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1 Introduction
Task allocation, motion planning, coordination and control are all essential for deploying
fleets of autonomous robots. These four problems are intrinsically dependent: robot
motions must be physically realizable by controls computed by robot controllers; they
must also be coordinated in order to avoid collisions and deadlocks; and the motion
feasibility, coordination and control problems are determined by the particular allocation
of robots to goals decided in task allocation.

This document defines the overall fleet management problem, and relates it to several
sub-problems that must be solved to determine which robots serve which tasks and
how they jointly navigate in the environment. We assume that robots are placed in
an environment with obstacles, which results in each robot ri having a configuration
spaceQi =Qfree

i ∪Qobs
i . We also assume that the path p i of a robot ri is a sequence of

configurations inQi . A robot can navigate over a path according to a temporal profile
σi (t ), which determines the configuration p i (σ(t )) of robot ri along p i at time t . The
overall fleet management problem can be defined as the following set of sub-problems:

Definition 1. Given a set R = {r1, . . . , rn} of robots, a set G = {g1, . . . , gm} of goal poses,
and (joint) configuration spaceQ =

⋃

i

�

Qobs
i ∪Q free

i

�

, the fleet management problem is
the problem of determining

1. a total function a : G →R associating goals to robots (goal allocation);

2. a path p i for each robot ri leading it from its current pose to the allocated goal pose
a−1(ri ), and such that p i ∩Qobs

i = ; (motion planning);

3. a temporal profileσi (t ) for each robot path p i such that p i (σ(t )) does not intersect
p j 6=i (σ(t )) for all t (coordination);

4. a control policy πi (t ) = u i (t ) for each robot ri , which determines control inputs
that lead ri to be in pose p i (σ(t )) at time t (control).

We outline in the sections that follow two solutions to the fleet management problem
that have been studied during the first year of the ILIAD project: one that relies on a
composition of loosely-coupled modules for solving the four sub-problems listed above,
and one in which all sub-problems are formulated as one overall optimization problem.

2 A Loosely-Coupled Approach
In this section we present a lightweight coordination method that implements a high-level
controller for a fleet of potentially heterogeneous robots. The rationale for developing
this approach is grounded in the observation that the application-specific features of the
environment and robots often narrow down the possible goal allocation, motion planning,
and control methods that can be used. The approach is therefore loosely-coupled, in the
sense that it relies on off-the-shelf approaches for solving the goal allocation, motion
planning, and control problems. As we show below, the approach imposes very few as-
sumptions on robot controllers, which are required only to be able to accept set point
updates and to report their current state. The approach can be used with any motion
planning method for computing kinematically-feasible paths. Coordination uses heuris-
tics to update priorities while robots are in motion, and a simple model of robot dynamics
to guarantee dynamic feasibility. The approach avoids a-priori discretization of the envi-
ronment or of robot paths, allowing robots to “follow each other” through critical sections.
We validate the method formally and experimentally with different motion planners and
robot controllers, in simulation and with real robots.
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2.1 Spatial Envelopes and Critical Points
LetQ be a configuration space, and let p : [0, 1]→Q denote a path for a robot in the con-
figuration spaceQ, parametrized using its arc lengthσ. Hence, p (0) denotes the starting
configuration, and p (1) denotes the final configuration of the robot. Given a temporal
profile along the pathσ=σ(t ), we refer to p (σ) as a trajectory. Given any set of config-
urations S ⊆

⋃

σ∈[0,1]p (σ), let infp S = arg minq∈S p −1(q ) and supp S = arg maxq∈S p −1(q ),
i.e., the configurations among those in S that are reached first and last along the path p ,
respectively. Also, let p [t

′,t ′′] =
⋃

t ∈[t ′,t ′′]p (σ(t )). We use (·) j to indicate that variable (·) is
associated to robot j . When there is no ambiguity, the subscript j will be omitted.

q3(t ) = p 3(1)

q2(t ) = infp 2
C23

〈p 2, p 3, q2(t ), supp 3
C23〉Critical section C12

Critical section C23

E (p 3)

E (p 2)

E (p 1)

supp 3
C23

infp 3
C23

R2(q )

q

Figure 1: Three robots navigating along paths p 1, p 2, and p 3. Spatial envelopes and
critical sections are shown on the left; gray arrows indicate precedence constraints; detail
of the precedence constraint regulating robots 2 and 3 as they navigate through C23 is
shown on the right.

Let R j (q ) be the transformation of robot j in a configuration q ∈Q (see Figure 1, top).
Given the set of obstacles O , letQ j = {q ∈Q | ∃O ∈O : R j (q )∩O 6= ;}, andQfree

j =Q \Q j .

Definition 2. Given a robot j with configuration spaceQ j , obstacles O , a starting con-
figuration q s and a goal configuration q g , the path planning problem is the problem of
finding a path p j such that p j (0) = q s , p j (1) = q g , and p j (σ) ∈Qfree

j ,∀σ ∈ [0, 1], typically
subject to differential constraints f (q , q̇ ) = 0.

In order for a path to be executable by a robot, a suitable temporal profile needs to be
computed:

Definition 3. Given a path p , the trajectory generation problem is the problem of synthe-
sizing an executable temporal profileσ(t ) for p , typically subject to differential constraints
g (q̇ , q̈ ) = 0.

Trajectory generation is typically done by the robot controller, and is achieved as part
of the larger problem of synthesizing control actions for the robot. In doing so, robot
control schemes typically account for robot dynamics (e.g., the robot’s mass) and a variety
of other constraints (e.g., on the range of control inputs). Constraints that account for
robot-robot collisions are seldom part of the control problem formulation (although
exceptions exist, see related work in Section 4), as they increase the computational effort
required to solve the control problem. In the loosely-coupled approach, we are interested
in preserving to the greatest extent possible the formulation of the robot control problem.
As we will see, our approach is to communicate to robot controllers the simplest possible
further constraints that should be abided by in order to avoid collisions.

Definition 4. The spatial envelope E (p ) of a path p is the set of robot transformations
reached along the path, that is, E (p ) =

⋃

σ∈[0,1]R (p (σ)).

Definition 5. Given two robots i and j , we say that paths p i and p j interfere iff E (p i )∩
E (p j ) 6= ;.

4
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Definition 6. Given two paths p i and p j , letS = {q ∈Q |Ri (q )∩E (p j ) 6= ;∨R j (q )∩E (p i ) 6=
;}, and letCi j be the decomposition ofS into its largest contiguous subsets. Each set of
configurations Ci j ∈Ci j is called a critical section.

It follows from Definition 6 that p i and p j interfere if and only ifCi j 6= ;. Equivalently
(see Definitions 4 and 5), p i and p j interfere iff there exist temporal profiles σi and
σ j such that Ri (p i (σi (t ))) ∩ R j (p j (σ j (t ))) 6= ; for some time t . Note also that for any
Ci j ∈ Ci j and any σ ∈ [0,1], we have that Ri (p i (σ)) ∩ Ci j 6= ; iff ` ≤ σ ≤ u , for some
`, u ∈ [0, 1]. The configuration in which robot i begins to intersect Ci j is infp i

Ci j = p i (`),
and the configuration just before the same robot ceases to intersect Ci j is supp i

Ci j = p i (u )
(similarly for robot j ).

Figure 1 shows an example of three spatial envelopes with two critical sections. We
assume (as is the case in the example) that p i (infp i

Ci j )> p i (0) and p i (supp i
Ci j )< p i (1) for

all i , that is, no robot begins or terminates its motion in a critical section. This assumption
and the circumstances under which it can be relaxed are further discussed when we
consider deadlocks.

Definition 7. A precedence constraint is a tuple 〈p i , p j , qi , q j 〉 expressing the following
time-dependent constraint on the temporal profiles of p i and p j :

q j 6∈ p [0,t ]
j ⇒ qi 6∈ p [0,t ]

i . (1)

A precedence constraint 〈p i , p j , qi , q j 〉 can be read as follows: robot i should not navigate
beyond configuration qi along path p i until robot j has reached configuration q j along
path p j . A precedence constraint limits the possible temporal profiles of robot i . Whether
or not it does so depends on the time at which it is evaluated (t ) and on the temporal
profile of robot j . In Figure 1 (bottom), robot 2 is subject to a constraint regulating its
access to C23 at time t . We use precedence constraints to regulate access and traversal of
critical sections so as to avoid collisions (whereas no such regulation is necessary outside
critical sections). This poses the following problem:

Definition 8. Given a set of pathsP for an arbitrary number of robots, the coordination
problem is the problem of synthesizing, for each pair of interfering paths (p i , p j 6=i ) ∈P 2,
constraints on the temporal profilesσi (t ) andσ j (t ) such that

Ri (p i (σi (t )))∩R j (p j (σ j (t ))) = ;,∀t .

Remark 1. Let p i and p j be interfering paths for robots i and j with critical sectionsCi j .
The trajectories p i (σi ) and p j (σ j )will not collide ifσi andσ j adhere to the constraint

〈p i , p j , infp i
Ci j , supp j

Ci j 〉, (2)

for each critical section Ci j ∈Ci j .

Each of the above constraints imposes the complete sequencing of robots through a
critical section Ci j : while robot j has not exited the critical section, robot i is not allowed
to enter it. Note that these constraints are very conservative: if the paths of the two robots
through a critical section are not in opposing directions, then it may be possible for two
robots to be in the critical section at the same time without colliding. For this, we require
a more granular constraint, where the configuration qi depends on the position of robot
j in the critical section at time t . Let reach(p i , p j , t ) indicate the latest configuration that
is reachable by robot i along path p i before its transformation overlaps with that of robot
j at time t on path p j , that is:

reach(p i , p j , t ) = supp i
{q ∈ p [0,t ]

i |Ri (q )∩R j (p j (σ j (t ))) = ;}. (3)

The condition expressed in Remark 1 can be relaxed as follows:
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Remark 2. Let p i and p j be interfering paths for robots i and j with critical sectionsCi j .
The trajectories p i (σi ) and p j (σ j )will not collide ifσi andσ j adhere to the constraint

〈p i , p j , qi (t ), supp j
Ci j 〉, (4)

for each critical section Ci j ∈Ci j , where

qi (t ) =

�

supp i
{infp i

Ci j , reach(p i , p j , t )}, if supp j
Ci j 6∈ p [0,t ]

j

p i (1), otherwise
(5)

The constraints above impose that no robot i may proceed beyond the current location
of any robot j , while robot j occupies critical section Ci j . Unlike those in Remark 1, the
constraints formulated in Remark 2 are time-dependent precedence constraints, where
the limit to which robot i is allowed to navigate is a function of the current progress
of robot j , as stated in eq. (5). As explained in the next section, this results in robots
“following” each other through critical sections whenever possible (see Figure 2).

A set of precedence constraints T such that 〈p i , p j , qi (t ), supp j
Ci j 〉 ∈ T thus defines

an order of traversal through critical section Ci j by robots i and j . We indicate this fact
with the notation (i <Ci j

j ) ∈T , reflecting the fact that the constraints give priority to j
over i through critical section Ci j .

Definition 9. Let C be the set of all pairwise critical sections among the paths of an
arbitrary number of robots. The set of precedence constraints T is a complete ordering
for robots throughC iff (i <Ci j

j ) ∈T or ( j <Ci j
i ) ∈T for all Ci j ∈C .

By construction, a complete ordering for all robots eliminates the possibility of colli-
sions:

Lemma 1. Given a setP of paths for an arbitrary number of robots, the resulting set of all
pairwise critical sectionsC , and a complete ordering T throughC containing constraints
defined as in eqs. (3) to (5), if the temporal profileσi (t ) of each robot trajectory p i adheres
to the constraints T , then the robots will not collide.

Proof. Follows directly from the fact that constraints T constitute a complete ordering
throughC and that all temporal profiles adhere to the constraints.

2.2 Coordination Algorithm
Algorithm 1 realizes a high-level control loop for regulating access to critical sections
for a fleet of robots, running at a given frequency 1/T . At every iteration, the state of
robots is sampled (line 5), and a path is computed leading each idle robot from its current
configuration to the requested goal configuration (line 10). Critical sections are computed
by obtaining the pairwise intersections of the spatial envelopes of all paths (line 13).
These, along with the current state of the robots, are used to revise the set of constraints
T to which the temporal profiles should be subject to. It is assumed that temporal
profiles are computed/updated by the individual robot controllers upon calls to the
updateTrajectory function. If the precedence constraints call for a robot i to yield,
then its path p i is provided to the controller, along with the latest admissible configuration
that can be reached by the robot (line 16). If a robot’s trajectory is not subject to constraints,
its controller is notified that it can proceed until the end of the current path p i (1) (line
19).

The core of the coordination Algorithm is procedure reviseConstraints, which
decides if, when and where robots should yield. This is shown in Algorithm 2, which takes

6
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Algorithm 1: The coordination algorithm.

Input : a set G containing goals posted for robots {1, . . . , n}.
1 P ←;,Pconstrained←;,C ←;,T ←;
2 while true do
3 t ← getCurrentTime()
4 for i ∈ [1 . . n ] do
5 si ← sampleState(i)

6 for i : g i ∈G ∧ isIdle(si) do
7 G ←G \ {g i }
8 remove all elements relative to robot i fromP ,Pconstrained,C
9 qi ← getConfiguration(si)

10 p i ← computePath(qi ,g i)
11 P ←P ∪{p i }
12 for (p i , p j 6=i ) ∈P 2 do
13 C ←C ∪ getIntersections(E (p i ),E (p j ))

14 T ← reviseConstraints(P ,C ,T , t ,{s1, . . . , sn})
15 for i : 〈p i , p j , qi , q j 〉 ∈ T do
16 updateTrajectory(p i ,qi)
17 Pconstrained←Pconstrained ∪{p i }
18 for p i ∈P \Pconstrained do
19 updateTrajectory(p i ,p i (1))

20 while getCurrentTime()−t < T do
21 sleep(∆t )

7
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as input the current robot paths, the current time, and the current state of all robots. For
each critical section, it assesses the state of the involved robots (lines 3, 4, 6, 8). Depending
on the situation, it computes an ordering between the two robots involved in the critical
section. If neither of the robots involved in a critical section have entered the critical
section, then the choice of which robot should have access to the critical section first
is decided by a function computeOrdering (line 5). As we show below, this function
can be designed with more or less (or even no) knowledge of robot dynamics. Note that
if either robot has navigated beyond a critical section, this will not lead to a constraint.
The configuration beyond which the yielding robot should not navigate is computed
by procedure computeCriticalPoint (line 10), which implements eqs. (3) to (5). The
resulting revised set of constraints is returned to the coordination loop and used to update
robot trajectories as described above.

Algorithm 2: The reviseConstraints algorithm.

Input : a setP of paths for an arbitrary number of robots; a (possibly empty) set
C of pairwise critical sections forP ; a (possibly empty) set T of
precedence constraints; the current state si for each robot i ; the current
time t .

Output : a set of revised precedence constraints Trev.
1 Trev←;
2 for Ci j ∈C do
3 if supp i

Ci j 6∈ p [0,t ]
i ∧ supp j

Ci j 6∈ p [0,t ]
j then

4 if infp i
Ci j 6∈ p [0,t ]

i ∧ infp j
Ci j 6∈ p [0,t ]

j then
5 (k , m )← computeOrdering(Ci j ,T , si , s j)

6 else if infp i
Ci j ∈ p [0,t ]

i ∧ infp j
Ci j 6∈ p [0,t ]

j then
7 (k , m )← (i , j )
8 else if infp i

Ci j 6∈ p [0,t ]
i ∧ infp j

Ci j ∈ p [0,t ]
j then

9 (k , m )← ( j , i )

10 qm ← computeCriticalPoint(p m , p k , t )
11 Trev←Trev ∪{〈p m , p k , qm , supp k

Ci j 〉}

12 return Trev

The examples in Figure 2 show four moments during the execution of trajectories for
two robots navigating through a long critical section, coordinated by Algorithm 1. An arrow
from i to j indicates that T contains a precedence constraint 〈p i , p j , qi (t ), infp i

Ci j 〉. The
top row shows a first example in which the robots are navigating in opposing directions,
which leads to one robot waiting until the other has completely cleared the critical section.
In the bottom row, the robots are tasked to navigate from right to left along the shown
paths. The constraint 〈p 1, p 2, q1(t ), infp 1

C12〉 is revised every T s, that is, q1(t ) is updated
to reflect the current state of robot 2 according to eq. (5). This brings about a “following”
behavior, by which the critical point of robot 1 is continuously advanced while robot 2
progresses along p 2.

Overall, the assumptions made in our approach are evident from the algorithm listings
above: we assume that (1) kinematically-feasible reference paths can be computed via
some motion planning method (line 10, Algorithm 1); (2) robot controllers are capable of
reporting their current pose and whether or not they are idle (lines 5, 6, 9 Algorithm 1, line
5, Algorithm 2); and (3) robot controllers are capable of updating their reference trajectory
with a new set-point, namely, the critical point beyond which navigation is forbidden
(lines 16, 19, Algorithm 1). We also assume that robot controllers do not lead robots to

8
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reach poses that lie outside spatial envelopes (which would invalidate Lemma 1).

2.3 A Simple Robot Ordering Policy
Let us assume that we have no knowledge of the dynamics of the robots in the fleet. We
can formulate a simple robot ordering policy that decides a complete ordering whenever
a new goal is posted, and never changes that ordering in subsequent iterations of the coor-
dination loop. Given a critical section Ci j ∈C , the current states si and s j of the involved
robots, and the set of precedence constraints T , the robot ordering (k , m ) returned by
computeOrdering is one of the two permutations {(i , j ), ( j , i )}, determined as follows:

(k , m ) =







(i , j ), if ( j <Ci j
i ) ∈T

( j , i ), if (i <Ci j
j ) ∈T

(k , m ) : q̇ (sm ) = 0, otherwise
(6)

where q̇ (sm ) is the current speed of robot m . The policy above ensures that an ordering is
decided only once, and never changed thereafter. This ordering is the permutation (k , m )
such that an idle robot never has priority over a non-idle robot.

Theorem 1. Algorithm 1 guarantees the absence of collisions if computeOrdering (Algo-
rithm 2, line 5) decides the ordering of robots at each critical section as specified in eq. (6).

Proof. The ordering through every critical section will be imposed for the first time
when at least one of the involved robots is idle (see lines 6, 16, 19 in Algorithm 1). It
is guaranteed that robot m will be able to respect the resulting precedence constraint
〈p m , p k , qm , supp k

Ci j 〉because m is idle (hence does not have to slow down). Algorithms 1
and 2 ensure that T is at all times a complete ordering of robots for critical sectionsC ,
hence robots are guaranteed not to collide if the temporal profiles they compute when
receiving a trajectory update (Algorithm 1, line 16) ensure that the critical point is reached
with zero velocity and not passed (Lemma 1).

2.4 Heuristic Robot Ordering Policies
It may be beneficial to base ordering decisions on other factors (e.g., heuristics that mini-
mize an objective function). Also, it may be useful to change robot orderings depending
on the observed performance of the fleet, potentially at every period T . In order to do
this, it is required to assess the physical realizability of ordering decisions for robots in
motion considering their dynamics. Let

q̈ t+∆t
i ≈ g i (q

t
i , q̇ t

i , u t
i ), (7)

q̇ t+∆t
i ≈ q̇ t

i + q̈ t+∆t
i ∆t , (8)

q t+∆t
i ≈ q t

i + q̇ t+∆t
i ∆t , (9)

be a forward model of the dynamics of robot i , where u t
i is an appropriately formed (set

of) control(s) at time t . Let (i <Ci j
j ) ∈ T , and let u dec

i be the maximum deceleration
control that can be given to robot i . Assuming the forward model is conservative, given
the state si of robot i , we can compute t̂ : q̇ t̂

i = 0 by extrapolation from eqs. (7) to (9) with
q 0

i = q (si ), q̇ 0
i = q̇ (si ), and u t

i = u dec
i . If the resulting position of robot i at time t̂ is not

beyond the beginning of critical section Ci j ,

p −1
i (q

t̂
i )< p −1

i (infp i
Ci j ), (10)

then it is possible for robot i to yield for robot j at critical section Ci j .

10
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We can exploit conservative forward models to obtain a dynamic ordering policy
that minimizes a heuristic function h . Given a critical section Ci j , the current states si

and s j of the robots, and the set of precedence constraints T , let Fi j be a set of pairs
such that ( j , i ) ∈ Fi j iff eq. (10) holds, that is, robot i can come to a stop before entering
critical section Ci j . The robot ordering (k , m ) returned bycomputeOrdering for a critical
section Ci j is

(k , m ) = arg min
(k ,m )∈Fi j

h (sk , sm , k , m ). (11)

It is easy to see that any such heuristic ordering policy guarantees the absence of
collisions:

Theorem 2. Algorithm 1 guarantees the absence of collisions if computeOrdering (Algo-
rithm 2, line 5) decides the ordering of robots at each critical section as specified in eqs. (10)
and (11) with conservative forward models of robot dynamics.

Proof. For each critical section, computeOrdering is invoked for the first time when
at least one of the two involved robots is idle. Hence, it is guaranteed that a physically
realizable ordering is computed at least once. The trajectory of the yielding robot is
updated for the first time while the robot is idle (Algorithm 1, line 16). Therefore, this
ordering will remain feasible as time goes by, and will be considered as a possible ordering
in future invocations of computeOrdering. A future invocation of computeOrdering
may change the first ordering, but this will occur only if neither robot has entered the
critical section (Algorithm 2, line 4), and the new ordering is physically realizable according
to the forward model. Algorithms 1 and 2 ensure thatT is at all times a complete ordering
of robots for critical sectionsC , hence robots are guaranteed not to collide if the temporal
profiles they compute when receiving a trajectory update (Algorithm 1, line 16) ensure
that the critical point is reached with zero velocity and not passed (Lemma 1).

A plausible heuristic h is one that estimates the effect of the proposed ordering (k , m )
on the total time to completion of all paths. Time to completion of a robot is proportional
to the amount of time the robot spends yielding to other robots — the less yielding, the
smoother the performance of the fleet and consequently the lower the overall time to
completion. This suggests that a good heuristic for minimizing overall time to completion
is the distance heuristic

hdist(sk , sm , k , m )≡ p k (infp k
Ck m )−p k (q (sk )), (12)

which gives precedence to the robot that is closest to the beginning of a critical section.
This effectively minimizes waiting time, because it avoids that robots traveling in opposing
directions yield to each other unnecessarily. Other heuristics can be envisaged, e.g.,
functions that make use of the precedence constraints in T , or that consider the forward
models of robots to account for best-, average- and worst-case performance.

2.5 Deadlocks
We consider the issue of liveness, i.e., whether it is guaranteed that robots will always
reach their goals.

Definition 10. Let T be a set of precedence constraints over robot pathsP with critical
sectionsC , and let DT = (V , E ) be the dependency graph of the constraints, namely:

V = {i | p i ∈P },
E = {(i , j ) ∈V 2 | ∃Ci j ∈C : ( j <Ci j

i ) ∈T }.

11
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If DT contains a cycle 〈i1, . . . , im = i1〉, then T contains precedence constraints

〈p i1
, p i2

, q ′i1
, qi2
〉,

〈p i2
, p i3

, q ′i2
, qi3
〉,

. . .
〈p im−1

, p im
, q ′im−1

, qim
〉.

The cycle is unsafe iff p i j
(qi j
)> p i j

(q ′i j
) for all j ∈ [2 . . m ].

An unsafe cycle describes the situation in which every robot involved in the cycle
requires another robot to reach a pose that will never be reached. Under the assump-
tion that robots are not in critical sections at the beginning and end of their paths
(p i (infp i

Ci j ) > p i (0) and p i (supp i
Ci j ) < p i (1) for all i ∈ [1. . n ]), this captures all and

only the situations in which a deadlock may occur, that is:

Remark 3. If T contains no unsafe cycles and robots are not in critical sections at the
beginning and end of their paths, then any set of temporal profiles that satisfies T is
deadlock-free.

The simple robot ordering policy described in eq. (6) ensures the complete absence
of cycles under the assumption that |G | ≤ 1 at each iteration (at most one goal is posted
per period in Algorithm 1), as this entails that any other robot will have priority over the
robot with a new goal, and this ordering will not be changed in subsequent iterations.
This effectively limits the scheduling of robots through critical sections to a fixed ordering,
determined entirely by the order in which goals are posted.

The robot ordering policy in eqs. (10) and (11) does not guarantee the absence of cycles,
even under the assumption of one goal per period, as orderings can be changed while
robots navigate, based on the heuristic function h . In order to guarantee the absence
of deadlocks, we therefore need to ensure that any cycle that may appear in T is safe.
This is problematic if we relax the assumption that robots are not in critical sections
at the beginning and end of their paths. For instance, given a critical section Ci j such
that p i (supp i

Ci j ) = p i (1) (robot i “parks” inside critical section Ci j ), allowing robot j to
precede robot i may avert the deadlock.1 Of course, this will not resolve the deadlock if
robot j ’s path also terminates within the critical section. We may rely on the fact that
robot j will eventually receive a new goal — however, the newly computed path may also
lead to a deadlock.

It is worth noting that there can be several strategies for attempting deadlock resolu-
tion. One is to allow robots to backtrack along their current trajectory to the first pose
that is not in a critical section, assuming one exists. An alternative strategy is to consider
possible placements of other robots during path computation: when computing the
path for robot i to reach a new goal, consider an obstacle R j (q j ) for each robot j 6= i in
configuration q j such that 〈p j , p i , q j , qi 〉 ∈ T . A similar form of prioritized planning has
been described in [16], and is shown to avert deadlocks under the assumption that the
infrastructure is “well-formed”, a notion that corresponds to a specific case of our earlier
assumption that p i (infp i

Ci j )> p i (0) and p i (supp i
Ci j )< p i (1) for every robot i .

2.6 Empirical Validation
The loosely-coupled approach described above has been implemented as an open-source
general purpose library, and is available on GitHub [11]. Three properties of the approach
have been evaluated, namely:

1This strategy is similar to that of adding null-segments in the collision regions of task completion diagrams
described in [9].

12



H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.1

• Scalability (number of robots and critical sections);

• Ability to account for robot dynamics;

• Realizability with different robot platforms, motion planning and control approaches.

We summarize here the results of these evaluations, while full details will be available in a
forthcoming paper (currently under review for ICAPS 2018). We also describe a case-study
in which the approach is used with simulated forklifts and the sampling-based motion
planning solution described in Deliverable D5.2.

Scalability. To assess scalability, two tests were conducted using a low-fidelity simulation
back-end. Paths are pre-planned and loaded from a library. In each test, an increasing
number of robot goals were asynchronously posted to the coordination algorithm,
culminating in 50 active robot goals at one time. The algorithm was run with T = 0 s, that
is, the period length was the time needed to perform all operations in one iteration of the
outer loop (lines 2–21, Algorithm 1). The tests reveal that the minimum period length
depends on the number of robots that move concurrently, and not on the total number of
robots in the fleet. Also, the tests provide evidence of the fact that the approach is suitable
for realistically-sized applications (numbering in the tens of robots).

Accounting for robot dynamics. An important feature of the loosely-coupled approach is
that, while it can exploit knowledge of robot dynamics to change precedences through
critical sections on the fly, it does not depend on this knowledge to determine the timing
of communications to the robots. This is a useful feature, as communicating often may
not be possible in real situations. An experiment was thus performed to assess how
increasing the period T at which the coordination loop iterates (which is the period at
which communication occurs with the robots) affects the performance of the fleet. Here,
performance is measured in terms of average time to completion of robot trajectories. We
postulated that average time to completion would increase as the period T increases, due
to the fact that the actual dynamic behavior of robots is re-assessed less often, leading to
less smooth behavior of the fleet. The principal finding of this experiment is a confirmation
of this hypothesis. We also found that robot average time to completion degrades linearly
with T .

Use cases with real robots. A number of tests were performed with simulated and real
robots. Two tests were performed with two CiTi-truck forklifts in the basement of AASS
at Örebro University. In both tests, goals were asynchronously posted which required
the robots to reach five destinations along a loop in the environment (see Figure 3). In
one experiment, we let the robots complete 20 cycles, for a total duration of 45 minutes.
The robots successfully completed all missions, coordinating as appropriate in all critical
sections. A video of the full run is available online (https://youtu.be/9Pr5kVvHSxs). In
a second experiment, we induced errors in the robots, which led the coordination
algorithm to change precedence constraints on the fly to account for the fact that one
robot was temporarily blocked. A video of this experiment is also available online (https:
//youtu.be/M1YQLTn_GGo). In both experiments, a lattice-based motion planner [1]
was used, all motion planning and control algorithms were run on the robots, and the
coordination algorithm was run on a separate laptop connected to the fleet via ROS.
The implementation of the ROS interface is available as a separate ROS package on
GitHub [10].
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g2 g4

g5

g3

g1

Figure 3: RViz view of the two robots in the basement. Robot 1 is continuously posted
goals {g3, g4, g2} in sequence, while robot 2 cycles through goals {g3, g5, g1}. The two
robots used in the experiment are shown in the inset.

g2

g4

g3

g1

Figure 4: Gazebo simulator view of the NCFM environment with three robots.

NCFM use case simulation. Finally, a realization of a food production scenario was tested
in a simulated environment modeled after the NCFM production facility in Holbeach
(at ILIAD partner UoL). Three robots are placed in the environment as shown in see
Figure 4, and goals {g1, g2, g3, g4} are continuously posted to all three robots. This leads
the coordination algorithm to impose precedences in the areas surrounding the goals, as
well as the long corridor connecting the two halves of the environment (see screenshots
in Figure 5). The simulation was run for 48 hours to test the reliability of the system, and
was tested with both the lattice-based motion planning approach described in [1] and the
sampling based approach developed by partner Bosch and described in Deliverable D5.2.

2.7 Strengths and Limitations of the Approach
The approach presented in this section has a number of advantages related to deployability.
The method can be used with off-the-shelf motion planning and control modules. We
minimize the assumptions made on these modules, requiring only that robot controllers
can commit to dynamically feasible set-point updates. Also, the method does not impose

14



H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.1

(a) (b)

Figure 5: Two instances of robot coordination in the NCFM scenario: (a) approaching goal
g1; (b) navigating through the corridor connecting the two halves of the environment.
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a particular choice of goal allocation strategy: any strategy can be employed to synthesize
goal allocations, and it is assumed (and expected, see Section 5) that goal allocations
result from an off-the-shelf optimization process which accounts for scenario-specific
objective functions. We have shown through formal analysis that the method is sound,
discussed how existing deadlock-avoidance strategies can be included, and evaluated the
approach with simulated and real robot systems.

The method also has a number of drawbacks. While the use of off-the-shelf optimiza-
tion methods for goal allocation can be envisaged, it is important to note that neither
robot paths nor the inference of precedence constraints account for the metrics used in
goal allocation. Recall that all four sub-problems of the overall fleet management problem
as defined in Section 1 are intimately connected, and solving one independently of the
others will lead to sub-optimal solutions or even incompleteness. This drawback suggests
that a more tightly-coupled approach should be studied, in which the goal allocation,
motion planning, coordination and control problems are solved in a mutually-aware
fashion. An initial study in this direction is described in the next section.

3 Towards a Tightly-Coupled Approach
The motion of a robot can be considered as being the consequence of its sate adhering to
constraints that change over time. This view matches well with the fleet management
problem statement introduced in Section 1. Each of the four sub-problems of the fleet
management problem can be seen as the imposition of additional constraints: solving
the goal allocation problem means imposing that each given goal coincides with the final
configuration of a robot; coordination means to impose that robot configurations are
not overlapping at any point in time; motion planning and control can be seen as the
imposition of constraints which restrict motions of robots to kino-dynamically feasible
ones. In this section, we begin by providing a general, formal definition of the overall fleet
management problem in terms of constraints. We then discuss what it takes to solve a
problem formulated in such a way, and propose an initial refinement of this formulation
that is amenable to off-the-shelf solvers.

3.1 General Formulation as a Constraint Optimization Problem
In this section, an optimization formulation of the fleet management problem is presented
in a general form. The decision variables of this problem are functions which map both
state and control of the robot fleet over time (x(t ), u(t )) and a set of discrete variables d(.)
which represent boolean decisions (e.g. robot-goal allocation).

The control space of the multirobot fleet is the R-ary cartesian product,Ufleet ⊆Ur1
×

...×UrR
= {u(t ) ∈Rnu×R } , of each robot control space,Uri

= {uri
(t ) ∈Rnu }. Similarly, the

state space of the multirobot fleet is the R-ary cartesian product ,Xfleet ⊆Xr1
× ...×XrR

=
{x(t ) ∈Rnx×R } , of each robot state space,Xri

= {xri
(t ) ∈Rnx }. There are decisions which

are inherently discrete/boolean, e.g. "robot r goes to goal g ", then the necessity to
define a decision space for the multirobot fleet, which is the R-ary cartesian product,
Dfleet = Dr1

× ...×DrR
, of each robot decision space defined as DR = {dri

(.) ∈ {0,1}}, e.g.
dr1
(g3)which is a proposition of the form is robot 1 "Assigned to goal 3", for the sake of

simplicity the formulation would be utilized in the form dr1,g3
. N.B. nu , nx , R , represent

respectively the cardinality of control inputs, robot states and robots.
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Minimize L (x(t ), u(t ), t , d(.)) =

∫ t f

t0

l (x(t ), u(t ), t , d(.))d t +ψ(x(t f ), d(.)) Cost Function

x(t )∈Xfleet

u(t )∈Ufleet

d(.)∈Dfleet

subject to: ∀t ∈ [t0, t f ] : r ∈ {r1, ..., rR } : ∀tk ∈ [t0, t f ], k ∈N

fr (xr (t ), ur (t ))− ẋr (t ) = 0 : Dynamic Model Constraints

B (x(tk ), d(.)) = 0 Boundary/Point Constraints

P (x(t ), e(t ))≤ 0 CfreeConstraints

¯
u ≤ ur (t )≤ ū Control Constraints

Where

L : Continuous Time Cost Function
l : Lagrangian Term of L
ψ : Endpoint Term of L
fr : Robot r Dynamics
B : Boundary Constraints
P : Path Constraints
e : Environment State
ū : Upper Bound on the Control Input

¯
u : Lower Bound on the Control Input
t0, t f : Starting and final time respectively

The formulation captures all four sub-problems stated in Section 1:

• The goal allocation problem is that of assigning decision variables yr,g ∈Dr : robot
r is assigned to reach goal g iff yr,g = 1. Boundary/point constraints impose that
the final poses of robots along their paths correspond to the given goals, and that
each goal is reached by exactly one robot.

• The motion planning problem is captured by path constraints, which restrict deci-
sion variables xr (t ) (representing the configurations of a robot over time) to be in
an obstacle-free part of the environment (e(t )).

• The coordination problem is also captured by path constraints, which can be as-
sumed to incorporate minimum distances between robots at all time points (P (t )).

• The control problem is modeled via constraints on decision variables u(t ). These
include the dynamic models fr of the robots, and bounds [

¯
u , ū ] on the control

inputs.

We instantiate the above formulation in a simple scenario (see Figure 6) in which three
robots are assigned two goals in an obstacle-free environment.
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Figure 6: A simple example scenario, where the configuration of a robot is defined by its
position (rx , ry ), the control input is a force ( f1, f2, f3) applied in the mass center of the
robot, and there are three robots and two goals.

Objective function. We start by choosing the objective function

L (x(t ), u(t )) =
R
∑

r=1

∫ t f

t0

xr (t )
T Q xr (t ) +ur (t )

T R xr (t )d t (13)

⇔ L (x(t ), u(t )) =

∫ t f

t0

xr1
(t )T Q xr1

(t ) +ur1
(t )T R ur1

(t )d t+

∫ t f

t0

xr2
(t )T Q xr2

(t ) +ur2
(t )T R ur2

(t )d t+

∫ t f

t0

xr3
(t )T Q xr3

(t ) +ur3
(t )T R ur3

(t )d t

which minimizes control energy spent by the robots.

Dynamic model. The dynamic model of the robots can be defined with ordinary differential
equations.

f (x(t ), u(t )) = ẋ(t ) =Ax(t ) +Bu(t ) (14)

⇔





ẋr1
(t )

ẋr2
(t )

ẋr3
(t )





︸ ︷︷ ︸

ẋ(t )

=





Ar1
0 0

0 Ar2
0

0 0 Ar3





︸ ︷︷ ︸

A





xr1
(t )

xr2
(t )

xr3
(t )





︸ ︷︷ ︸

x(t )

+





Br1
0 0

0 Br2
0

0 0 Br3





︸ ︷︷ ︸

B





ur1
(t )

ur2
(t )

ur3
(t )





︸ ︷︷ ︸

u(t )

And
�

q̇r

q̈r

�

︸ ︷︷ ︸

ẋr (t )

=Ar

�

qr

q̇r

�

︸ ︷︷ ︸

xr (t )

+BT
r fr
︸︷︷︸

ur (t )

: r = {r1, r2, r3}

where
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Ar : State Matrix of Robot r
Br : Control Matrix of Robot r
qr : Generalized Coordinate System, where qr = [rx , ry ]T

fr : Force Vector applied to robot r, where fr = [ frx
, fry
]T

In the particular case in which all robots follow the same model, the control and state
matrices are equal: Ar1

= Ar2
= Ar3

= A and Br1
= Br2

= Br3
= B .

If the system dynamics are linear, then the model can be discretized as follows: X (k +
1) = AX (k ) +BU (k ) : k = 1, ..., N and N ×τ= T , where T is the total trajectory time, that
is, τ is a time step.

Boundary/Point constraints. In the model depicted in eq. (14) by knowing the initial state x(0)
and the control space u(t ) :∀t ∈ [t0, t f ] it is possible to reach all the states, if we assume
the system is controllable, although such information about the system isn’t known a
priori . Nevertheless, one could desire to define a final/goal state, checkpoints, or have a
periodic sequence where the robot has a certain goal and then has to return to the initial
position. All of these additional requirements can be defined by point constraints. In this
example, it will be defined initial state constraints and goals constraints. N.B. there is
more robots then goals, as a result we are also formulating a goal assignment problem.

B (xr (tk ), y) =

¨

BI (xr (0))initial value constraints

BF (xr (t f ), yr,g ) goal constraints
(15)

Where y= dr (g ) ∈D f r e e ,∀r ∈ {r1, r2, r3}: ∀g ∈ {r1, r2} accordingly

BI (xr (0)) =











xr1
(0)− xr10

= 0

xr2
(0)− xr20

= 0

xr3
(0)− xr30

= 0

BF (xr (t f ), yr,g ) =



















































‖xr1
(t f )−xg1

‖2−‖xr1
(t f )−xg1

‖2 · yr1,g1
¾ 0

‖xr1
(t f )−xg2

‖2−‖xr1
(t f )−xg2

‖2 · yr1,g2
¾ 0

‖xr2
(t f )−xg1

‖2−‖xr2
(t f )−xg1

‖2 · yr2,g1
¾ 0

‖xr2
(t f )−xg2

‖2−‖xr2
(t f )−xg2

‖2 · yr2,g2
¾ 0

‖xr3
(t f )−xg1

‖2−‖xr3
(t f )−xg1

‖2 · yr3,g1
¾ 0

‖xr3
(t f )−xg2

‖2−‖xr3
(t f )−xg2

‖2 · yr3,g2
¾ 0

yr1,g1
+ yr2,g1

+ yr3,g1
= 2 ; yr1,g2

+ yr2,g2
+ yr3,g2

= 2

yr1,g1
+ yr1,g2

¾ 1 ; yr2,g1
+ yr2,g2

¾ 1 ; yr3,g1
+ yr3,g2

¾ 1

(16)

xr0
∈Xr : Initial position of robot r

xg ∈Xg : goal configurationXg ⊆Xr

‖·‖2 : L2-norm
yr,g ∈Dr : Proposition stating robot r is assigned or not to goal g. Note: yr,g = yr (g ) can

be utilized interchangeably

The inequalities in expression for BF (x(t f ), yr,g ), of which there is one for every robot-
goal combination, are in the form

‖xr (t f )−xg ‖2−‖xr (t f )−xg ‖2 · yr,g ¶ 0 (17)

They impose that decision variable yr,g = 0 iff robot r is assigned to goal g . Note that if
yr,g = 1, the expression evaluates to zero and the constraint has no effect. Note also that a
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robot may be assigned a goal or not. These requirements are imposed by the sums in the
expression for BF (x(t f ), yr,g ), which are in the form

∑G
i=1 yr,g =R −1 [g = g1, ..., gG ]

∑R
j=1 yr,g ¾G −1 [r = r1, ..., rR ]

(18)

where:

G : Number of Goals

Path constraints. Path constraints are used to impose requirements on traversable space.
In this example, we assume a workspace without obstacles, hence the free space consists
of the entire joint configuration space of all robots, excluding those configurations in
which robots collide with one another. Such constraints can be represented as follows:

P (x(t ), e(t )) = P (x(t )) =





Pr1,r2
(xr1
(t ), xr2

(t ))
Pr1,r3

(xr1
(t ), xr3

(t ))
Pr2,r3

(xr2
(t ), xr3

(t ))



 (19)

Where
Pri ,r j

(xri
(t ), xr j

(t )) = ‖xri
(t )− xr j

(t )‖2−dri ,r j
≥ 0

Pri ,r j
: Collision free path constraint between robot ri and robot r j

dri ,r j
: Safety distance between robot ri and robot r j

Clearly, this representation of the problem is unwieldy, if only because the total amount
of path constraints is combinatorial in the number of robots: extrapolating to R robots ,
there are a total of R C 2 =

R !
2!(R−2)! path constraints. Furthermore, the formulation assumes

holonomic point robots, and does not include obstacles. Even under such simplified
assumptions, finding a solution is computationally expensive. Moreover, state and control
space variables have continuous domains, i.e., ur (t ), xr (t ). Note, however, that each yr,g

assumes values in {0,1}. This leads to a non-convex solution space. Any solver relying
on a Newton method will thus be trapped in a convex subspace of the solution space,
therefore entirely missing solutions that require different assignments of the discrete
variables. This suggests a different approach to modeling (and solving) our problem,
which we outline in the next section.

3.2 A Two-Phase Approach
Given that goal allocation variables yr,g ∈Dr are discrete/integer variables, we can formu-
late an abstraction of our problem as a Mixed Integer Quadratic Problem (MIQP), which
can be solved efficiently if the cost function is quadratic and the constraints are either lin-
ear or a second order cone. We therefore propose a formulation of the fleet management
problem consisting of a cost function, a holonomic robot model with liner differential
equations, point-shaped holonomic robots, and a discretization of the obstacle-free con-
figuration space into overlapping convex polygons. The goal assignment problem is
modeled via integer decision variables. The solution of the resulting MIQP with quadratic
constraints prescribes (1) an allocation of goals to robots (yr,g ), (2) the spatial constraints
(convex polygons) within which each robot configuration should lie, and (3) a control
input sequence for each robot (urx

,ury
) which leads the robot from its initial state to a

goal location. The solution of the MIQP can then be used as initial guess for solving a
Non-Linear Problem (NLP) which accounts for the requirements that were relaxed in the
MIQP formulation.
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3.2.1 Initial Solution of a Relaxed Problem (MIQP)

The MIQP formulation is provided below.

Minimize L (u(.)) =
R
∑

r=1

N
∑

k=1

ur (k )RuT
r (k ) Cost Function

ur (k )∈Ur , ∀k∈[1,...,N ]:∀r=[1,...,R ]

yg ,r ∈Dfleet, ∀r=[1,...,R ]:∀g=[1,...,G ]

cr,p (k )∈Dfleet, ∀r=[1,...,R ]:∀g=[1,...,G ]:∀k=[1,...,N ]

subject to: ∀r ∈ [1, ..., R ] :∀k ∈ [1, ..., N ] :∀p ∈ [1, ..., P ] :∀g = [1, ...,G ]

xr (0) = [qr (0) q̇r (0)]
T = xr0

Initial Condition

xr (k ) = f (xr (k −1), ur (k )) =Axr (k −1) +Bur (k ) Dynamic Model

(xg −xr (N ))yg ,r = 0T Goal Allocation

G
∑

g=1

yg ,r = 1 Robot has 1 Goal

R
∑

r=1

yg ,r = 1 Goal has 1 Robot

Ap
T qr (k ) +b−m1T (1− cr,p (k ) )≤ 0T : m1T �Ap

T qr (k ) +b C f r e e Constraints

1≤
P
∑

p=1

cr,p (k )≤ P Robot is inCfree

P
∑

p=1

|cr,p (k )− cr,p (k +1)| −
P
∑

p=1

cr,p (k )≤ 0 Corner Cutting

¯
u ≤ ur (k )≤ ū , Actuator Constraints

Example case

ur (k ) =

�

frx
(k )

fry
(k )

�

; xr (k ) =

�

qr (k )
q̇r (k )

�

R=

�

wux
0

0 wu y

�

(20)

A=







0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0






; B=







0 0
0 0
1

M 0
0 1

M






; xg =

�

qg

q̇g

�

(21)
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Ap =
�

ap1
ap2

. . . apH P

�

; b=









bp1

bp2

...
bpH P









(22)

xg ∈Xg : Goal ConfigurationXg =Xr

qr : Generalized Coordinate System, where qr = [rx , ry ]T

fr : Force Vector applied to robot r, where fr = [ frx , fry ]
T

R : Control input weighted matrix

wux
: Longitudinal control input weight

wu y
: Lateral control input weight

M : Mass of the robot

yg ,r : Goal-Robot allocation variables - robot r assigned to goal g

cr,p (k ) : Robot-state-polygon allocation variables - robot r at state k is in polygon p

api
: Normal vector of the halfspace i of polygon p

m : Large arbitrary positive value

H P : Number of Polygon half-planes

R : Number of robots where r is the robot index

N : Number of robot states where k is the robot state index

G : Number of goals where g is the goal index

P : Number of polygons where p is the polygon index

The cost function minimizes control energy, as is common in robotic optimization
problems. The cost function is a sum-of-squares. Since it is a convex function, one can
apply many off-the-shelf algorithms.

The initial condition sets all the robots to their initial state. The dynamic model is
composed of linear differential equations, and is also convex.

The goal allocation condition states that the final state of some robots have to be the
same as the goal state; which robots are assigned to each goal is not assumed to be a
priori knowledge, rather it is determined as a result of two further conditions: robots can
only have one goal, and each goal can only be fulfilled by one robot.

The configuration free space is given as a disjunction of polytopes defined as a con-
junction of half-planes. In order for the robot to not collide with static obstacles in the
environment, each state has to lie within at least one of the polytopes. These constraints
impose the safety of individual states, but not of the transitions between them. Hence,
a constraint is added imposing that two consecutive states have to lie within the same
polytope.

Finally, torques on motors are limited, and those limitations are accounted for as
physical constraints on the control inputs.

The formulation has a quadratic cost function and linear constraints, and as a result,
the problem as defined above is convex. In such problems, local minima are also global
minima, and only first-order optimality conditions have to be met.

The formulation above uses several patterns commonly used in Mixed-Integer Pro-
gramming. The constraints stating that robot states must lie within a polygon uses one
such pattern, namely, a “Big-M constraint” was utilized. This type of constraints has the
ability to “activate” or “deactivate” certain constraints, allowing to construct a formulation
with disjunctive statements. As a result, depending on whether the variable cr,p (k ) is
assigned value 1 or 0, the constraint is activated or deactivated, respectively. Another such
pattern is used in the constraint imposing that two consecutive states have to be inside
the same polygon. Here, the absolute value function is substituted by linear constraints:
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y = |cr,p (k )− cr,p (k −1)| : c(.) ∈ {0, 1}
cr,p (k )− cr,p (k −1)− (P+−P−) = 0

L y =−1 ,Uy = 1

P+−U P+||− ≤ 0

P−− |L | (1−P+||−)≤ 0

P+||− ∈ {0, 1}

P+ : Auxiliary variable which is equal to y if cr,p (k )− cr,p (k −1) is positive

P− : Auxiliary variable which is equal to y if cr,p (k )− cr,p (k −1) is negative

L y : Lower bound on cr,p (k )− cr,p (k −1)

Uy : Upper bound on cr,p (k )− cr,p (k −1)

P+||− : Auxiliary variable which sets either P+ or P− to zero or U and L otherwise respectively

These auxiliary variables and constraints allow to rewrite the absolute value formula
as follows:

|cr,p (k )− cr,p (k −1)|= P++P−

In this formulation, the robot is considered to be a point defined by the Cartesian
coordinates of its geometric center (xr (k ), yr (k )). Other representations for the robot can
be considered, e.g., circle robots, without forfeiting convexity.

The problem formulation above is a relaxation of the overall fleet management prob-
lem. Specifically, the relaxed elements of the problem are the robot geometry, the dynamic
models of robots, and the fact that robot-robot collisions are ignored. As a result, the
solution of the relaxed problem is not an executable control sequence, rather its intended
use is as an initial guess for solving the overall problem. The solution, in other words, is
used to inform a subsequent Non-Linear Problem (NLP) solver.

By considering robots as points, one is assuming that robots can pass through narrow
passages, which of course may not be possible when the real geometry is considered.
Furthermore, since the optimal control is formulated in a manner that minimizes control
energy, robots will tend to navigate close to obstacles, e.g., cutting corners.

The dynamic model of the robot is a composition of linear first order ODEs resulting
in an holonomic model and allowing sideways motions, which would not be possible if
considering a “car-like” dynamic model. As a result, the solution path of each robot will
be a conjunction of straight line segments from the initial to the final robot configuration.

The solution of the MIQP is a combined sequence of control inputs for each robot,
finding both the path and temporal profile for each robot subject to the stated constraints.
The solution can be considered as a “lower bound” solution for the overall fleet. Assigning
for each state of each robot (xr (k )) a specific polygon, which is a result of solving the dis-
crete variables (cr,p (k ) ∈ {0, 1}), is one of the interesting features of the MIQP formulation.
The solution of the c(.) variables can be understood as the sequence of polygons the robots
must traverse from the initial to the final configuration while considering all the stated
constraints. This goes beyond being a geometric solution: knowing that robot r1 is not on
the same polygon as robot r2 at time t allows to drop collision constraints between these
two robots at time t . On the other hand, if both robots are in the same polygon at time
t , then collision constraints should be considered. In this case, two possibles to tackle a
possible collision can be foreseen: both robots execute evasion maneuvers in the same
polygon so as to avoid each other, or one robot transitions to an adjacent polygon. In this
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Polygonal discretization of free space
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Figure 7: Solution of an example MIQP for four robots and four goals.

sense, the solution of the MIQP carries with it potentially useful information for solving
the NLP.

Figure 7 shows a solution of a MIQP formulation of a fleet management problem
with four robots and four goals. As shown, the goals assigned to robots r1, r2, r3, r4 are,
respectively, gA , gB , gC , gD . The trajectories leading to these goals are computed assuming
point robots and holonomic kinematics, and no provision is made to avoid collisions
between r1 and r2.

3.2.2 Solution Refinement (NLP)

Given a solution to the relaxed problem as shown above, we now turn our attention to
imposing the remaining constraints (robot-robot collision avoidance, kinematics, robot
geometry). Robot geometry is approximated via a conjunction of circles centered along
the center-line of the robot footprint. Robot-robot collision constraints are considered
pair-wise, and the dynamic model of robots is a combination of nonlinear first-order
ordinary differential equations. Additionally, the configuration space of each robot is
enhanced by the heading and velocity tangent to the robot’s path. The solution computed
by the MIQP solver is utilized to pre-assign robots to goals, as well as to determine which
polygons a robot should be in at each time step. The control inputs computed in the
previous phase are also used as a plausible initial guess for the NLP solver. Cost function,
initial configuration of the robot fleet, and physical limitations are maintained unaltered.
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Minimize L (u(.)) =
R
∑

r=1

N
∑

k=1

ur (k )RuT
r (k ) Cost Function

ur (k )∈Ur , ∀k∈[1,...,N ]:∀r=[1,...,R ]

subject to: ∀r ∈ [1, ..., R ] :∀k ∈ [1, ..., N ] :∀p ∈ [1, ..., P ] :∀c ∈ [1, ..., C ]

xr (0) = [rx (0) ry (0) rθ (0) rv (0)]
T Initial Condition

xr (k ) = f (xr (k −1), ur (k )) Dynamic Model

(xg −xr (N )) = 0 : yr,g=1 Goal Allocation

Ap
T qc

r (k ) +b−m1T (1− cr,p (k ) )≤ 0T
: cr,p (k )=1 C f r e e Constraints

‖xci
ri
(k )−x

c j
r j
(k )‖2− raci

ri
− ra

c j
r j

: ( j>i ) Collision Constraints

¯
u ≤ur (k )≤ ū Physical Constraints

Where

ur (k ) =

�

ar (k )
Kr (k )

�

; R=

�

wua
0

0 wuK

�

(23)

f (Xr (k −1), Ur (k )) =







Vr (k −1) cos(θr (k −1))
Vr (k −1) sin(θr (k −1))
Kr (k ) Vr (k −1)

ar (k )






; (24)

ū =

�

1
tan(φma x )

l ;

�

;
¯
u =

�

−1

− tan(φma x )
l ;

�

; (25)

rθ : Robot r heading

rv : Robot r velocity tangent to the path

qr
c : Circle c of robot r Generalized Coordinate System qr

c = [r
c
x , rc

y ]

wua
: Acceleration control input weight

wuK : Curvature control input weight

rar
c : Radius of cirle c of robot r

φma x : Maximum steering angle

l : Robot length

C : Number of circles encapsulating each robot

c : Circle index

Figure 8 shows the result of solving the NLP formulated above for the same example
described earlier. The solution of the MIQP shown in Figure 7 was used as an initial
guess for the NLP, yielding a refined set of robot trajectories which adhere to the full set of
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Polygonal discretization of free space
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Figure 8: Solution of the NLP, constituting a refinement of the MIQP solution shown in
Figure 7.

constraints imposed in the NLP. Specifically, the trajectories now adhere to the kinematic
constraints of a car-like robot, and collision between robots r1 and r2 are avoided via
spatial separation.

If the horizontal polygon spanning the three other polygons in the environment were
more narrow, a solution in which r1 yields to r2 would be necessary. Figure 9 shows the
solutions to the MIQP and NLP in this situation. As shown, collision between r1 and
r2 is avoided via temporal separation: r2 occupies the common area in the interval of
time [11, 15], while r1 only reaches the common area after this interval. This constraint is
enforced in both the MIQP and NLP solutions, resulting in collision-free motions of the
two robots.

Polygonal discretization of free space

r1

r2 r3

gA

gB

gC

gD

r4

Polygonal discretization of free space

r1

r2 r3

gA

gB

gC

gD

r4

Figure 9: Another solution of the MIQP (left) and NLP problems (right), showing temporal
(as opposed to spatial) adjustment to avoid the collision of robots r1 and r2.

The two examples we have illustrated show that the tightly-coupled approach pos-
sesses a higher level of sophistication than the loosely-coupled approach described in
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Section 2. The latter is only capable of performing temporal separation (adjusting the
temporal profiles of trajectories), whereas the tightly-coupled approach can seamlessly
blend spatial and temporal adjustment.

4 Related Work
The Operations Research and Multi-Agent Systems communities have focused on the
Multi-Agent Path Finding (MAPF) problem, that is, to find the paths for multiple agents in a
given graph from their current vertices to goal vertices without colliding with other agents,
while optimizing a cost function. Solutions to MAPF scale to hundreds of agents with
reasonable boundaries on optimality. However, unrealistic assumptions are often made
on the agents and their motions, e.g., point-shaped robots, with little or no kinodynamic
considerations, moving in a simplified grid representation of the environment [8]. The
use of these solutions for automation is therefore limited to environments that can be
engineered to suit these assumptions, e.g., warehouses [18].

Graph-based search methods have been employed with some success for coordinating
robots. Here, the environment is represented as a graph, whose connectivity represents
the possible motions of robots. These methods are often built for maze-like, congested
environments, and are not designed for online readjustment [17, 14]. They also make
several assumptions: all robots start their missions at the same time, and trajectories
are equated to paths through the graph, which is piece-wise continuous. The latter
assumption requires robots to stop at each traversed node of the graph to ensure dynamic
feasibility. It is shown in [13] and [5] how the resulting collision-free graph paths can be
transformed to kinodynamically feasible trajectories via a post-processing step.

A variety of approaches for multi-robot motion planning can be found in the Robotics
literature. Most account for robot-robot collisions in via a joint configuration space
derived from the Cartesian product of the configuration spaces of all robots in the fleet [7].
However, this approach is computationally expensive for large fleets, and not adequate
for online use. Some address the coordination problem in coordination space [9], whose
points represent the progress of all robots along their trajectories. Using this concept, a
provably collision- and deadlock-free control law for multi-robot systems was proposed
in [15]. The approach, however, assumes holonomic, disc-shaped robots, and requires
all robot paths to be known in order to compute the coordination space (whereas in the
loosely-coupled approach described in Section 2, goals can be posted dynamically).

The multi-robot motion planning problem can also be formulated in a continuous
domain, and continuous-variable optimization can be used to find feasible trajectories for
multiple robots. These approaches produce smooth and feasible trajectories for vehicles
with non-trivial kinematics [2, 4]. However, solutions scale badly to a large fleets, due
to the complexity of the optimization problem. In [6], an online coordination problem
for Multiple Micro Aerial Vehicles (MAVs) is formulated as an optimal control problem
with receding horizon. The approach is decentralized, and accurately accounts for kino-
dynamic constraints and uncertainty on MAV position estimates. However, scalability
remains under-addressed.

Our approach to multi-robot coordination relies on posting critical points along
trajectories to avoid collisions. In a similar vein, the speed profiles of robots along specified
paths can be adjusted to avoid robot-robot collisions [12]. Similarly to the tightly-coupled
approach presented in Section 3, an optimal control strategy is employed for computing
kinodynamically-feasible trajectories, and collision avoidance constraints for pairs of
robots are upheld by solving a mixed-integer nonlinear programming problem. A similar
approach has been proposed [3] for coordinating the motions of multiple robots with
predefined paths. In both works, the collision avoidance problem is formulated online,
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and it is not assumed that robots start moving concurrently. However, these approaches
require to formulate collision-avoidance constraints in the robot controllers, so that
kinodynamically-feasible and collision-free target velocities can be computed online
without explicit coordination. Also, neither approach includes global path planning, i.e.,
robots are assumed to move in an obstacle-free environment.

5 Conclusions and Future Work
In this deliverable we have defined in general terms the fleet management problem
that is the focus of ILIAD. We have proposed two solutions to this problem, one relying
on a loose coupling of solvers, the other based on a holistic formulation of the fleet
management problem as a constrained optimization problem. The loosely-coupled
approach is modular, that is, it does not rely on specific choices of goal allocation, motion
planning and control methods. Also, it is designed to work in an online setting, where
goals are posted while robots are in motion. The approach has been validated formally
and experimentally, and tested with simulated and real robots. The loosely-coupled
approach is fully implemented as a cross-platform software library [11], and interfaces
with the navigation_oru stack and the full ILIAD code-base are also available [10].

As discussed, the loosely-coupled approach has a number of drawbacks: neither robot
paths nor the inference of precedence constraints account for the metrics used in goal
allocation, and there is no provision for the fact that the sub-problems of the overall fleet
management problem are intimately connected. These drawbacks are overcome in the
tightly-coupled approach, where the goal allocation, motion planning, coordination and
control problems are solved in a mutually-aware fashion. This approach allows, as shown
in a simple example, the “continuous blending” of goal allocation, coordination, and
motion planning solutions.

Future work will further explore applicability and tradeoffs of the two approaches
outlined here. Also, for the loosely-coupled approach, we will concentrate on developing
the ability to re-plan motions and goal assignments on the fly. These methods will be in
turn used to provide deadlock avoidance strategies. For the tightly-coupled approach, we
will concentrate on closing the loop between the two solving phases (MIQP and NLP),
and begin to address the problems of online goal posting and scalability.
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dundancy in Robot Manipulators and Multi-Robot Systems, pages 167–181. Springer,
Berlin, Heidelberg, 2013.

[18] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds
of cooperative, autonomous vehicles in warehouses. In Proc. of the 19th National
Conference on Innovative Applications of Artificial Intelligence, IAAI’07, pages 1752–
1759, 2007.

29


	Introduction
	A Loosely-Coupled Approach
	Spatial Envelopes and Critical Points
	Coordination Algorithm
	A Simple Robot Ordering Policy
	Heuristic Robot Ordering Policies
	Deadlocks
	Empirical Validation
	Strengths and Limitations of the Approach

	Towards a Tightly-Coupled Approach
	General Formulation as a Constraint Optimization Problem
	A Two-Phase Approach
	Initial Solution of a Relaxed Problem (MIQP)
	Solution Refinement (NLP)


	Related Work
	Conclusions and Future Work

