Jovan, and M. Hanheide, “Real-time multi-
sensor people tracking for human-robot spatial interaction,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation (ICRA), Works. on ML
for Social Robo. IEEE, 2015.

[13] B. Lau, K. O. Arras, and W. Burgard, “Tracking groups of people with
a multi-model hypothesis tracker,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 2009.

[14] T. Linder, S. Breuers, B. Leibe, and K. O. Arras, “On multi-modal people
tracking from mobile platforms in very crowded and dynamic environ-
ments,” in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2016.

[15] A. F. Foka and P. E. Trahanias, “Probabilistic autonomous robot
navigation in dynamic environments with human motion prediction,”
Int. Journal of Social Robotics, vol. 2, no. 1, pp. 79–94, 2010.

[16] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online
pomdp planning for autonomous driving in a crowd,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), May 2015, pp.
454–460.

[17] L. Palmieri, T. P. Kucner, M. Magnusson, A. J. Lilienthal, and K. O.
Arras, “Kinodynamic motion planning on gaussian mixture fields,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2017, pp. 6176–6181.

[18] C. S. Swaminathan, T. P. Kucner, M. Magnusson, L. Palmieri, and
A. J. Lilienthal, “Down the cliff: Flow-aware trajectory planning under
motion pattern uncertainty,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 7403–7409.

[19] B. Okal and K. O. Arras, “Learning socially normative robot navigation
behaviors with bayesian inverse reinforcement learning,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), 2016.

[20] S.-Y. Chung and H.-P. Huang, “Incremental learning of human social
behaviors with feature-based spatial effects,” in Proc. of the IEEE
Int. Conf. on Intell. Robots and Syst. (IROS), 2012, pp. 2417–2422.

[21] A. Rudenko, L. Palmieri, A. J. Lilienthal, and K. O. Arras, “Human
motion prediction under social grouping constraints,” in Proc. of the
IEEE Int. Conf. on Intell. Robots and Syst. (IROS), 2018.

[22] P. A. Lasota, T. Fong, and J. A. Shah, “A survey of methods for safe
human-robot interaction,” Foundations and Trends in Robotics, vol. 5,
no. 4, pp. 261–349, 2017.

[23] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in Proc. of the IEEE Conf. on Comp. Vis. and Pat. Rec. (CVPR),
2016, pp. 961–971.

[24] S.-Y. Lo, S. Alkoby, and P. Stone, “Robust motion planning and safety
benchmarking in human workspaces.” in SafeAI@ AAAI, 2019.
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