
Intra-Logistics with Integrated Automatic Deployment:
Safe and Scalable Fleets in Shared Spaces

H2020-ICT-2016-2017
Grant agreement no: 732737

DELIVERABLE 1.3
Implementation of unsupervised semantic mapping system

Due date: month 48 (December 2020)
Deliverable type: R

Lead beneficiary: ORU

Dissemination Level: PUBLIC

Main author: Martin Magnusson (ORU)



H2020-ICT-2016-2017: 732737 ILIAD Deliverable D1.3

Contents
1 Introduction 3

2 Structural mapping 3

3 Unsupervised shelf detection 4
3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Unsupervised labelling of traversable areas 8

5 Unsupervised labelling of temporary storage locations 10

6 Unsupervised place categorisation 10

7 Summary and future work 11

2



H2020-ICT-2016-2017: 732737 ILIAD Deliverable D1.3

1 Introduction
This report outlines an implementation of unsupervised semantic mapping that is specif-
ically targeted for the main use case that drives the ILIAD project: fleets of intralogistics
robots that are safe and efficient in spaces shared with people. The implementation is ca-
pable of automatically labelling shelves (pick-slots), non-traversable areas, and suggested
places for temporary pallet storage. In all cases the system works without supervised
learning. Shelf detection is treated as a geometric problem, and we show that it can be
done so with high accuracy (F1 = 0.98); traversability mapping that goes beyond simple
occupancy projection uses frequency-based structure detection to better filter out clutter
from the map; and we use long-term learned patterns of human motion to introduce
non-binary traversability costs, and also suggest places for temporary pallet storage. In
addition, we present a method for unsupervised place categorisation in a warehouse
context. This method clusters 3D point clouds by appearance, and is able to automatically
segment an unordered set of point clouds into semantically meaningful places, such as
in-aisle or not, or different halls in the warehouse. We have shown that the performance
on an available benchmark dataset is close to that of previously published supervised
methods that use both range and intensity data.

We include data from three warehouses in the evaluation: primarily food manufacturer
Orkla Foods, where the project’s final demo is scheduled, and also grocery retailer Coop
and dairy distributor Arla.

Our main method for structural mapping (the output of which is used in semantic
mapping) is described in Section 2, and the semantic mapping components are covered
in Section 3–6.

2 Structural mapping
The mapping system is based on the NDT-OM (normal-distributions transform occupancy
map) representation [7], using the D2D-NDTSC scan registration method [1] to robustly
estimate the lidar odometry. An example can be seen in Figure 1a. When the origin of
the latest esimated sensor position pt is located at a distance > δm from the previous
keyframe pk , the relative pose pk

t = p−1
k pt is passed into a pose graph framework together

with the matching covarianceΣk
t . A new keyframe pk is then created from pt . This ensures

low drift in the lidar odometry and keeps the number of scans in the pose graph to a
minimum level. As drift is inevitably introduced when the robot traverses the environment,
loop closure candidates are proposed when the current pose pt is close a previouosly
mapped area with a keyframe pl . Proposed candidates are registered using D2D-NDTSC
in a coarse-to-fine fashion and the relative pose estimate pl

t and covariance Σl
t are added

as additional constraints in the pose graph. The optimal scan locations x given the
constraints C can be obtained by solving argminx F(x) =

∑

〈i , j 〉∈C eT
i jΣ

−1
i j ei j .

Using the refined lidar pose estimates and point cloud data, navigation maps can
be built by classifying voxels in an interval hmin < h < hmax above the ground plane as
occupied or non-occupied. (The height of the scanner used to determine hmin can be
taken from automatic calibration, T1.1.) The probability of a voxel being occupied is
computed by performing raytracing between lidar keyframes and their observations,
within the selected height interval, and applying an inverse sensor model to intermediate
voxels. Voxels with sufficienly high probability of being occupied are then projected onto
a standard 2d occupancy map as seen in Figure 1b.

The geometrical representation described above does not yet include higher-level
information needed for actual fleet deployment; most importantly, where the pick-slots
are (at what shelf in the warehouse is a particular product stored), and where activities
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(a) A 3D point cloud map (black) and trajectory
(red) estimated from lidar data in Orkla Foods’
warehouse.

(b) Initial 2D occupancy map created by per-
forming raytracing above the ground plane.

Figure 1: Output of structural mapping (see D1.2 and Section 2).

tend to happen (so that the robot can plan safely and efficiently without disturbing other’s
activities).

The 3D point cloud map which is the output after D2D-NDTSC scan registration and
loop closure is used as the input for shelf detection (Section 3) and the 2D occupancy
map described above is input to further analysis about traversability and storage in
Sections 4 and 5. Place categorisation (Section 6) uses individual 3D point clouds without
registration.

3 Unsupervised shelf detection

3.1 Method
To find candidate shelves in the map, we take the following approach. The input is a
3D pointcloud mapX of the warehouse; e. g., as depicted in Figure 1a. In essence, the
method searches for the poles of the racks used for the warehouse shelving. The poles are
clustered into segments, one for each lane of shelves, after which the pick-slots that are
the output of the method are distributed along the shelves. The detected pick-slots are
included in the semantic map, and in a post-processing step, warehouse staff can assess
the results to remove falsely detected shelves and add missing ones.

First, the map is pre-filtered to remove the floor, by filtering those points that are
lower than hmin. The point cloud is segmented using region-growing segmentation [2] to
generate an initial set of “obstacle chunks”.

After this, the points of each segment are classified using the local shape, as follows.

1. For each remaining point x ∈ X , find all neighbouring points within a certain
radius r .

2. Compute the mean vector µ and covariance matrix Σ of the point positions found
in the previous step.
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3. Compute the eigenvalues λ1 ≤ λ2 ≤ λ3 and eigenvectors e1, e2, e3 of Σ. If λ2/λ1 <
tl , the surrounding surface shape is approximately distributed along a line. The
direction if the linear distribution is the largest eigenvector e3 = (x , y , z ). In this
application, we are looking for vertical lines (poles) that have |z |> |2y | and |z |> |2x |.
From these values, the class computed from x is either line or pole. (If λ1 ≥ tt , the
surface is considered uneven. If λ1 < tt , the surface is planar. The normal vector of
the plane approximating the local surface is e1. Depending on the orientation of e1,
assign the class floor, wall, or slope.)

4. A weighted vote for the class selected in the previous step is assigned to x and each
of its neighbours. The weight is determined by a Gaussian kernel centred at x with
varianceσ= r /3, so that it is close to zero at the edges of the neighbourhood.

5. After all points inX have been evaluated, each point is assigned the class for which
it has the highest vote.

After all points that are not classified as pole have been removed, the remaining points
are again clustered using region-growing segmentation (using r as the Euclidean distance
threshold). Clusters with very few points, less than a parameter m , are removed, as provide
they little support for the presence of a pole.

The remaining pole clusters are segmented again, with a larger threshold wa , in order
to create one segment per rack of shelves. The parameter wa is warehouse-specific and
should be set according to the smallest aisle width.

Finally, this set of “rack segments” is filtered to remove segments that are too small or
too large. Each rack segment should be no wider than two pallets. A common setup of
shelf racks is to have access from two sides, which means that the rack is two pallets wide.
A rack that is three or more pallets wide makes little sense (since the middle pallets could
not be reached) and is therefore likely the result of undersegmentation; e. g., if wa is set
too large.

The remaining segments constitute a plausible set of the racks present in the ware-
house. For each of these racks, pick-slots are placed at regular intervals along the length
of the rack. An oriented bounding box is computed for the rack, and pallet-sized pick
slots are distributed along the longer sides of the bounding box. The size of each pick slot
is a user-defined parameter – typically corresponding to the size of a standard pallet.

3.2 Data sets
The methods are validated using real-world warehouse data from two sites: one from
food manufacturer Orkla Foods, where the project’s final demo is scheduled, and one
from grocery retailer Coop. The Orkla warehouse is smaller and less structured, while the
Coop warehouse is large and highly structured. Figure 2 shows photos from the two sites.

The Orkla warehouse contains 105 pick-slots used in production plus 9 not used in
production. In this warehouse, five lanes of shelf racks are placed in one area of the
warehouse, adjacent to other structure such as machinery for pallet wrapping, conveyors
from the factory, temporary pallet storage, etc. The warehouse also contains large open
space used as marshalling lanes for outward shipping.

The Coop warehouse contains many hundreds of pick-slots with shelf racks aligned
along a regular pattern of aisles. Our dataset only covers a part of this very large warehouse.
Compared to the Orkla warehouse, the environment is much more regular, with the racks
making up most of the structure.

The racks in both warehouses differ in size and configuration. For example, the vertical
poles supporting the racks are spaced 3 m apart at Orkla, and 2 m apart at Coop. Aisles
between racks are just over 2 m wide at Coop, but waries between 2–4 m at Orkla. The
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(a) The Orkla warehouse. Top: racks of
shelves, and additional structure from the
warehouse. Bottom: Example of rack-like
structures consituting true negatives.

(b) The Coop warehouse. Please note that
the poles in the shelf racks are not always
well visible; e. g., due to the number and
size of packages stored on the shelves.

Figure 2: The two warehouse datasets used to evaluate automatic shelf detection.

common denominator between the racks where the pick-slots are located is simply that
they consist of coherent sets of poles and shelves.

3.3 Results
The output of the method described above for the two warehouses can be seen in Figures 3
and 4.

Orkla The number of pick-slots used in production in the Orkla warehouse is 105. A
ground-truth labelling of pick-slots made by warehouse staff is shown in Figure 3a. Out of
the 105 pick-slots, 104 are correctly detected by our method and there is 1 false negative.
In addition, there are 3 false positives. This means that the recall rate is 99% and the
precision is 97% (F1 = 0.98), which is well above the target value of 80% recall at 80%
precision set forth in the project’s technical requirements.

The false positives are placed adjacent to two of the racks. At these positions, there are
pole-like structures that are mistaken to be part of the shelf rack, causing 2 false positives
for the double-rack and 1 false positive for a single-rack. These failure cases are labelled
in Figure 3b.

In addition to the pick-slots counted above, the method detects another rack of shelves
at one end of the warehouse. These are actual shelves, although they are not used in
production and therefore not labelled by the warehouse staff. The method detects 10
pick-slots, of which 9 are true positives.

Coop Results from the Coop dataset are shown in Figure 4. One observation is that the
method works best when the racks have been well observed: from both sides. In our
quantitative results, we only count those racks that have been seen from both sides (inside
the region thus marked in Figure 4).

In this dataset, we do not have ground truth labels by staff, but the number of pick-
slots can be counted by visual inspection of the 3D map data. This should only be taken
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(a) Ground-truth labelling of pick-slots. (b) Output of shelf detection.

Figure 3: Results of shelf detection from the Orkla dataset. Left: manual (ground-truth)
labelling of the pick-slots used in production. Right: output of the shelf detection module.
Each detected pick-slot is marked with a coloured box in (b). The background map shows
other vertical obstacles not classified as shelves. The three false positives are circled with
solid-line rectangles. The false negative is marked with a dotted-line rectangle.

as an indicative result, but counting 554 pickslots in total (distributed as 7 lanes with 62
slots each plus 2 lanes with 60 slots each), we have over 99% recall and precision within
this region.

The method also detects many of the shelves that are seen from a distance. However,
since not all poles have been seen, the oriented bounding boxes that are computed from
the lane segments somtimes have an orientation error, which causes the pickslots to be
misplaced. A potential workaround for this issue, left for future work, is to only consider
scan data within a local region (e. g., 10 m) around the sensor frame when constructing
the point cloud map used for shelf detection.

3.4 Parameter selection
Two main parameters need to be selected depending on the environment: the size of each
pick-slot (usually the same as a standard pallet, but depends on what goods are stored
in the warehouse) and the minimum aisle width wa (which is used when clustering, to
avoid that poles that are nearby get clustered to the same rack segment).

For all results presented here, we have based the pick-slot size on the size of a EUR
pallet (80 × 120 cm). For the Orkla example, the aisle width wa is set to 4.5 m, and for
Coop, where aisles are generally narrower, it is set to 2.2 m.

There are also three parameters that govern the pole detection step: the radius r
for classifying the shape, the threshold tl for determining which point distributions are
“linear enough”, and the threshold m which is used to remove stray point clusters with
too few points to reliably provide evidence for a pole.

For both data sets, we have used r = 0.35 m and m = 5. However, tl differs between
the two, with tl = 0.25 for Orkla and tl = 0.75 for Coop. The point clouds in the Coop
data set are not as precisely registered as they are in the Orkla map, since they have been
localised with a reflector-based system, rather than the mapping framework described
in Section 2 and Deliverable D1.2. Therefore, the stricter linearity threshold tl = 0.25 is
too conservative, and leads to poles being undetected, because the (noisy) distribution of
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Figure 4: Shelf-detection output from the Coop dataset. The data comes from two runs
through the warehouse, the trajectories of which are plotted with purple lines. Only those
shelves that have been seen from both sides are included in the quantitative results (this
region is marked with a long-dashed rectangle). For this data set, ground truth labels are
not available. However, based on our visual assessment of where the pickslots should be,
we count two false positives (at one end of one rack, circled with a solid-line rectangle)
and two false negatives (at one end of another rack, circled with a dotted rectangle). This
figure also highlights potential problems with misalignment and misdetections for shelves
that are only seen from a distance.

points within r tends to be more “spherical” than linear. This, in turn, leads to gaps in
the detected shelf racks, which manifests in more false negatives. At Orkla, there is more
“clutter” in terms of other pole-like structures, and therefore a stricter threshold is better
there.

4 Unsupervised labelling of traversable areas
In simple, flat environments, the problem of traversability can be addressed by answering
a question: “Is this part of the map low enough?”. Thus, utilising a simple height-based
navigation map can yield usable results, such as the one shown in Figure 1b.

However, even though obstacles that have been observed as moving during map
creation are removed by NDT-OM, some clutter may still remain, e. g., a parked truck or
some traces of people. As part of T2.2, we have developed a method that can be used for
automatic de-cluttering of 2D navigation maps [3] by analysing the dominant directions
in the map and scoring each point of the map based on how well it is aligned to these
directions.

Our method for structure extraction and decluttering is called ROSE [3]. ROSE exploits
the fact that indoor environments usually contain walls and straight-line elements along a
limited set of orientations. Therefore metric maps often have a set of dominant directions.
ROSE extracts these directions and uses this information to segment the map into structure
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and clutter. The method is described briefly in the following. For more details, please see
Kucner et al. [3].

The first step of ROSE is to compute the 2D Discrete Fourier Transform (DFT) M =
{(m , n )} of an input map µ = {(u , v )}. The DFT image is “unfolded” around its centre
with an unfolding function c ; thus estimating the amplitude values for a discrete set of
orientationsφ and distances ρ from the centre of the frequency spectrum. Cumulative
amplitude peaks are computed from the unfolded plot of orientations, and these peaks
constitute the dominant directions of the input map. The set of peaks (Φ) can then be
used to assess the structure of the map both at the global level and also for individual grid
cells.

In order to use ROSE for decluttering, the next step is to identify to what extent the
occupied map cells (u , v ) belong to the dominant directions. For this purpose, we divide
the frequency spectrum into two parts, a structure and a clutter part. The structure part
(S ) contains the frequency components along the peak directions in Φ:

S = {(u , v )s |(u , v ) = c −1(φ,ρ),φ ∈Φp ,ρ ∈ (0,ρmax)}. (1)

To obtain the cells in the frequency spectrum that correspond to the structure (S ), we
apply the folding function (c −1). The folding function finds all the cells in the frequency
spectrum that share the orientations (Φp ) with the peaks. The remaining part of the
frequency spectrum N = S C is then labelled as clutter.

S is then used to reconstruct the structured elements of the map using the Inverse
Discrete Fourier Transform (IDFT). This constitutes a nominal reference map µN ; i. e., a
representation of what we expect a ground-truth map to look like, in lieu of an actual
reference map.

µN (m , n ) =
1

X Y

X−1
∑

u=0

Y −1
∑

v=0

M (u , v )e j 2π(um/X+v n/Y ), (m , n ) ∈ S (2)

The pixel score computed in (2) can be further applied to label pixels as part of either
structure or clutter. The split can be executed through simple thresholding. To auto-
matically estimate the threshold value, we propose to use a Gaussian Mixture Model
(GMM). To find the threshold we first run Expectation Maximisation (EM) over the list
of pixel scores. In this way we obtain two normal distributions: Nstructure and Nclutter.
The threshold is defined as the pixel score s ∈µN for which the two Gaussians intersect:
τNstructure(s ) = (1−τ)Nclutter(s ).

This automatic threshold can be given as an initial suggestion for assisting decluttering
of the navigation map, and tuned based on the sensitivity required by the application.
Figure 5 shows the output of ROSE decluttering of a navigation map from Orkla for the
automatic threshold (0.52 in this case) and a selection of manual thresholds.

Going beyond the the traditional way of simply labelling robot map cells as “floor” vs
“obstacle”, in industrial environments shared with people there may be other – explicit
or implicit – no-go zones. Even if an area is flat and – in principle – traversable, there
may be many reasons why they should not be traversed by people or robots. As such, the
maps of dynamics (MoDs) developed in WP2 can also be seen as a type of unsupervised
semantic map, where the semantics in question are occurrence of activities and motion
patterns. We use MoDs to steer motion planning so as to align with the expected flow in
the warehouse using a hierarchical motion planner as described in D5.3 (Section 3). As
these methods have been described also in other deliverables, they are not covered in
detail here.
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(a) Threshold 0.20 (b) Threshold 0.35 (c) Threshold 0.52 (auto-
selected)

Figure 5: Decluttering traversability maps with ROSE unsupervised structure detection.
The user-selected parameter is a sensitivity scale, which can be auto-computed as in
figure (c) and manually adjusted depending on the context as in the remaining figures.
The parts of the original occupancy grid map (from Figure 1b) that have been removed
are coloured yellow.

5 Unsupervised labelling of temporary storage locations
Different from the fixed pick-slots for certain types of goods, the need to temporarily store
pallets on unused floor space often occurs; e. g., while preparing an order for shipment
or while re-stocking the warehouse with new products from the factory. It is possible to
identify locations preferable for temporary pallet storage by combining maps of structure
and maps of dynamics. Our approach to unsupervised labelling of locations that are
suitable for temporary pallet storage is to combine the traversability map (Section 4) with
a map of dynamics (as described in D2.1). In essence, good places to store pallets should
be places that are obstacle-free and where people usually do not walk.

In particular, for this implementation we use the CLiFF-map representation [4]which
is a time-independent representation of the directions and intensity of motion. Concretely,
CLiFF-map represents flow (using people detection from T3.3 as input) as a set of semi-
wrapped Gaussian mixture models – one for each location in the map. In addition to the
statistically plausible motion directions encoded by these mixture models, CLiFF-map
also encodes the motion intensity for each location based on the number of times a person
has been seen in motion there. Figure 6a shows the intensity component of a CLiFF-map
recorded at the Orkla warehouse. The quantity that is visualised here is the p value from
the CLiFF-map representation, which measures the ratio of activity in a cell (number of
times a person has been observed in the cell) to the overall activity in the area (measured
as number of times that persons have been observed in the area as a whole).

Through thresholding the flow-intensity map, it is possible to identify locations where
pallets should and should not be stored. The result in Figure 6b shows a map of suggested
places for storing pallets, where the top 10% most visited locations are forbidden for pallet
storage.

6 Unsupervised place categorisation
Finally, we have shown how place categorisation from 3D point cloud data can be solved
in an unsupervised way, without the supervised training that is required by the state of the
art [6]. Place categorisation is the problem of assigning a type of place to a sensor reading
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(a) Visualisation of people motion density in the
Orkla warehouse. Bright areas represent highly
active areas, while dark corresponds to locations
with low activity.

(b) Combined map showing suitable storage lo-
cations. The yellow regions are suitable for tem-
porary pallet storage. Red crosses denote re-
gions with high expected density of people.

Figure 6: Unsupervised labelling of temporary storage locations by combining long-term
maps of dynamics with de-cluttered traversability maps.

(e. g., an image or a 3D scan). What categories are relevant depends to some extent on
the application. In the literature, place categories are often room types, such as “kitchen”,
“office”, etc. In an intralogistics setting, relevant categories are, e. g., different warehouses
or warehouse halls, and “in-aisle” vs “out of aisle”.

Our method for unsupervised place categorisation uses NDT histograms [5] as a global
appearance descriptor of 3D point clouds. The appearance descriptors for a set of scans
can be clustered using hierarchical k -means++ clustering to produce a hierarchy of
semantically meaningful places. The only user-selected parameter is a sensitivity scale∆
that can be set according to how many categories are desired.

Figure 7 shows output from two warehouses: the Coop dataset described above, and a
dataset from a central distribution warehouse of dairy producer Arla. In this figure, a∆
threshold that produces three categories is shown. As∆ tends to zero, more categories
will be produced; in the limit, one category per point cloud. Figure 8 shows the locations
of the scans belonging to the top-three categories in the map. It is diffucult to precisely
quantify the performance, since there is no clear-cut ground-truth classification. (At what
point is it meaningful to say that the robot is inside the aisle or next to it?) However, we
have shown that the performance on an available benchmark dataset (not in a warehouse
environment) is close to that of previously published supervised methods that use both
range and intensity data. For more detail, please refer to Magnusson et al. [6].

7 Summary and future work
In this report we have summarised the output of the ILIAD semantic mapping sys-
tem, which contains unsupervised methods for detecting shelves, detecting clutter vs
traversable areas as well as maps of dynamics showing which parts of the map are often
traversed in practice, labelling areas that are suitable for temporary map storage, and
finally place categorisation that can segment maps into similar-looking areas.

The shelf detection method in particular (in combination with structural mapping) is
useful during deployment, much reducing the work load for surveying a warehouse and
measuring the position of each shelf. Staff from the involved end users (Orkla Foods) have

11



H2020-ICT-2016-2017: 732737 ILIAD Deliverable D1.3

graded how many of the semantic labels are correct, how many are useful for production,
and how many are missing. Our method for automatic shelf detection reached 99% recall
and 97% precision in the, relatively, unstructured warehouse of Orkla Foods; and over
99% recall and precision in the highly structured warehouse of Coop, in the parts of the
map that have been well observed (near the path traversed by the robot).

What remains within ILIAD is to fully integrate the methods for semantic mapping
with the rest of the system and deploy on the fleet. One area of improvement would be
to investigate a tighter integration between the decluttering and structure detection of
ROSE with shelf detection, in order to further reduce the number of false positives and to
bias the alignment of shelves to the main structural directions of the warehouse.
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∆
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Figure 7: Dendrograms showing the output of unsupervised hierarchical place categorisa-
tion from two warehouses. The leaf nodes show the average point cloud for the category.
The Coop dataset (a) is dominated by aisles between rows of shelves, and as such the
most relevant place categories are within vs out-of aisles. The Arla dataset (b) features
more free-floor storage, and as such the dominant categories are two different halls in the
warehouse. (Setting the threshold∆ lower than 1.0 subdivides the two halls into regions.)
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Figure 8: Place categorisation output on the Coop dataset, visualised on the map. The
position of each scan is denoted with a coloured dot. The colours of the three detected
place categories correspond to Figure 7a, with blue = in aisle, magenta = out of aisle, and
green = border region.
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