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1 Introduction
This report presents a summary of the work on localisation and mapping (tasks T1.2 and
T1.3) in the EU H2020 project ILIAD during its first 18 months. The system has been
jointly developed by partners Örebro University (ORU) and University of Lincoln (UoL),
with ORU being the main beneficiary.

In particular, we demonstrate results from a prototype implementation that is capable
of creating consistent 3D maps and accurately localising in them, with a mean absolute
trajectory error (ATE) of well below 30 mm, which is required in industrial practice for
picking up pallets using global positioning. Specific challenges of localisation and map-
ping in a warehouse setting is that the environment is gradually changing, and has many
semi-static objects, which cannot easily be filtered out the same way as fully dynamic
objects, such as moving people. Challenges also include perceptual aliasing from long
racks of shelves that are self-similar, and the fact that long aisles provide little geometric
features for use in scan matching for mapping and localisation.

Our mapping and localisation framework is also capable of creating maps using het-
erogeneous data. Two maps of the same environment, created with a 2D lidar at a specific
height, or a 3D lidar, may look quite different, and merging them (especially if they are
not completely overlapping) is not a trivial task. Layout maps of the warehouse is another
form of map data that is relevant for automatic deployment of a fleet of warehouse trucks.

The main objective of WP1 is to facilitate easy deployment of an autonomous truck
fleet in a new site, requiring little assistance from human operators. The core components
that are the focus of this deliverable are robust structural mapping and localisation in a
dynamic environment, using a team of robots with heterogeneous sensors.

The underlying map representation is presented in Section 2.1, and the scan regis-
tration methods used when constructing the maps in Section 2.2. The incorporation
of heterogeneous data is presented in Section 2.3. A demonstration of the localisation
accuracy attainable by the ILIAD framework is provided in Section 3. Figure 1 shows a
sample point-cloud map from one of the ILIAD end user sites, for illustration.

Figure 1: A 3D point-cloud map from one of the warehouses of partner Orkla Foods.
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2 Structural mapping

2.1 Map representation
ILIAD’s task T1.3 is concerned with the creation and maintenance of consistent maps. The
mapping toolkit in ILIAD is primarily based on the NDT-OM (normal-distributions trans-
form occupancy map) representation [12], which combines the NDT (normal-distributions
transform) representation [9] with occupancy grids for consistent structural mapping
in dynamic environments. As demonstrated in our previous work, NDT-OM also works
well as a basis for robust and accurate localisation using NDT-MCL (NDT Monte-Carlo
localisation) [13].

The NDT representation was originally developed in the context of 2D lidar regis-
tration [3]. The central idea is to represent surfaces by a set of Gaussian probability
distributions, distributed in a grid structure. NDT has later been extended to three dimen-
sions in the context of 3D scan registration [9]. However, NDT in itself does not explicitly
represent free space, and has no mechanism to update the recorded Gaussians when
faced with new observations; e .g., for removing obstacles that are no longer in the map.
Therefore it is not well suited for navigation.

NDT-OM, on the other hand, supports consistent probabilistic updates of re-observed
portions of the environment, as well as the generation of multi-resolution maps for navi-
gation. Because each NDT cell in the map holds more information than that of a regular
occupancy grid, NDT-OM can have comparably lower resolution, thereby improving
memory and CPU requirements without sacrificing the accuracy of localisation or the
representation of surfaces [12, 13].

More specifically, the base ILIAD map representation is a set of metric NDT-OM
submaps, connected by topological graph edges that represent inter-map traversability.
Technically, we have substantially revised ORU’s existing NDT-OM implementation during
ILIAD’s first 18 months.

While the concept of hybrid metric–topological maps (i .e., metric submaps such as
occupancy grids embedded in a topological structure) is not new, there has been a very
limited amount of work that focuses on how the submaps should be created in order to
provide high localisation accuracy. Scientifically, we have studied different approaches to
determine when a new submap should be created, and which submaps should be updated
when new sensor measurements arrive. We plan to submit this work for publication during
ILIAD’s second period.

A challenge in developing useful map representations for localisation is that an object
in the environment may appear quite different depending on where it is observed from.
For example, it is easier to recognise an object when it is observed from two reasonably
close locations rather than from two very different points. Similarly, when a navigation
map (e .g., an occupancy grid map or NDT map) is generated from point cloud observa-
tions, the measurement process noise from fusing disparate observations will be larger
than when using a single observation. As a result, a better localisation estimate can possi-
bly be provided using local submaps that are built from poses within a small region. But
what is the best submap size? The spectrum ranges from having one map per sensor input
as one extreme, to having a single monolithic map aggregated from all measurements as
the other.

In particular, we have evaluated two methods for allocating submaps. One uses a
fixed coarse grid and assigns a local map to each cell (submap grid indexing). The other
creates a new submap whenever the robot has moved past an interchange radius threshold
from the origin of the closest existing submap. Our experiments indicate that the latter
method (closest node position) is better for localisation. Section 3 reports on our study of
localisation accuracy attainable using these maps.
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Figure 2: Illustration of the NDT-OM submap structure used for structural mapping in
ILIAD. The origin of each submap is marked by a red/green/blue coordinate frame. The
NDT-OM submap that belongs to the second node from the left is shown as a point cloud,
where each point marks the mean of the Gaussian in one map cell. (The covariances are
not displayed.) As can be seen from this image, the submaps are layed out so that they
have a large amount of overlap. The colours of the trajectory lines denote which submap
has been updated by scans from each point on the trajectory. Since new maps are added
incrementally when using the closest node position strategy, the closest map to update
from each point may change during multiple runs through the environment, as can be
seen from the dual colours of parts of the trajectory.

Figure 2 illustrates an example of the HMT NDT-OM structure, when using the closest
node position strategy.

Our framework facilitates mapping and localisation both in 2D and 3D. Figure 3 shows
an example 2D map. Please note that this 2D map was created with the safety lidar
mounted at floor height. Despite being faced with high levels of clutter (walking people,
moving trucks), the map correctly represents only the stationary parts of the environment,
with high fidelity. Figure 4 shows the truck platform used in this data collection, and its
sensors.

2.2 Scan registration
While constructing each submap, incoming point clouds from lidar sensors are incremen-
tally registered to the corresponding local submap. As a starting point, we have used the
D2D-NDT registration method [15] (distribution-to-distribution NDT registration) for
this purpose.

One common failure case for scan registration is in feature-sparse environments
such as corridors (or warehouse aisles), where there is not enough structure to fully
determine where along the corridor’s direction that a scan fits best. In order to address
this problem, in ILIAD we have developed a scan matching algorithm that incorporates
ego-motion information from the robot’s wheel sensors in a novel way [2]. By including an
uncertainty-aware odometry ego-motion estimate in the objective function of registration,
solutions are “softly” constrained to poses that match the expected motion of the vehicle
(as estimated by odometry), which leads to better mapping and localisation performance.

Formally, the goal of scan registration is to minimise some objective function, minp f (p),
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Figure 3: Sample 2D map from one of ILIAD’s target end-user environments, created by
the mapping toolkit described in Section 2.1. Please note that the 2D map was created
with the safety lidar mounted at floor height. Despite the presence of clutter (walking
people, moving trucks), the map correctly represents only the stationary parts of the
environment.

180◦ 2D lidar

360◦ 3D lidar

360◦ 2D lidar

(a) The sensor-equipped truck platform for
data collection at end user sites, displaying
the sensors used for navigation.

(b) View from data collection in a cluttered, dynamic
environment. Data from the navigation sensors are
shown with coloured points (360◦ 3D lidar data) and
white points (180◦ 2D safety lidar data at floor height).
The sensor data is obstructed by walking people and
manually operated trucks.

Figure 4: Data collection in intralogistics operations.
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Figure 5: Illustrating the change of shape of the registration objective function with and
without soft constraints [2]. Left: in a corridor environment, the lidar-only objective
function fD2D (marked d2d in the plot) does not have an optimum at the correct pose
(marked GT). Right: adding soft constraints changes the shape of the objective function,
resulting in an optimum (d2d sc in the plot) near the ground truth.

Figure 6: Real-world and simulated data from feature-sparse environments, used in the
evaluation of D2D-NDT registration with soft constraints from egomotion [2].

to find the pose parameters p that optimises the fit between two scans. We reformulate
the D2D-NDT objective function fD2D(p) as

min
p

fD2D(p) +λ(p−p0)
TΣ−1(p−p0),

where p0 is the mean of the egomotion estimate provided by odometry, Σ is its covariance
estimate, and λ is a penalty coefficient. Figure 5 illustrates the effect of adding soft
constraints in this manner.

We have evaluated D2D-NDT with soft constraints on relevant real-world warehouse
data as well as simulated corridor data (see Figure 6). The evaluation has shown that our
method is especially beneficial in cases that due to the environment topology, limitations
of the sensor range, or the mapping resolution, do not provide enough features to reliably
estimate relative translation from lidar data alone. Figure 7 illustrates the performance
of D2D-NDT SC in a simulated endless corridor environment, compared to odometry
alone and D2D-NDT registration where the odometry is used as an initial estimate to the
registration algorithm. For further technical details, please refer to Andreasson et al. [2].

The soft constraints technique described above can be used not only with D2D-NDT
registration. In fact, it can be included in the objective function of most scan registration
algorithms. One promising future development is to use this type of registration with
semantic-assisted registration, dubbed SE-NDT, that has also been developed as part of
ILIAD’s Work Package 1. During Year 1, we demonstrated a scan matching algorithm that
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Figure 7: Pose estimated from from driving back and forth in the simulated endless
corridor environment from Figure 6; with soft constraints (w SC) and without (w/o SC),
odometry and ground truth. [2]

partitions 3D scans from the environment into flat and non-flat regions and then matches
the regions in combination, also based on the D2D-NDT formulation [17]. Specifically,
the objective function is split into two terms: one matching only flat regions, and one
matching only edge/corner regions. We showed that doing so improves the robustness
of 3D scan matching in certain important use cases, at the cost of longer execution
times. Most notably for ILIAD’s objectives is an improved success rate from very feature-
sparse environments, as long as the overlap between consecutive scans is large; which
corresponds well to an autonomous navigation scenario in warehouse environments
with limited geometric features. More recently [16], we have trained a modified version of
the PointNet deep-learning architecture to include more descriptive semantic labels in
SE-NDT, and a more fine-grained division than flat vs. non-flat.

2.3 Heterogeneous mapping
ILIAD is also concerned with heterogeneous fleets of warehouse robots, not all of which
may have the same sensor setup. Consequently, heterogeneous map information needs to
be integrated and aligned in a common reference frame. To accommodate this, we intend
to integrate two approaches for multi-modal map merging, described in the following.
The first method (Section 2.3.1) integrates a pre-existing layout map of the environment in
the mapping process (e .g., while constructing a local NDT-OM submap), while the second
(Section 2.3.2) can be used in a post-processing step in order to align two overlapping
robot maps made by different robots — e .g., one from a floor-mounted 2D safety scanner,
and one with a 3D lidar.

2.3.1 Integrating prior map data while mapping

In many cases, a layout map is already available of warehouses, which can be used both to
aid robot mapping and as a means of human–robot interaction; e .g., by drawing regions
in the layout map where the robots should not go. If robots can match the sensor data that
they perceive to the prior layout map, they can “auto-complete” their map even before
having seen the whole site. However, layout maps are typically not metrically accurate
(scales of rooms are not consistent) and many objects that are present in the environ-
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Figure 8: Flow chart depicting the process of integrating prior map data from layout maps
(e .g., emergency evacuation maps) with robot maps created with online sensor data. This
figure is from Mielle et al. [10].

ment, and seen by the robot, are not present in the layout map. Therefore, automatically
incorporating this kind of prior map data is a very challenging task.

We intend to integrate a method for incorporating prior data from layout maps that
has been developed by partner ORU in the EU H2020 project SmokeBot.1 This method
merges a layout map and the robot’s sensor map by using corners from both maps as
landmarks in a graph-SLAM formulation, combined with two robust SLAM back-ends in
tandem in order to deal with the highly uncertain data association between the corners
that are observed in the sensory data and the ones that are present in the layout map.
The procedure is outlined in Figure 8. In the scenarios targeted by the SmokeBot project,
prior layout maps typically come from the emergency evacuation maps that are posted
in buildings. In ILIAD, they may come from CAD-style drawings. Neither source of prior
map is accurate enough for direct alignment to a sensor map.

The method is outlined in the following. For a full technical description, see Mielle et al.
[10]. Corners in the layout map are found using a line-following algorithm. Corners in the
sensor map (the current NDT-OM submap) are found by comparing the orientations of
Gaussians in neighbouring map cells. The corner features from both map representations
are included as feature nodes in a factor graph. The corners of the prior map are connected
with graph edges initiated by the length of the wall. The information matrix associated
with these edges is designed to allow the walls to extend or shrink (to account for non-
uniform scale differences), but penalise rotation w. r. t. walls that are connected at a
corner (to avoid corners being bent). The graph also contains robot pose nodes given by
odometry or scan registration (as in Section 2.2). Each pose node has an edge to all the
sensor-map corners that are visible from that pose. Finally, each sensor-map corner is
associated with a graph edge to all layout-map corners within a certain radius.

In principle, an off-the-shelf SLAM back-end could be used to optimise the poses of the
nodes in the graph in order to maximise the alignment between the layout and the sensor
map. However, given the difference in scale, and the uncertainty in corner-to-corner data
association, even state-of-the art robust back-ends such as dynamic covariance scaling [1]
(DCS) are not able to correctly align the maps under realistic conditions. Our solution
is to use two robust back-ends. We first optimise the graph using a Huber kernel. When

1http://smokebot.eu
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the first optimisation has converged, we run a second optimisation step using dynamic
covariance scaling. The Huber kernel guarantees unicity of the solution, but the result is
still influenced by incorrect corner associations. In order to improve alignment, we then
optimise again using DCS to scale down the information matrices in edges that introduce
a large error in the graph. Using DCS only tends to “switch off” edges too early, resulting
in poor alignment.

2.3.2 Sensor-map alignment with region decomposition

As ILIAD addresses operation of multiple-actor fleets, possibly with heterogeneous sensor
setups, it is of particular interest to align robot sensor maps created using different sensing
modalities: primarily maps made from 3D or 2D range data, with sensors at different
heights.

In joint work with Halmstad University, Sweden, we have developed two related meth-
ods that can be used for this purpose (see Gholami Shahbandi and Magnusson [6] and
Gholami Shahbandi, Magnusson, and Iagnemma [7]). The first is a decomposition-based
map alignment technique [6] to estimate an initial alignment; which is optionally followed
by a non-linear map-to-map registration [7].

In order to align maps of different modalities, they first need to use the same repre-
sentation. To that effect, the alignment is performed in 2D space, which is appropriate in
a warehouse setting with planar floors. In other words, 3D maps are first converted to a
2D grid map; and the resulting transformation can then be applied to the full 3D map.

Since 2D grid maps can also be seen as images, one might expect that existing general-
purpose image registration algorithms could be used to align them. However, as demon-
strated by our experimental results [7], image registration algorithms typically do not
produce satisfactory results. The reason, we believe, is that non-linear image registration
requires a higher level of local information than is present in grid maps, which mostly
consist of homogeneous patches of low information. There have also been several prior
works on map matching that use a Hough/Radon transform, finding an alignment by
decomposing it into a translation and a rotation estimation. While fast, we have shown [6]
that these methods [4, 14] have trouble aligning maps that are of different types or partially
distorted due to mapping inaccuracies.

In order to align two sensor maps, the method decomposes the maps into multiple
regions, represented as a set of edges and faces in a doubly-connected edge list data
structure. The best affine alignment is found by an exhaustive search over hypotheses
generated from matching each region in one map to all regions in the other map. The
decomposition procedure is illustrated in Figure 9.

To account also for cases where nonlinear alignment is necessary, In the second step,
a set of control points is selected in the source map, and a gradient map is computed from
the target map. The positions of the control points are then optimised using the gradient
map as a fitness function together with a coherency condition that constrains the motion
of each control point to be consistent with its neighbours. An example of the outcome of
this alignment procedure is shown in Figure 10.

Multi-modal map alignment of partly overlapping maps is a challenging problem,
as can be seen from our experimental evaluation. Still, for one indicative data set from
an office environments (in the order of 30 rooms, with 14 different sensor maps), our
method [6] has a 68 % success rate, compared to 3–29 % for the baseline methods that
we have compared to [4, 5, 8, 11, 14]. In particular, the alignment methods are sensitive
to clutter. In future work, we intend to further evaluate the consequences and possible
solutions specifically in warehouse environments.

10



H2020-ICT-2016-2017: 732737 ILIAD Deliverable D1.2

Figure 9: Map decomposition [6]. From left to right: an occupancy map, its original
decomposition, a distance image used for pruning edges in the decomposition, and the
final cleaned-up version of the arrangement.

(a) Source map. (b) Target map.

(c) Initial alignment [6] of
the source and target maps
above.

(d) Control points and gradi-
ent image.

(e) Final, nonlinear, align-
ment [7].

Figure 10: Example of rigid and non-rigid map alignment (see Section 2.3.2) of two
sensor maps from the same indoor environment (see https://github.com/saeedghsh/
Halmstad-Robot-Maps), but covering different parts of the environment, and each with
slight mapping errors. Figure (c) shows the best rigid alignment found in step 1 of the
process. Figure (e) shows the result after nonlinear alignment.
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Figure 11: Mean absolute trajectory error (vertical axis, in metres) for different values of
the interchange radius between submaps, at an NDT-OM grid resolution of 0.7 m. Using
a single global map, the mean error is just below 3 cm. With the submap approach used
in ILIAD, the mean error is approximately 2 cm, depending on the choice of interchange
radius.

3 Localisation
This section presents an evaluation of localisation accuracy obtainable using the NDT-
OM submapping approach presented in Section 2.1, compared to using monolithic NDT
maps.

When localising in a hybrid metric–topological (HMT) map, it makes sense to carefully
select which submap to use for localisation. Following the same line of argument as in
Section 2.1, localising in a local submap generated from poses within a small region
should intuitively allow for better accuracy than when using submaps created from widely
different locations, or monolithic maps. A novel contribution from the work in T1.2 is a
quantitative assessment of how localisation accuracy can be affected by using local (HMT)
submaps compared to monolithic maps. In addition to the two methods mentioned in
Section 2.1, we have evaluated a third method for selecting submaps during localisation in
a pre-built map. Instead of selecting a submap based on the position in a predefined map
grid or choosing the closest node position with a translation/rotation distance metric,
we propose to use the recollected information of the sensor poses from where the map
has been updated in order to find the most densely updated map at the location of the
robot’s sensor. In our experimental validation, we have shown that this method improves
performance by up to 40 % over a monolithic NDT-OM representation. Using data from
a dairy production facility and a warehouse, the mean absolute trajectory error (ATE) is
between 22 mm and 33 mm when localising by means of D2D-NDT registration to the
map, compared to a reference reflector-based positioning system (see Figure 11). We
plan to submit this work for publication during ILIAD’s second period. This accuracy is
sufficient for the needs of the project, and is within the margins required for picking up
EUR pallets from known positions using a global reference frame.

For on-line localisation we use NDT-MCL (NDT Monte-Carlo Localisation) for addi-
tional robustness (multi-hypothesis tracking). Figure 12 shows an example run through
the map from Figures 1 and 3, at the point where the truck in question picks up a pallet.

4 Summary
In summary, we have developed a prototype implementation of a mapping framework
that is capable of creating consistent maps from heterogeneous data — 2D and 3D lidar
data, as well as rough priors from layout maps.

The structural maps used for navigation all use the hybrid metric–topological (HMT)
NDT-OM maps described in Section 2.1. Maps can be created using 2D or 3D range
sensors, and can also be combined with prior map data, such as layout maps. Given the
map merging techniques described in Section 2.3, the different map modalities can be
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Figure 12: Illustrative example of NDT-MCL localisation. The MCL particles are shown in
red (here in a circular arrangement). Although the distribution of particles may appear
wide, the weighted mean that is returned as the truck’s pose estimate (red line) is con-
sistently very close to the ground truth position (yellow line). The pose estimate from
odometry (blue line) quickly drifts off. At the point of this snapshot, the truck picks up a
pallet.

aligned in a common reference frame, so that the fleet can share localisation information,
even when using maps that have been created in isolation. Maps created from different
sensors are still kept separate, although matched to the same coordinate frame, and non-
rigidly aligned so that common features overlap, in case the maps have local differences
in scale or appearance.

Specifically, we have demonstrated the performance of the framework in real-world
warehouse environments, which feature challenges in terms of semi-static objects and
perceptual aliasing. In initial tests on real-world warehouse data, the localisation accuracy
(mean absolute trajectory error) is approximately 20 mm when measured against ground
truth position estimates from existing infrastructure-based localisation (see Figure 11).
Further tests with long-term data from end-user sites, which will better asses the per-
formance in changing environments, will be performed during the remaining period of
ILIAD.
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