
Intra-Logistics with Integrated Automatic Deployment:
Safe and Scalable Fleets in Shared Spaces

H2020-ICT-2016-2017
Grant agreement no: 732737

DELIVERABLE 5.3
Final system for accurate AGV motion planning

Due date: month 42 (June 2020)
Deliverable type: R

Lead beneficiary: Bosch

Dissemination Level: PUBLIC

Main author: Luigi Palmieri (Bosch)

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Contents
1 Introduction 3

2 Architecture 3

3 Hierarchical Global Motion Planning 4

4 Benchmarking of Global Motion Planning Algorithms 8
4.1 Approach . 10
4.2 Evaluation . 10

4.2.1 Environments . 12
4.2.2 Metrics . 15

4.3 Benchmark Implementation . 15
4.4 Results . 16

4.4.1 Moving AI Scenarios . 16
4.4.2 Polygon-based Environments . 17
4.4.3 Procedurally-generated grid environments 17
4.4.4 Planning and Post-Smoothing . 20

4.5 General Observations . 20
4.5.1 Planning Time . 23
4.5.2 Quality of Anytime Solutions . 23
4.5.3 Variability of the Results . 23
4.5.4 Post-smoothing Synergies . 23
4.5.5 Environment Complexity . 23
4.5.6 Influence of the Steer Function . 25

5 Safety with Deterministic Sampling 25
5.1 Introduction . 25
5.2 Dispertio . 25

5.2.1 The Dispersion Optimization Algorithm . 26
5.3 Discussion . 27

6 NMPC for Navigation in Cluttered Environments 29
6.1 The Approach . 29

6.1.1 The Convex Inner ApprOximation (CIAO)-iteration 29
6.2 CIAO-based Motion Planning . 31

6.2.1 CIAO for Trajectory Optimization . 31
6.2.2 CIAO-NMPC . 31

6.3 Experiments and Discussion . 32
6.3.1 Trajectory Optimization Benchmark . 32
6.3.2 Real-World Experiments - Differential Drive Robot 33

7 Conclusions 34

2

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Executive Summary
This deliverable details the final motion planning unit for autonomous ground vehicles
(AGV) developed in the ILIAD project. Its goal is the generation of accurate and safe
human-aware motion. The architecture is composed of many components, developed
from several consortium partners (Robert Bosch GmbH, ORU, UoL, TUM), namely: a
hierarchical flow-aware global path planner (Bosch, ORU, UoL), post-smoothing and a
model predictive controller to track the global path (ORU), a vehicle safe motion unit
(TUM) that filters out velocities that may harm the persons in the scene.

As part of this deliverable, as detailed hereinafter in the report, we have achieved the
following objectives:

• developed a safe and (human) flow-aware planning architecture, by exploiting the
synergies between and the background of different partners. The architecture
has been evaluated in several real-word experiments, also during the review and
stakeholder meetings of MS3;

• benchmarked state-of-the-art motion planning techniques with a large variety of
environments and robotic systems. Based on the results, we provide solid guidelines
on planners’ beneficial properties and their limitations;

• presented several improvement directions for the current architecture, namely: an
efficient numerical model predictive control technique for real-time safe collision
avoidance and deterministic sampling approaches to further enhance computa-
tional performance of sampling-based planners.

1 Introduction
This document describes the final motion planning architecture developed in the ILIAD
project as result of task T5.2, “Quantitative motion planning” as part of Work Package 5 –
Fleet Management. The system aims to generate smooth, accurate and real-time robot
motion among humans. The initial prototype has been tested during the latest milestones
MS2 and MS3 of the project (see Deliverables D7.3 and D7.4). The results hereinafter
contribute directly to three ILIAD objectives: O3 – On-line, self-optimising fleet manage-
ment, O4 – Human-aware AGV fleets in shared environments and O6 – Human safety.

The report is structured as follows: we initially describe the overall architecture of the
system and the hierarchical global planning respectively in Section 2 and Section 3, detail
the efforts of benchmarking different global planners and the introduction of deterministic
sampling in Sections 4 and 5. In Section 6 we briefly describe also the findings obtained
in terms of collision avoidance in very cluttered environments. Conclusions are reported
in Section 7.

2 Architecture
Motion planning for the wheeled mobile platforms is a key component of the overall
ILIAD safety architecture described in Deliverable D3.3, see Table 1 and Figure 1. The
planning architecture, more specifically, is composed of the following layers:

• a coordinator that provides tasks (i.e. goals to reach) for each robot (Tasks T5.3,
T5.6);

• a qualitative situation-aware planning module, for including local interactions into
planning as additional cost term (T3.4);

3

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Layer Role WP

5 Hierarchical (Flow-aware) global motion planning Create paths consistent with human behaviours WP5
4 Navigation Intent Communication Make robot motion legible by humans WP3
3 Situation-aware planning Include local interactions into planning WP3
2 Extended VSMU: Speed Constraints Adjust robot speed to human interactions WP3, WP4
1 Safety stops Avoid collisions

Table 1: Safety layers in ILIAD (from D3.3).

Figure 1: Interaction between ILIAD safety layers (from D3.3).

• a hierarchical global motion planner that includes a state-lattice planner and a flow-
aware quantitative sampling-based motion planner. The latter quickly generates
paths among humans by adhering to kinematic constraints and learned statistical
human behaviors (T5.2);

• a path smoother (T5.2);

• a vehicle execution node that steers the AGV on the planned path based on a model
predictive control technique (T5.2);

• a safety unit (named vSMU) that filters out velocities that could harm humans
moving around the AGV (T4.3).

In the overall software architecture these components are interconnected and inter-
faced with the perception and mapping units, as shown in Figure 2: in the overall structure
they are part of the ability level. Next we describe the hierarchical global motion planner
algorithm developed in the first prototype of the ILIAD motion planning system.

3 Hierarchical Global Motion Planning
The global motion planning developed for the ILIAD system is a hierarchical planner that
combines a state-lattice planning technique with a stochastic flow-aware sampling based
planner, see Figure 3.

The system queries both state-lattice and sampling-based planners to generate a
path. Once the two paths have been generated, a path selector will choose the path to be
provided to the robot units. State lattice planning together with path smoothing belong
to background knowledge of the project and it will not be discussed hereinafter [2].

4

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Figure 2: Motion planning and control components are a sub-system of the entire ILIAD
software architecture. The components that generate robot motions are grouped into a
red rectangle.

5

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Figure 3: ILIAD hierarchical planning system. Both state-lattice and sampling-based
planners are asked to generate a path. The path selector will then choose the path to be
provided to the robots.

Xstart

Xgoal

Figure 4: Left: an example CLiFF-RRT* path (in blue) generated in the L scenario. Right: an
example CLiFF-RRT* path (in green) generated in the P scenario. The arrows represent the
learned mixtures. In these environments just a few obstacles are present. The algorithm
finds the best solution that optimizes path length and the upstream criterion: the solutions
follow the learned flows.

The path selectors forward the path that has minimum cost. Different cost functions
can be used in this context. In ILIAD settings, we often use path length.

In the following, we will detail the flow-aware sampling-based planning used in the
hierarchical architecture.

Algorithms In ILIAD we have introduced two flow-aware sampling-based planning tech-
niques, CLiFF-RRT* [32] and DTC-RRT* [41], which generate robot motion considering
also the learned maps of dynamics (i .e., CLiFF maps [19]) provided by WP2 (long-term
operation).

Both approaches [32, 41] provide novel cost-functions and algorithms for exploiting
the flow information included in the CLiFF-map, see Figures 4 and 5. Both trade off
classical path quality metrics with the compliance to the environment dynamics. This
results in planning algorithms aware of the usual flow patterns in a given environment.
Those algorithms can therefore generate paths that can obey two different behaviors,
namely follow or not follow a flow of humans walking.

In CLiFF-RRT*, we solve a motion planning problem hierarchically by first generating
a discrete path that selects mixtures at relevant locations from the map of dynamics, and
then use those mixtures to bias the sampling and rewiring procedures in RRT* [17]. The
first step makes sure that an initially feasible path is found quickly given a CLiFF map
while the second step, generates and incrementally improves a trajectory that satisfies

6

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Figure 5: Example paths generated by a flow-aware motion planner in the ILIAD planning
system. The paths are generated respecting the CLiFF map and they are provided to the
coordination unit.

the kinodynamic vehicle constraints, see Figure 6 for an example of resulting paths in
simulated dynamic environments.

DTC-RRT* further extends CLiFF-RRT* by also considering the mean speed encoded
in the distribution and the information about uncertainty. In DTC-RRT* [41], we use
rejection sampling from a biased distribution in order to guide the exploration of the
configuration space. In particular, we use the motion and observation ratios in the
sampling procedure so as to prefer an exploratory and congestion-avoiding behaviour
that guides exploration towards regions with fewer observations or less motion, while also
trying to closely match the modes of flow that have been learnt. The biasing strategy is as
follows: With a 5% probability, a state is chosen from the goal region. Otherwise, a state
is sampled uniformly from the entire state space. With a 20% probability, this sample is
unconditionally accepted. This number was arbitrarily picked to ensure probabilistic
completeness. Otherwise, we do the following: if the motion ratio is low, we accept the
sample, since either the cost is low (if the observation ratio is also low) or we are confident
that there is little motion in this region. If the motion ratio is high, but the observation
ratio is low, we try to follow the flow. If both the observation and motion ratios are high,
then we reject the sample (cost is likely to be higher).

Evaluation In our experiments [32, 41], both approaches are compared to several baselines
and it is shown that flow-aware planning is significantly faster than the baselines and
produces solutions that better comply to the flow directions as modeled by the map.
The algorithms also achieve shorter and smoother paths and retains the probabilistic
completeness and asymptotic optimality properties of RRT* [17].

In particular we have obtained the following results:

• CLiFF-RRT* and DTC-RRT* with its focused search find an initial solution faster
than all the baselines. RRT and RRT* do not avoid the time-consuming exploration
of the entire state space. For this reason, the latter more often fails to find an initial

7

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Figure 6: Left: The figure shows an example from the studied simulated intersect scenario
where multiple flows of people encounter each other. Right: An example path (in green)
generated among the Circular Linear Flow Field (CLiFF) map which associates a Gaussian
mixture model to each location, whose components encode multiple weighted flow
directions.

solution in the given time.

• CLiFF-RRT* and DTC-RRT* finds less costly solutions if compared to all the base-
lines.

• The CLiFF-RRT* sampling strategy results in smoother trajectories than the base-
lines. Mainly because the off-line learned mixtures bias the tree towards concatena-
tion of extensions with fewer velocity discontinuities. Uniform sampling generates
velocities without prior knowledge about common motions in particular portions
of the state space, thus producing less correlated velocities.

• DTC-RRT* with a sampling bias yields solutions with lower upstream cost compared
to CLiFF-RRT*. Minimizing the Mahalanobis distance (a strong cost-term in the cost
function of the DTC-RRT*) should automatically minimize upstream cost because
both vehicle speed and heading at each trajectory point are closer to the mean of
underlying flows when the Mahalanobis distance is minimized.

Figure 7 shows example policies (i.e. trajectory distributions) in the form of heat-maps
generated by DTC-RRT*.

We refer the reader to the papers [32, 41] for more details about the theoretical prop-
erties and performance evaluation of the algorithms. We are planning to extend the
approach to also consider time-varying pedestrian flow models [43].

We have tested the flow-aware planning algorithms on different types of robots. During
the MS3 experiments, we have deployed our software on two different robotic systems:
the BT truck and the citi truck robot, see Figure 8.

4 Benchmarking of Global Motion Planning Algorithms
In ILIAD, to investigate the current state-of-the-art in motion planning for wheeled mo-
bile robots, we establish a benchmarking framework that is tailored toward these kinds
of kinodynamic systems and their application in real-world scenarios. We here report
preliminary results also available in [12].

8

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

DiffDirections DiffSpeeds DiffQ DiffIntensity DiffVarSpeed DiffVarDir DiffPQ1
DiffPQ2

0

5

10

15

20

25

Figure 7: Heat maps for trajectories generated by DTC-RRT*. Colors indicate number of
trajectory points at a cell. Black denotes an obstacle, White denotes free space. The eight
maps used can be described in words as follows: (1) DiffDirections map has two flows
with opposite mean directions; (2) DiffSpeeds map has two flows with different mean
speeds; (3) DiffQ map has one flow on the left side but no flow on the right, hence the
two regions have different motion ratios; (4 DiffVarSpeed has two flows with different
variance in speed; (5) DiffVarDir has two flows with different variance in orientation; (6)
DiffIntensity has two flows where the corresponding regions have different motion ratios;
(7) DiffPQ1 and (8) DiffPQ2 have two flows with different motion and observation ratios.

Figure 8: The flow-aware planning has been deployed on two different robotic systems
during the review and stake-holder meeting of MS3: the BT truck (bigger robot on the
left-hand side) and the CiTi truck (smaller robot on the right-hand side)

As shown in Figure 9, our benchmarking is based on the following ingredients: motion
planners, post-smoothing methods, steer functions1 and collision checkers. The combi-
nation of these building blocks is then evaluated in a variety of scenarios (environments
with start and goal configurations) along various metrics.

While much of our benchmarking software largely builds on the Open Motion Planning
Library (OMPL) [40], we provide interfaces to implementations of planners (such as SBPL
planners and Theta∗) and steer functions (POSQ and continuous-curvature steering)
outside of OMPL. This enables us to get a more comprehensive picture of the current
progress in motion planning for wheeled mobile robots, while being more agnostic to
particular implementations of the building blocks.

1In the literature often denoted also as steering or extend functions.

9

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Planners
Sampling-based planners
Anytime planners
State lattice-based
planners

Metrics
Exact / collision-free
solutions
Path length
Maximum curvature
Computation time
Mean clearing distance
Number of cusps

Post-smoothing algorithms
Simplify Max
B-Spline
Shortcut
GRIPS

Steer functions
Dubins
Reeds-Shepp
CC Reeds-Shepp
POSQ

Scenarios
Parking (parallel, forward,
reverse)
Warehouse navigation
Procedural grids of varying
obstacle densities, corridor
sizes
Grid environments from
Moving AI Cities benchmark:

Berlin (256x256)
NewYork (512x512)
Boston (1024x1024)

Python front-end

C++ back-end

Collision checking
Polygon-based

Figure 9: Architecture of the proposed motion-planning benchmarking framework. The
components necessary for motion planning are shown in the box on the left (green),
and the ingredients used in the evaluation are shown in the box on the right (red). The
implementation is split into a C++ back-end for running the resource-intensive motion-
planning components, and a Python front-end for providing a flexible interface to the
design and evaluation of the benchmarking scenarios through Jupyter notebooks.

4.1 Approach
We benchmark global motion planning algorithms commonly used for wheeled mobile
robots, and provide general recommendations on the usage of these methods, consider-
ing their combination with post-smoothing methods and various steer functions. Our
benchmark is based on two fundamental pillars: the components involved in motion plan-
ning and the evaluation procedures (shown in the box on the left and right, respectively,
in Figure 9). In particular, evaluating the performance of a motion planning algorithm
requires selecting the appropriate testing environments (e.g., considering different types
of map representations) and metrics (related to planning efficiency and quality of the
results). We carefully selected these components by considering their scientific impact,
and their recognition and popularity in the open source community [8, 25, 40].

4.2 Evaluation
In this section, we describe the set of experiments, environments and the metrics used
to evaluate the planners and post-smoothing methods in terms of planning efficiency
and in returned path quality. The list of all experiments, pointing to the related results’
sections, is reported in Table 2. The table collects eleven different types of experiment we
run: three of them use Moving-AI grid environments, four use procedurally generated
grids, and four use a polygonal representation of the environment and robot. Of the
latter, three study the behavior of the planners when the environment complexity change
and one properties of post-smoothers and planners’ combinations. Throughout all our
experiments, we use two-dimensional polygon-based collision models (see Figure 10)
where the robot is represented by a convex shape.

10

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Experiment
Section

Environment Collision
model

Description

cross_corridor
Section 4.4.3

100×100 grid
(procedural)

car Evaluation on procedurally
generated corridor environ-
ments with varying corri-
dor diameters (Figure 11
bottom)

cross_turning
Section 4.4.3

100×100 grid
(procedural)

car Evaluation on procedurally
generated grid environ-
ments with varying turning
radii in Reeds Shepp
steering

cross_density
Section 4.4.3

100×100 grid
(procedural)

car Evaluation on proce-
durally generated grid
environments with vary-
ing obstacle densities
(Figure 11 top)

sam_vs_any
Section 4.4.4

150×150 grid
(procedural)

car Comparison of anytime
planners vs. a combination
of sampling-based plan-
ners and post-smoothing
methods

Berlin_0_256
Section 4.4.1

256×256 grid
(MovingAI)

car Evaluation of the 50 hard-
est scenarios from the
Berlin_0_256 MovingAI
benchmark

parking_1
Section 4.4.2

polygon car Evaluation on the polygon-
based environment park-
ing_1 (Figure 12)

parking_2
Section 4.4.2

polygon car Evaluation on the polygon-
based environment park-
ing_2 (Figure 12)

parking_3
Section 4.4.2

polygon car Evaluation on the polygon-
based environment park-
ing_3 (Figure 12)

warehouse
Section 4.4.2

polygon warehouse
bot

Evaluation on the polygon-
based environment ware-
house (Figure 12)

Table 2: Overview of experiments conducted in this benchmark.

11

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Figure 10: The two different polygon-based collision models used throughout this bench-
mark.

Figure 11: Examples of the procedurally generated grid environments. Top: varying
obstacle ratios. Bottom: varying corridor sizes.

4.2.1 Environments

In the following, we describe the two types of environments we consider throughout
our benchmarking, as well as the how the scenarios are defined; i .e., the start and goal
configurations for each environment. We consider the two main classes of environmental
representation used today for motion planning: grids and polygon-based maps.

Grid maps is a typical approach used in robotics navigation, in particular when plan-
ning in large environments (i .e., cities, airports, train stations or large office-like environ-
ments). We design two sets of environments, a sub-selection of the grids form the Moving
AI benchmark [39] and a set of grids procedurally generated by varying corridor sizes or
obstacle densities, see an example in Figure 11. .

Polygon-based environments are often adopted when planning in tight and small
environments (i.e. parking and warehouse like environments), where the planning system
should more carefully and precisely consider obstacles’ geometry. We show the four types
of polygon-based environments we designed in Figure 12 and with example paths in
Figure 13. We choose five start-and-goal configurations and validate them by ensuring that
the planner BFMT2 finds exact solutions using the Reeds-Shepp steer function (Figure 12).
In the first three cases, we consider the scenario of an autonomous car-like vehicle that
needs to park itself among a set of surrounding parked cars and other obstacles. We
consider the three common cases of parking: (1) parking forward, (2) parking backward
into a parking lot, and (3) parallel-park in a street of parked cars. In the last type of polygon-
based environments (4), a complex warehouse-like environment is simulated where the
robot has to navigate between shelves of various sizes and irregular orientations.

2Through preliminary experiments, we found BFMT to be among the most reliable planning algorithms that
gave high-quality solutions in short time on the polygon-based environments.

12

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Figure 12: The four polygon-based environments where obstacles are represented by
convex shapes.

0.0 2.5 5.0 7.5 10.0 12.5 15.0

−8

−6

−4

−2

0

2

4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0

Informed RRT*
Start
Goal

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

−8

−6

−4

−2

0

2

4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Informed RRT*
Start
Goal

−5 0 5 10 15 20 25

−15

−10

−5

0

5

−5 0 5 10 15 20 25 −5 0 5 10 15 20 25 −5 0 5 10 15 20 25 −5 0 5 10 15 20 25

Informed RRT*
Start
Goal

−10 0 10 20 30 40 50 60 70

−60

−50

−40

−30

−20

−10

0

10

−10 0 10 20 30 40 50 60 70 −10 0 10 20 30 40 50 60 70 −10 0 10 20 30 40 50 60 70 −10 0 10 20 30 40 50 60 70

Informed RRT*
Start
Goal

Figure 13: Example results for the polygon-based environments parking1, parking2, park-
ing3, and warehouse (from top to bottom) with all five different start/goal configurations.
Each subplot shows the computed trajectories from the Informed RRT∗ planner using the
CC Reeds-Shepp steer function.

13

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3
BF

M
T

BI
T*

CF
or

es
t

ES
T

In
fo

rm
ed

 R
RT

*
KP

IE
CE

PD
ST

PR
M

PR
M

*
RR

T
RR

T#
RR

T*
SO

RR
T*

SP
AR

S
SP

AR
S2 SS

T
Th

et
a*

10

15

20

25

30

35

40

45

50

Path Length

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Maximum Curvature

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

2

4

6

8

10

12

14

Computation Time

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

5

10

15

20

25

Cusps

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

20

40

60

80

100

120

Path Length

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Maximum Curvature

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

20

40

60

80

Computation Time

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

5

10

15

20

25

30

35

Cusps

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

5

10

15

20

25

30

Path Length

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Maximum Curvature

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

2

4

6

8

10

12

14

Computation Time

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

50

100

150

200

250

300

350

Cusps

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

20

40

60

80

100

120

140

Path Length

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

1e−12+2.5e−1
Maximum Curvature

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

10

20

30

40

Computation Time

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Cusps

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

Figure 14: Statistics for the parking1 scenarios. First row: Reeds Shepp steering, second
row: CC Reeds Shepp steering, third row: POSQ steering, fourth row: Dubins steering.

14

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

0 25 50 75 100 125 150 175 200 225 250
0

25

50

75

100

125

150

175

200

225

250

0 25 50 75 100 125 150 175 200 225 250

Start
Goal

Figure 15: Many of the challenging Moving AI Cities scenarios define start and goal
locations that are too close to obstacles to be solvable by a polygon-based collision model
of the robot. Shown here are two scenarios from the Berlin_0_256 map with highlighted
start and goal positions.

4.2.2 Metrics

We compare the planners based on a selection of metrics relevant to wheeled mobile
robotics applications, such as autonomous driving, service and intralogistic robotics. In
particular, we evaluate the planners in terms of quality of the returned solutions and in
planning efficiency by considering the following metrics:

• Success statistics that measure the ratio of found, collision-free, and exact 3 solutions.

• Path length of the obtained solution in the workspaceW . All the asymptotically
optimal planners are configured to minimize path length, thus we measure how
well the planners performs based on their main objective.

• Curvature (κ) and Maximum curvature (κmax): as a way to measure the induced
comfort and smoothness of the obtained paths. Keeping the maximum curvature
at a low level corresponds to smoother maneuvers, therefore less control effort and
energy to steer the robot.

• Computation time to find the first solution.

• Mean clearing distance (δdist(γ)): with lower values indicating that the solutions are
closer to the obstacles.

• Number of cusps following Banzhaf et al. [3]: maneuvering in difficult environments
may require the robots to stop and turn the wheels in the opposite direction, thus
yielding a cusp in the trajectory. Having more cusps correspond to less smooth and
more difficult to drive paths.

4.3 Benchmark Implementation
We develop our benchmarking system in C++ and provide a high-level front-end in
Python4. The experiments are implemented in Jupyter notebooks that leverage our Python
front-end and enable the user to monitor the status of the execution through rich progress

3A trajectory is exact if it connects the start and goal nodes.
4Our code will be made open-source at https://github.com/robot-motion/mpb.

15

https://github.com/robot-motion/mpb

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

reports and plotting capabilities. We are collecting the experimental results and derived
plots on our website at https://robot-motion.github.io/mpb/where the complete data
can be analyzed.

We run the benchmark on a server featuring 256Gb RAM, two Intel Xeon Gold 6154
@ 3.00GHz CPUs offering 72 threads in total, running on Ubuntu 18.04 (kernel version
4.15.0). Each experiment is run using 20 parallel processes that correspond to different
environment seeds, in the case of the procedurally generated environments. Each process
runs a sequence of planners and post-smoothing methods on its predefined environ-
ment. We limit the parallelism to 20 out of 72 available CPU cores due to the fact that
planners such as CForest spawn multiple threads on their own to find a solution. By
further randomizing the order in which each of our benchmark processes executes the
planners, we can keep the number of parallel threads in check (e .g., avoid running 20
parallel CForest instances). Each process is automatically canceled if twice of its time
limit has been exceeded (time out), or if its memory consumption has exceeded 18 GB.

4.4 Results
This section summarizes the results obtained in our experiments, while focusing on
the main findings. The complete statistical analysis will be published on https://robot-
motion.github.io/mpb/.

4.4.1 Moving AI Scenarios

This section reports the results obtained of the grids selected from the Moving AI bench-
mark, see Table 3. The solution column contains two numbers separated by a ‘/’: the
second number indicates the number of solutions found (highlighted by the orange bar in
the background), the first number indices how many of these solutions are collision-free.
Each planner is run on a total of 51 scenarios. The following columns indicate the plan-
ning statistics in the format mean ± standard deviation across the metrics (planning time,
path length, maximum curvature and average curvature along the paths). The last column
shows the total number of cusps in all solutions combined. We group these statistics by
the steer functions, for which we selected different time limits, as shown in the tables next
to the group labels. These time limits have been determined empirically to ensure that
many solutions could be found. The SBPL planners are treated separately since they did
not use any of the provided steer functions but their particular unicycle motion primitive.

Path Length and Smoothness Results are detailed in Table 3. In terms of path length and
smoothness, anytime path planners achieve better performance within the given maxi-
mum planning time for all the steer functions. Feasible planners generate often longer
and less smooth paths (higher curvature and number of cusps). Specifically for the sce-
nario Berlin_0_256, BFMT achieves the shortest path lengths within the fastest time with
average curvature, except with POSQ steering where it has poor runtime and path length.
KPIECE throughout all experiments finishes among the fastest but consistently has the
longest paths and among the worst maximum curvature. For the Dubins curves, it was
considerably more difficult for the planners to find feasible solutions – sampling-based
planners, such as EST, SST, PDST and KPIECE were the most successful in finding exact,
collision-free paths. We present more results on other environments from the Moving AI
Cities dataset in the extended version of our paper [12].

Post-Smoothing Results In Figure 23 we summarize the post-smoothing results across all
planners in the Berlin_0_256 scenarios, which is representative for the other Moving AI

16

https://robot-motion.github.io/mpb/
https://robot-motion.github.io/mpb/
https://robot-motion.github.io/mpb/

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

benchmark environments. GRIPS often outperforms the other methods in maximum
curvature while achieving similar path length as SimplifyMax. In computation times,
B-Spline, Shortcut and SimplifyMax perform similarly, except with POSQ steering where
the latter is significantly slower with a median computation time almost twice as high as
the other methods. SimplifyMax yields solutions which often have very small clearing
distance. B-Spline solutions have considerably more cusps than the results obtained with
the other methods.

Theta∗ and SBPL Issues On the larger-scale environments considered throughout this
benchmark (particularly the Moving AI scenarios), we noticed that our current implemen-
tation of Theta∗ makes heavy use of the collision checker that significantly deteriorates its
computation time. As can be seen in Table 3, only in the case of a 6 minutes time limit for
a fast-to-evaluate steer function, such as Dubins, does this algorithm find a competitive
number of collision-free, exact solutions. In other cases, our implementation does not
yield a solution before the time limit is up. Similarly, the planners AD∗, ARA∗ and MHA∗

from SBPL were often unable to find feasible solutions within the time limit.

4.4.2 Polygon-based Environments

The following scenarios are particularly tailored toward autonomous driving. Instead
of navigating grid world, the environments use arbitrary convex shapes to represent
obstacles.

Parking scenarios Similarly to the grid-based environments, in these scenarios, anytime
planners achieve better performance in terms of path length and smoothness than feasible
planners, although at the price of being slower. In the scenarios for the first parking
environments, we notice that RRT, Informed RRT∗, RRT∗ and SORRT∗ always find solutions,
across all tested steer functions, as shown in Figure 14. SST, Theta∗, SPARS and SPARS2,
however, do often not find any solutions. Particularly SPARS2 is the only planner that
cannot find any solutions for CC Reeds-Shepp steering, SST is the only algorithm that is
unable to solve any scenarios with POSQ steering. The Dubins steer function appears to
be particularly challenging, as SPARS, SPARS2 and Theta∗ cannot find any paths, while
various other planners, such as PRM, PRM∗, BFMT and BIT∗ only solve a small fraction of
the scenarios exactly.

Warehouse scenarios We visualize example solutions obtained from all planners on the
fourth scenario from the warehouse environment with Reeds-Shepp steering in Figure 16.
BFMT, CForest, Informed RRT∗ and SORRT∗ find the shortest solutions which all lie in the
same homotopy class.

Compared to most parking scenarios, the warehouse environment typically requires
longer computation times for the planners (especially anytime planners) to find solutions.
It offers considerably more opportunity for the planners to find solutions of varying homo-
topy classes (see Figure 16), resulting in a larger variance of path length. CForest, Informed
RRT∗, and SORRT∗ consistently find among the shortest paths, although Informed RRT∗

has among the longest computation times (see Figure 17).

4.4.3 Procedurally-generated grid environments

As described in Section 4.2.1, we procedurally generate environments to have full control
over the shape of the free space within the planners need to find solutions. This allows

17

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Figure 16: Example trajectories for the different planners in one of the five warehouse
scenarios with Reeds-Shepp steering.

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

100

150

200

250

300

350

400

450

Path Length

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Maximum Curvature

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

2

4

6

8

10

12

14

16

Computation Time

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

10

20

30

40

50

60

70

80

Cusps

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

100

200

300

400

500

600

700

Path Length

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Maximum Curvature

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

20

40

60

80

Computation Time

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

25

50

75

100

125

150

175

Cusps

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

100

200

300

400

500

600
Path Length

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

Maximum Curvature

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

20

40

60

80

100

120

Computation Time

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

50

100

150

200

250

300

350

Cusps

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

100

150

200

250

300

350

Path Length

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e−10+2.5e−1
Maximum Curvature

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

10

20

30

40

Computation Time

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

2

4

6

8

10

Cusps

BF
M

T
BI

T*
CF

or
es

t
ES

T
In

fo
rm

ed
 R

RT
*

KP
IE

CE
PD

ST
PR

M
PR

M
*

RR
T

RR
T#

RR
T*

SO
RR

T*
SP

AR
S

SP
AR

S2 SS
T

Th
et

a*

0

1

2

3

4

5

6

Aggregate
Total runs
Found solutions
Collision-free
Exact solution

Figure 17: Statistics for the warehouse scenarios. First row: Reeds-Shepp steering, second
row: CC Reeds-Shepp steering, third row: POSQ steering, fourth row: Dubins steering.

18

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

3 4 5 6 7 8
Corridor Radius

4

5

6

7

8

9

10
Exact Solutions

3 4 5 6 7 8
Corridor Radius

0

10

20

30

40

50

60

70

80
Cusps

3 4 5 6 7 8
Corridor Radius

100

200

300

400

500

Path Length

3 4 5 6 7 8
Corridor Radius

−1

0

1

2

3

4

5

6

Maximum Curvature BFMT
BIT*
CForest
EST
Informed RRT*
KPIECE
PDST
PRM
PRM*
RRT
RRT#
RRT*
SBPL AD*
SBPL AR*
SBPL MHA
SORRT*
SPARS
SPARS2
Theta*

Figure 18: Various planning statistics for the Reeds-Shepp steer function in the procedu-
rally grid environments with varying corridor sizes.

2 3 4 5 6
Turning Radius

8

9

10
Exact Solutions

2 3 4 5 6
Turning Radius

0

10

20

30

40

50

60

70

Cusps

2 3 4 5 6
Turning Radius

200

300

400

500

Path Length

2 3 4 5 6
Turning Radius

0

1

2

3

4

5

6

Maximum Curvature
BFMT
BIT*
CForest
EST
FMT
Informed RRT*
KPIECE
PDST
PRM
PRM*
RRT
RRT#
RRT*
SBL
SORRT*
SPARS
SPARS2
STRIDE

Figure 19: Various planning statistics for different turning radii (in meters) of the Reeds-
Shepp steer function in the procedurally grid environments (size: 100×100).

us to precisely analyze how varying features of the environments influence the planning
results.

Varying corridor sizes As shown on the abscissa in Figure 18, the corridor sizes are expressed
in the number of grid cells. We sample five 100×100 grid environments for each corridor
radius (Figure 11 bottom row), sampled from the same starting seed over radii between
three and eight grid cells. As we increase the corridor size, the path lengths of all planners
decrease, as well as the number of cusps. The curvature metric remains mostly unaffected,
except for PDST, PRM and SPARS2 where it considerable decreases. Theta∗, the SBPL
planners, Informed RRT∗ and RRT# constantly have a low number of cusps and achieve
very low path lengths across all conditions. KPIECE performs the worst in number of
cusps and path length. EST, KPIECE, SPARS, SPARS2 and PRM have poor curvature, but
PDST improves by a factor of two toward the maximum corridor size. While PDST and
RRT initially find four and nine out of ten possible solutions, only at a corridor radius of
four cells do all planners find exact solutions in every case.

Varying turning radii We vary the turning radius used by the Reeds-Shepp steer function
and evaluate the planners on a 100×100 indoor-like grid environment with a corridor
radius of five grid cells (see Figure 11 bottom row). The change in turning radius has a
surprisingly little effect on the path quality, see Figure 19. Slight developments can be
observed where the path lengths tend to increase as the turning radius becomes larger.
Especially PRM has a pronounced inclination in the number of cusps. The curvature is
generally not tending in any direction significantly. The number of exact solutions is at
zero for Theta∗, PRM constantly finds two out of ten solutions, while the other planners
find all of the solutions exactly.

Varying obstacle densities As described in Section 4.2.1, in this experiment, we randomly
set cells of a 100×100 grid environment to be occupied until a selected density (i .e., ratio
between occupied and free cells) has been achieved (see Figure 11 top row). Through

19

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

1 % 1.5 % 2 % 2.5 % 3 %
Obstacle density

0

1

2

3

4
Exact Solutions

1 % 1.5 % 2 % 2.5 % 3 %
Obstacle density

0

10

20

30

40

50

60

Cusps

1 % 1.5 % 2 % 2.5 % 3 %
Obstacle density

100

200

300

400

500

Path Length

1 % 1.5 % 2 % 2.5 % 3 %
Obstacle density

0

1

2

3

4

5

6

Maximum Curvature
BFMT
BIT*
CForest
EST
Informed RRT*
KPIECE
PDST
PRM
PRM*
RRT
RRT#
RRT*
SORRT*
SPARS
SPARS2
SST
Theta*

Figure 20: Planning statistics of the Reeds-Shepp steer function in the procedurally gener-
ated grid environments (size: 100×100) with varying occupancy ratios.

various experiments, we determined the ranges between 1% and 3% to yield meaningful
results. We successively increase the obstacle density in steps of 0.5%, and yet the influence
on the quality of the found solutions is significant. From Figure 20, we can see that none
of the planners are able to find exact solutions in all ten cases. Most start at four solutions
which drops to one and zero as the maximum obstacle density is approached. Meanwhile,
the number of cusps increases dramatically, especially for KPIECE, PDST; and even BFMT,
SPARS and PRM∗ have a relatively strong increase. The path lengths are not as much
affected, although increasing in many cases, such as EST, SPARS2, SPARS, KPIECE. The
curvature is increasing for many planners, such as PDST, PRM, PRM∗.

4.4.4 Planning and Post-Smoothing

Based on our experiments with varying time limits over a range of time limits between
zero and 30 seconds, we are investigating how post-smoothing methods can benefit
the motion planning pipeline. In combination with sampling-based planners, which
quickly find feasible solutions, can these improvement techniques yield results that are
qualitatively competitive with the solutions obtained by anytime planners within shorter
computation times?

To answer this question, we run a set of sampling-based planners (EST, RRT, SBL,
STRIDE) with all post-smoothing methods considered in this benchmark, and compare it
against anytime planners run at time limits ranging between five and 60 seconds.

As shown in Figure 21, we observe that the algorithms GRIPS and Simplify Max yield
significant improvements in path length and maximum curvature. They both reduce
the path length typically by a factor of two and similarly smooth the path in a way that
the maximum curvature drops by close to a factor of two. In most cases, Simplify Max is
considerably faster than GRIPS to obtain these results. The B-spline algorithm does not
always improve the path quality, which may be explained by the problem that B-splines
do not translate well to curves that can be followed by Reeds Shepp steering, leading to
slight turns that increase the curvature.

Overall, there exist several couplings between sampling-based planners and post-
smoothers that outperform anytime planners in speed and solution quality. For example,
within three seconds RRT combined with Simplify Max smoothing achieves a maximum
curvature at the same level as an anytime planner such as Informed RRT∗ after 60 seconds,
while yielding a shorter path length (Figure 22).

4.5 General Observations
Based on the results detailed in Section 4.4, in this section we provide a general analysis
across the experiments and give specific recommendations.

20

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

0 10 20 30 40 50 60
Computation Time [s]

220

240

260

280

300

320

340

360

Path Length

0 10 20 30 40 50 60
Computation Time [s]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Maximum Curvature
RRT (GRIPS)
RRT (B-Spline)
RRT (Shortcut)
RRT (SimplifyMax)
EST (GRIPS)
EST (B-Spline)
EST (Shortcut)
EST (SimplifyMax)
SBL (GRIPS)
SBL (B-Spline)
SBL (Shortcut)
SBL (SimplifyMax)
STRIDE (GRIPS)
STRIDE (B-Spline)
STRIDE (Shortcut)
STRIDE (SimplifyMax)
RRT*
Informed RRT*
SORRT*
PRM*
CForest
BIT*
SPARS
SPARS2

Figure 21: Comparison of sampling-based planners in combination with post-smoothing
methods and anytime planners evaluated over maximum time limits 5, 10, 15, 30, 45, 60
seconds on a 150×150 grid environment. The initial solution found by the sampling-based
planners is indicated by a H symbol, the post-smoothers GRIPS (l), B-Spline (6), Shortcut
(:) and SimplifyMax (t) are marked according to the legend. The anytime planners are
shown as solid lines with ·markers. Left: path length of the respective solutions. Right:
maximum curvature.

0 25 50 75 100 125 150
0

25

50

75

100

125

150
RRT Reeds-Shepp

Path Length: 256.817
Computation Time: 3.232
Maximum Curvature: 3.932

0 25 50 75 100 125 150
0

25

50

75

100

125

150
Informed RRT* Reeds-Shepp

Path Length: 223.335
Computation Time: 60.001
Maximum Curvature: 0.250

Figure 22: Trajectories resulting from the comparison of sampling-based planners in
combination with post-smoothing methods against anytime planners. The solution on
the left is obtained from the sampling-based planner RRT after 3.232 seconds. Using the
SimplifyMax algorithm, this solution is smoothed (center), within a total time (including
RRT planning) of 3.232 seconds. On the right, the solution from Informed RRT∗ is shown,
which is computed after 60.001 seconds.

21

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Planner Solutions Time [s] Path Length Curvature Clearance Cusps

Scenario: Berlin_0_256 (SBPL, 12 minutes time limit)

SBPL AD∗ 9 / 9 120.05() 361.92(623) 1.36(174) 10.40(188) 34
SBPL ARA∗ 4 / 4 120.05(1) 360.43(394) 0.77(7) 10.99(135) 11
SBPL MHA∗ 10 / 10 4.52(453) 397.16(558) 2.45(262) 12.81(290) 37

Scenario: Berlin_0_256 (Reeds-Shepp steering, 1.5 minutes time limit)

BFMT 50 / 51 1.39(389) 369.51(872) 1.13(96) 8.82(287) 204
BIT∗ 13 / 50 90.05(9) 362.10(634) 1.27(101) 7.94(211) 159
CForest 5 / 51 90.04(7) 347.10(554) 0.56(73) 7.05(183) 70
EST 46 / 51 2.19(1247) 566.35(11692) 1.70(43) 11.16(157) 769
Informed RRT∗ 13 / 51 90.01(1) 350.08(589) 0.35(33) 7.68(202) 67
KPIECE 45 / 51 1.03(695) 1077.02(34455) 1.17(51) 11.22(138) 1791
PDST 43 / 51 3.40(1355) 580.61(14346) 1.42(61) 11.32(174) 555
PRM 24 / 51 90.08(7) 364.16(1069) 1.21(112) 8.80(240) 329
PRM∗ 33 / 51 90.07(6) 357.09(846) 0.67(83) 8.99(251) 156
RRT 48 / 51 4.08(1743) 475.59(7071) 1.93(53) 11.00(144) 636
RRT# 26 / 51 90.09(47) 346.96(1478) 0.58(75) 7.36(197) 90
RRT∗ 18 / 51 90.01(1) 347.58(1250) 0.44(55) 7.31(194) 80
SORRT∗ 21 / 51 90.01(1) 350.00(564) 0.44(59) 7.44(189) 75
SPARS 46 / 51 90.33(43) 471.09(10080) 1.68(71) 11.05(95) 586
SPARS2 44 / 50 90.01(1) 410.60(4150) 2.07(56) 10.26(246) 490
SST 48 / 51 90.01(1) 506.46(7741) 2.03(52) 9.43(161) 1348
Theta∗ 0 N/A N/A N/A N/A N/A

Scenario: Berlin_0_256 (CC Reeds-Shepp steering, 18 minutes time limit)

BFMT 49 / 50 35.67(426) 366.93(1215) 0.59(77) 8.78(214) 126
BIT∗ 26 / 28 1080.46(85) 372.78(939) 0.75(70) 7.83(283) 101
CForest 0 / 51 5.66(2036) 334.50(4635) 0.74(86) 7.95(260) 122
EST 49 / 51 48.41(14831) 670.16(11472) 1.41(32) 11.46(189) 1793
Informed RRT∗ 39 / 51 1080.19(18) 353.80(1332) 0.39(56) 7.61(200) 73
KPIECE 26 / 51 77.82(23560) 1022.48(24238) 1.04(35) 11.23(125) 3221
PDST 40 / 51 132.05(24465) 523.04(12990) 1.18(61) 11.63(169) 540
PRM 38 / 51 1062.67(12451) 389.49(3272) 0.84(80) 9.06(189) 411
PRM∗ 38 / 51 1080.34(19) 379.15(2899) 0.86(89) 9.12(194) 260
RRT 49 / 51 35.39(15367) 500.27(7597) 1.26(66) 11.42(159) 527
RRT# 51 / 51 1080.54(62) 351.14(1994) 0.29(39) 7.97(196) 69
RRT∗ 47 / 51 1080.15(8) 348.93(1716) 0.36(48) 7.71(195) 55
SORRT∗ 9 / 15 1080.23(28) 352.77(2192) 0.20() 6.19(262) 48
SPARS 48 / 49 1083.04(292) 468.54(7590) 1.39(73) 11.28(130) 429
SPARS2 0 N/A N/A N/A N/A N/A
SST 49 / 51 1080.03(2) 605.81(7993) 1.45(110) 9.81(157) 6950
Theta∗ 0 N/A N/A N/A N/A N/A

Scenario: Berlin_0_256 (POSQ steering, 12 minutes time limit)

BFMT 4 / 10 582.35(6916) 1010.48(28789) 0.98(33) 13.03(139) 137
BIT∗ 35 / 41 141.23(9690) 790.39(36817) 0.98(36) 12.78(223) 396
CForest 28 / 51 149.11(18951) 341.97(14455) 0.92(41) 13.75(526) 171
EST 50 / 51 720.03(3) 138.47(5790) 1.42(37) 15.91(665) 1563
Informed RRT∗ 49 / 51 663.75(19344) 177.58(11116) 0.99(46) 14.64(563) 636
KPIECE 21 / 51 24.20(10024) 1236.73(34943) 1.00(32) 10.72(157) 1662
PDST 7 / 51 65.20(12695) 579.09(13792) 1.44(48) 10.86(225) 1487
PRM 4 / 51 88.85(22391) 643.63(23700) 1.25(67) 7.94(184) 1150
PRM∗ 4 / 51 66.34(19056) 607.59(17927) 1.18(61) 8.09(187) 817
RRT 49 / 50 688.95(14108) 496.80(18433) 1.09(76) 13.67(312) 378
RRT# 44 / 51 692.14(13887) 145.06(9717) 1.00(47) 16.19(663) 1087
RRT∗ 46 / 51 692.09(13898) 152.48(10535) 1.01(43) 15.57(615) 1240
SORRT∗ 45 / 50 669.23(17653) 162.12(10961) 1.06(48) 16.22(713) 563
SPARS 0 / 47 165.72(17192) 662.60(16832) 0.98(32) 10.01(144) 317
SPARS2 7 / 51 28.64(6118) 549.87(12671) 1.19(43) 10.41(182) 517
SST 0 N/A N/A N/A N/A N/A
Theta∗ 9 / 9 504.14(14032) 364.74(1022) 0.79(19) 3.08(53) 36

Scenario: Berlin_0_256 (Dubins steering, 6 minutes time limit)

BFMT 3 / 39 39.60(6914) 517.98(6621) 0.25() 9.64(173) 343
BIT∗ 21 / 36 360.06(8) 363.68(1681) 0.25() 7.95(215) 18
CForest 6 / 51 360.07(3) 352.27(2064) 0.25(2) 7.52(218) 43
EST 39 / 51 59.46(13088) 675.37(16761) 0.25() 12.22(154) 372
Informed RRT∗ 19 / 50 360.04(3) 346.49(5074) 0.25(1) 7.82(219) 52
KPIECE 37 / 51 44.94(11576) 1210.09(39320) 0.25(2) 12.87(141) 885
PDST 31 / 49 48.08(11929) 524.89(11419) 0.25() 11.59(212) 124
PRM 0 / 51 360.05(3) 580.32(9338) 0.25() 8.20(258) 554
PRM∗ 0 / 51 360.07(5) 545.61(5986) 0.25() 7.31(197) 532
RRT 37 / 51 59.14(12673) 518.19(15543) 0.25(1) 12.21(231) 126
RRT# 2 / 51 360.03(2) 338.41(7186) 0.25(1) 7.42(209) 50
RRT∗ 23 / 51 360.04(3) 337.69(7068) 0.25() 7.50(215) 43
SORRT∗ 18 / 51 360.04(4) 347.88(5229) 0.25(1) 7.83(224) 59
SPARS 0 / 29 360.80(77) 569.63(8317) 0.25() 9.43(160) 104
SPARS2 0 / 30 360.01(1) 504.95(8048) 0.25() 9.39(151) 155
SST 39 / 49 360.02(2) 593.49(63750) 0.27(11) 10.75(338) 1375
Theta∗ 14 / 14 177.62(10184) 454.41(4319) 0.25() 7.66(155) 70

Table 3: Planning statistics using different steer functions from the Berlin_0_256 sce-
nario from the Moving AI benchmark.

22

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

4.5.1 Planning Time

Feasible planners are much faster and reliable in finding a single solution. RRT con-
sistently ranked among the fastest of the planners we evaluated. While anytime (i .e.,
asymptotically optimal) planners require more time to find solutions, these are of higher
quality than the paths found by feasible planners. The complexity of the steer function
also severely impacts the performance of the planners. Dubins curves, for example, are
computationally challenging systems for planning in very cluttered environments. An
added burden on the runtime complexity stems from the polygon-based collision model,
that, in contrast to typical point-based collision checkers, further penalizes algorithms
that are not implemented in a way to make as few state validity checks as possible, such as
our non-optimized Theta∗ implementation. Collision checking often consumed most of
the allotted planning time such that this planner, in many cases, did not find any solution.

4.5.2 Quality of Anytime Solutions

Overall the results confirm what we know from the theory: on average, anytime planners
obtain better solutions in terms of path length, number of cusps and maximum curvature.
Informed anytime approaches (e .g., Informed-RRT*, SORRT*, BIT*) can achieve some-
times shorter paths throughout all tested steer functions. However, this is not always the
case. These approaches are still impacted by larger complexity in the environment, and
do not perform faster in highly constrained environments.

4.5.3 Variability of the Results

The main concern regarding sampling-based planners (feasible and anytime ones) is the
high variance of the obtained results, which occasionally may lead to low performance.
In particular, we believe that the stochasticity of the sampling phase is a major drawback
that should be addressed from the community. Deterministic sampling [15, 29, 45] is an
approach that mitigates this issue – see Section 5. State-lattice planners are an example
of deterministic techniques, which, at the price of the solution quality, offer deterministic
performance.

4.5.4 Post-smoothing Synergies

Post-smoothing combined with feasible planners is a good strategy in terms of planning
efficiency and final path quality (sub-optimal and may not completely fulfill kinody-
namic requirements). The results show that there exist several couplings of feasible
sampling-based planners and post-smoothers that outperform anytime planners both in
computation time and solution quality.

4.5.5 Environment Complexity

Our benchmarking confirms that the environments significantly influence the perfor-
mance of the planners. Environments such as the polygon-based warehouse scenarios
revealed vastly different solutions between the planners (see Figure 16).

As pointed out in Section 4.4.3, the planning performance is further impacted by
different environment characteristics, such as narrow corridors and spaces cluttered
with small obstacles. Plain state-of-the-art approaches that do not implement additional
sampling heuristics, such as goal biasing, often fail to return solutions in very difficult
environments where the corridors are small or the obstacle density is high.

23

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

200

400

600

800

1000

1200

1400

1600

Path Length

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

1

2

3

4

5

6

Maximum Curvature

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

20

40

60

80

100

120

140

160

Computation Time

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Mean Clearing Distance

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

2000

4000

6000

8000

Cusps
Mean
Median

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

10000

20000

30000

40000

Path Length

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0.2

0.3

0.4

0.5

0.6

Maximum Curvature
GR

IP
S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

100

200

300

400

500

600

Computation Time

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

10

20

30

40

Mean Clearing Distance

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

1000

2000

3000

4000

Cusps
Mean
Median

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

1000

2000

3000

4000

5000

6000
Path Length

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

1

2

3

4

5

6

Maximum Curvature

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

200

400

600

800

1000

1200

1400

1600

Computation Time

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

5

10

15

20

25

Mean Clearing Distance

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

500

1000

1500

2000

2500

3000

Cusps
Mean
Median

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

200

400

600

800

1000

1200

1400

Path Length

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

1

2

3

4

5

6

Maximum Curvature

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

200

400

600

800

1000

1200

Computation Time

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

10

20

30

40

Mean Clearing Distance

GR
IP

S

B-
Sp

lin
e

Sh
or

tc
ut

Si
m

pl
ify

M
ax

0

250

500

750

1000

1250

1500

1750

2000

Cusps
Mean
Median

Figure 23: Planning statistics for the post-smoothing algorithms GRIPS, B-Spline, Shortcut,
SimplifyMax (left to right per subplot) using different steer functions from the Berlin_0_256
scenario from the Moving AI benchmark. These are the 50 most difficult start-goal con-
figurations from the benchmark. First row: Reeds-Shepp steering, second row: Dubins
steering, third row: CC Reeds-Shepp steering, fourth row: POSQ steering.

24

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

4.5.6 Influence of the Steer Function

Regarding the steer functions, we have observed two main phenomena which confirm
previous theoretical claims [21]. Computationally complex steer functions, such as CC
Reeds-Shepp, severly impact the planning efficiency of all the algorithms. Solving plan-
ning queries for systems with complex nonholonomic constraints in very cluttered en-
vironments also requires more planning time, particularly for systems which are not
small-time locally controllable, such as Dubins curves. On the larger-scale experiments
(e .g., Section 4.4.1) we observed a significant variance in the planning time allotment
necessary for the planners to find solutions with different steer functions, ranging from
1.5 min (Reeds-Shepp) to more than 18 min (CC Reeds-Shepp).

5 Safety with Deterministic Sampling

5.1 Introduction
For motion planning in safety-critical applications, for instance in ILIAD intralogistic
settings where collaborative robots operate amidst and work with humans, safety guaran-
tees, explainability and deterministic performance bounds are of particular interest. In
the past, many motion planning approaches have been introduced to improve planning
efficiency, path quality and applicability across classes of robotic systems. Probabilis-
tic sampling-based motion planners [lavalle2001randomized, 18, 22] and their optimal
variants [16, 17] have been shown to outperform combinatorial approaches [27], espe-
cially for high-dimensional systems with complex differential constraints in cluttered
environments. Sampling-based planners explore the configuration space by sampling
states and connecting them to the roadmap, or tree, which keeps track of the state space
connectivity. Typically samples are drawn from a uniform distribution over the state space
by an independent and identically distributed (i.i.d.) random variable. The randomness
of the sample set ensures good exploration of the configuration space, but comes at the
expense of stochastic results which may strongly vary for each planning query in terms of
planning efficiency and path quality. This stochasticity makes the formal verification and
validation of such algorithms, needed for safety-critical applications, difficult to obtain.

To address this issue, several authors [15, 23] propose to use deterministic sets (or
sequences). Contrarily to using i.i.d. random variables, this technique allows to achieve
deterministic planning behaviors while still getting on par or even better performance.
Moreover, as described also in [15, 23], deterministic sampling allows an easier certifica-
tion process for the planners (e.g., in terms of final cost, clearance from the obstacles).
With the goal to further enhance the usage of deterministic sampling to symmetric and
optimal driftless systems, one outcome of ILIAD is Dispertio, an optimization-based ap-
proach to deterministic sampling. The method computes a sampling set which minimizes
the actual dispersion of the samples. To compute the dispersion metric, we need access
to a steer function [30, 35] that can compute an optimal path connecting two states. We
prove that the approach, when combined with PRM*, is deterministically complete and
retains asymptotic optimality. Furthermore, we systematically compare our approach to
the existing baselines [15, 33]. Our experiments demonstrate that Dispertio outperforms
the baselines in terms of planning efficiency and overall final path quality.

5.2 Dispertio
In this section, we describe our algorithm and analyze its properties. The approach to
solve a motion planning problem by using an optimization-based sampling technique that
minimizes the actual dispersion of the sampling set used by batch-processing algorithms

25

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Figure 24: Range of possible sampling and roadmap types as introduced by LaValle [23].
The highlighted ones are deterministic.

Algorithm 1 PRM*. xstart is the start state, xgoal the goal state, n the desired number of
samples.

1: procedure PRM*
2: S ← SAMPLEFREE(n)
3: V ←{xstart, xgoal}∪S
4: for v in V do
5: U ←NEAR(V , v, rn)
6: for u in U do
7: if COLLISIONFREE(v, u) then
8: E ← E ∪{(v, u)}
9: end if

10: end for
11: end for
12: return SHORTESTPATH(xstart, xgoal, (V , E))
13: end procedure

(e.g., PRM*5, see Algorithm 1). Hereinafter we assume to use a dispersion metric, that is
actually returning the path length of the path computed by an optimal steering function
between two states [29].

5.2.1 The Dispersion Optimization Algorithm

As discussed by Janson et al. [15] and LaValle and Kuffner [24] multi-query sampling-
based planners, such as PRM* or FMT*, generate as the initial step a setS of collision free
samples, see line 2 of Algorithm 1. Instead of using i.i.d. random variables, or an existing
deterministic technique to generateS (e .g., Halton sequence, [15, 23, 33]), we propose to
compute the set by minimizing the defined dispersion. Our algorithm named Dispertio
is outlined in Algorithm 2. The general idea of the algorithm is to pick in each step the
sample (up to n < NC S) that maximizes the distance to both the defined border of the
configuration space as well as to the next sample. In other words we want to greedily put
the sample into the position that currently defines the dispersion.

We propose to make this task computationally feasible by discretizing the configura-
tion space into a fine grid of NCS equidistant (distance could be different per dimension)
cells. The dispersion tensor D keeps track of the minimum distance to either the border
or closest sample for each grid cell (in Algorithm 2 we denote the dispersion value at the
cell or position c as Dc).

If it is possible to compute the distance to the border quickly (e .g., Euclidean case),
we initialize D with the distance to the border for each grid cell, otherwise D is initialized
with∞, line 1 of Algorithm 2. In this case, we check whether the update step to a potential
sample would affect any border sample. If this is the case, we will not add the sample toS ,
but instead run an update step on the border sample without adding it. At each algorithm
iteration, we generate a sample xi that maximizes the current dispersion tensor D and add

5For brevity, we will not detail the algorithm PRM*. A reader interested to the properties of the algorithm can
refer to [17].

26

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Algorithm 2 Dispersion Optimization

1: procedure DISPERTIO

2: D ←DISTANCETOBORDER

3: while |S |< n do
4: x i ← arg maxc Dc
5: UPDATEDISTANCEMATRIX(D , x i)
6: S ←S ∪{x i }
7: end while
8: end procedure

Figure 25: Progression of the algorithm in 2D Euclidean space. The background color
indicates the distance to the next sample (i.e., the distance matrix D). The white crosses
and dots show the processed border points and actual samples respectively.

it toS , see lines 3–7 of Algorithm 2. For a given sample, D is updated (line 5 of Algorithm 2)
with a flood-fill algorithm, by only expanding cells for which the dispersion has been
updated. In this way we are exploiting the connectedness of time-limited reachable sets.
The flood-fill algorithm sequence can be pre-computed to prevent double checking of
already tested cells.

Despite having a time complexity exponential in dimensions due to the flood-fill
algorithm

�

i.e., O (nξD), with the constant ξ> 0 being related to discretization and com-
plexity of dist), the algorithm is a feasible pre-computation step for many systems (e .g.,
Reeds-Shepp space, 6D kinematic chain using Euclidean distance).

Once the setS has been generated, we can then use it in a motion planning algorithm
such as PRM* (Algorithm 1). PRM*-edges are generated with the same steer function used
to optimize the set S . As detailed in [29], PRM* [17] when using Dispertio, retains the
completeness and asymptotic optimality properties as in [15, 23, 33].

A key advantage of our approach in terms of safety is that once you know the allowed
dispersion in your environment (i.e. size of the narrowest corridor where the corridor
could go into), you can then define the resolution completeness of your planner [29].

5.3 Discussion
In ILIAD, as part of the efforts to improve the final motion planning architecture, we
extend deterministic sampling-based motion planning to the class of symmetric and op-
timal driftless systems, by proposing Dispertio, an algorithm for optimized deterministic
sampling set generation. When used in combination with PRM*, we prove that the ap-
proach is deterministically complete and retains asymptotic optimality. In the evaluation
(see [29] for more details) we show that our sampling technique outperforms state-of-the-
art methods in terms of solution cost and planning efficiency, while also converging faster
to lower cost solutions. For instance, Figure 27 shows an example planning query for
i.i.d., Halton sampling and our approach. It reports the obtained paths, the trend for the
success rate and the cost progression. The blue range shows the minimum and maximum
cost observed in these runs for the i.i.d. sampler. The cost results are only shown for

27

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Figure 26: Dispersion trend for the Reeds-Shepp case (η= 1.0, obstacle free environment).
Our approach obtains a better dispersion than the baselines, thus achieving a better
coverage of the state space.

(a) i.i.d. (b) Halton (c) Dispertio

0 500 1,000 1,500

0

0.25

0.5

0.75

1

nvalid

Su
cc

es
s

ra
te

i.i.d.
Halton
Dispertio

(d) Success rate

200 600 1,000 1,500

60

80

100

nvalid

c/
m

i.i.d.
Halton
Dispertio

(e) Cost

Figure 27: Qualitative comparison of i.i.d., Halton and Dispertio. The top row shows
example paths obtained after 1500 valid samples connecting starts (in red) with goals
(in blue). The gray footprints represent the roadmap’s vertices. The bottom row shows
success rate and cost for this example.

success rates of 100%. Cost and success rate progressions of Figure 27 highlight how our
approach is faster in getting an initial good solution, and faster (as the number of samples
increases) in converging to lower cost solutions in those cluttered and narrow scenarios.
Furthermore, Figure 26 reports a numerical comparison of the dispersion obtained for
the Reeds-Shepp case after n samples for i.i.d., Halton and the proposed approach in an

28

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

obstacle-free environment. Our approach achieves better dispersion than the baselines.
As future work, we are interested in extending the approach towards non-uniform

sampling schemes, for example to exploit learned priors, and to systems with drift.

6 NMPC for Navigation in Cluttered Environments
ILIAD intralogistic settings require robots to operate in dynamic environments among
other agents, such as humans or other autonomous systems. In these scenarios, the reac-
tive avoidance of unforeseen dynamic obstacles is an important requirement. Combined
with the objective of reaching optimal robot behavior, this poses a major challenge for
motion planning and control and remains the subject of active research. As part of this
deliverable we have investigated the usage of novel model predictive control techniques
for achieving fast, reliable and safe obstacle avoidance.

Recently, several researchers have tackled the obstacle avoidance problem by for-
mulating and solving optimization problems [4, 5, 7, 9, 13, 26, 28, 34, 36, 38, 42, 46–48].
This approach is well suited for finding locally optimal solutions, but generally gives no
guarantee of finding the global optimum. A shortcoming of most common trajectory
optimization methods is that they are incapable of respecting kinodynamic constraints,
e.g. bounds on the acceleration, and typically lack a notion of time in their predictions,
[5, 34, 38, 48]. These approaches are typically limited to the optimization of paths rather
than trajectories and impose constraints by introducing penalties.

To counteract these several issues, we have developed in ILIAD a novel model predic-
tive control formulation that allows a fast and safe collision avoidance for highly nonlinear
problems.

6.1 The Approach
Our nonlinear model predictive control approach allows us to find a kinodynamically
feasible, collision free trajectory by formulating and solving a constrained optimal con-
trol problem (OCP). Kinodynamic feasibility is ensured by using a dynamical model to
simulate the robot’s behavior and collision avoidance is achieved constraining the robot
to positions with a minimum distance to all obstacles.

As described in Schoels et al. [37], instead of computing the actual true distance to
the obstacles, we approximate it via a novel convex inner formulation of the collision
avoidance constraint (hereinafter called CIAO), that pushes the optimization to find
collision-free robot trajectories into dynamic collision-free balls (centered around a tuple
of center points C).

6.1.1 The CIAO-iteration

We will now introduce the CIAO-iteration, as detailed in Algorithm 3. It takes a two
step approach. We first find a set of collision-free regions centered around the points
C= (c0, . . . , cN), and then we solve the optimization for finding a trajectory that lies withing
the collision free areas.

Algorithm 3 the CIAO-iteration
1: function CIAO-ITERATION(w ; r, x0, ∆t)
2: C← (ck = Sp ·xk for k = 0, . . . , N)
3: C∗← (c∗ =MAXIMIZEFB(c) for all c ∈C)
4: w∗← SOLVENONLINEAR PROGRAM (NLP)(w; C∗, r, x0, ∆t)
5: end function return w∗ . return newly found trajectory

29

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Figure 28: CIAO trajectories for the Astrobee robot (top row) in red and for a unicycle
robot (last row) with three different maximum speeds vmax and corresponding minimum
distances: green - slow, red - normal, blue - fast. The boxes and spheres represent obsta-
cles, the turquoise dots the reference path. A wider spacing between the dots indicates a
higher speed. The start is always located in the bottom and the goal in the top.

30

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

In Line 2 we find an initial tuple of center points C. In practice the free balls result-
ing from these center points are very small and therefore very restrictive, which leaves
little room for optimization, especially if the initial guess of the trajectory w approaches
obstacles closely. To overcome this problem we maximize free balls (FBs) (Line 3) by
performing a gradient descent on the distance field representing the collision free regions.

6.2 CIAO-based Motion Planning
We now report two ways to use the CIAO iteration.

6.2.1 CIAO for Trajectory Optimization

The first way to use CIAO is for trajectory optimization considering a long horizon (i.e., the
entire environment). The proposed trajectory optimization algorithm (see Algorithm 4)
starts by computing a feasible initial guess and a reference trajectory (Lines 1–2). In the

Algorithm 4 CIAO for offline trajectory optimization
Require: xS, xG, ∆t , ε . start and goal state

1: w∗← INITIALGUESS(xS, xG, ∆t) . feasible initialization
2: r← REFERENCETRAJECTORY(xS, xG, ∆t)
3: do
4: w←w∗ . set last solution as initial guess
5: w∗←CIAO-ITERATION(w ; r, x0, ∆t) . x0 = xS

6: while COST(w∗)− COST(w)> ε
7: return w∗

general case of nonconvex scenarios, such as cluttered environments, feasible initializa-
tions can be obtained through a sampling-based motion planner [31, 32]. To monitor
the progress the initial guess is copied (Line 4), before using it as initial guess for the
CIAO-ITERATION (Line 5).

Lines 4–5 are repeated as long as the COST-function shows an improvement that
exceeds a given threshold ε (Line 6). Finally the best known solution w∗ is returned (Line 7).
For trajectory optimization the terminal constraint becomes an equality constraint, which
enforces that the goal state xG is reached at the end of the horizon, i.e. XT = {xG}.

6.2.2 CIAO-NMPC

For obstacle avoidance and trajectory tracking we use the CIAO iteration inside an MPC
framework. Concretely Algorithm 5 uses a shorter horizon than Algorithm 4 and runs
only one CIAO-iteration before shifting it one step forward (Line 7). Therefore the initial
guess w (Line 1) is not required to reach the goal state xG ∈XG.

Algorithm 5 CIAO-NMPC
Require: x0, xG, ∆t , XG . current and goal state

1: w← INITIALGUESS(x0, xG, ∆t) . feasible initialization
2: while x0 /∈XG do
3: x0← GETCURRENTSTATE()
4: r← REFERENCETRAJECTORY(x0, xG, ∆t)
5: w∗← CIAO-ITERATION(w; r, x0,∆t) . Alg. 3
6: APPLYFIRSTCONTROL(w∗) . recall u0 ∈w∗

7: w← SHIFTTRAJECTORY(w∗) . recede horizon
8: end while

31

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

CIAO GuSTO
5
6
7
8
9
10

Cost

CIAO GuSTO
5

10

15

20
Control effort

CIAO GuSTO
50
60
70
80
90

Time to goal [s]

CIAO GuSTO

16.0

16.5

17.0

17.5

Path length [m]

CIAO GuSTO

0.04

0.06

0.08

0.10
Clearance [m]

Figure 29: Trajectory Optimization Benchmark Results. CIAO finds faster trajectories with
higher clearance than GuSTO.

measure CIAO GuSTO

Compute [s] 14.792±11.966 131.367±130.743
Iterations 30.660±15.886 4.520±1.282
Compute / Iteration [s] 0.475±0.230 27.729±22.096
Linearization Error 4.66e-14±3.67e-15 4.10e-06±1.28e-06

Table 4: Numerical Performance: Average ± std values.

While the robot has not reached the goal regionXG (Line 2), it is iteratively steered to
it (Lines 3–8). Each iteration starts by updating the robot’s current state x0. Based on the
complexity of the scenario REFERENCETRAJECTORY may return a guiding trajectory to the
goal or just the goal state itself (Line 4). We run Algorithm 3 to compute a new trajectory
(Line 5), before sending the first control to the robot (Line 6).

6.3 Experiments and Discussion
To evaluate CIAO in terms of planning efficiency and final trajectory quality, we compare
it against a set of baselines. We challenge CIAO by using nonlinear dynamics and a
nonconvex cost function. Further we use a sampling based motion planner to initialize
it with a collision free path that does not satisfy the robot’s dynamics. In this case, we
use the primal-dual interior point NLP-solver Ipopt [44] with the linear solver MA-27 [14]
called through CasADi [1].

6.3.1 Trajectory Optimization Benchmark

In a set of experiments CIAO is compared to GuSTO [4] using the implementation publicly
provided by the authors. In these experiments we consider a free-flying Astrobee Robot
with 12 states and 6 controls, that has to move from a start position on the bottom front
left corner of a 10×10×10 m cube to a goal in the opposite corner. The room between
start and goal point is cluttered with 25 randomly placed static obstacles of varying sizes
(between 1 and 2 meters). Figure 28 shows some examples.

The results reported in Table 4 and Figure 29 were performed using JuMP [6] on an Intel
Core i7-8559U (2.7GHz) running MacOS. The sequential convex programmings (SCPs)
formulated by GuSTO [4] are solved with Gurobi [10]. Both algorithms are provided with
the same initial guess, which is computed with RRT [24]. We use a horizon of 250 steps
and a sampling time of 0.4 s. Since both GuSTO and CIAO use tailored cost functions we
evaluate the computed trajectories using a common cost function Jρ , which is based on

the state distance metric ρ : R nx ×R nx →R proposed by [24]: Jρ(w; xG) =
∑N

k=0ρ(xk , xG),
with goal state xG and all weights of the distance metric chosen equal. The controls are
evaluated separately and reported as control effort given by Ju(w) =

∑N−1
k=0 ∆t · ‖uk‖1. The

path quality is evaluated in terms of time to goal, path length, and clearance (minimum

32

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

Figure 30: CIAO steers a wheeled mobile robot through a group of people. Real-world
(top) and RViz (bottom): Planned trajectory as blue line, free balls as transparent circles,
obstacles in yellow, safety margin in light blue.

distance to the closest obstacle along the trajectory). The first two measures take the
time and path length until the state distance metric falls below a threshold of 0.5, while
the latter is evaluated on the entire trajectory. These three metrics are evaluated on an
oversampled trajectory using a sampling time∆t = 0.01 s.

The results in Figure 29 show that CIAO finds faster trajectories than GuSTO and
thereby also achieves significantly lower cost. As depicted in Figure 28 it maintains a
larger distance to obstacles for higher speeds. This behavior allows for a higher average
speed, at the cost of a higher control activation and slightly longer paths in comparison
to GuSTO.

As reported in Table 4, CIAO (Algorithm 4) requires more iterations to converge, but
the individual iterations are cheaper. Moreover CIAO obtains a feasible trajectory after
the first iteration and therefore could be terminated early, while GuSTO does not have
this property and takes several iterations to find a feasible trajectory. Even though the
dynamics are mostly linear we observe linearization errors for GuSTO, originating from
the linear model they use. In summary CIAO finds trajectories of higher quality than
GuSTO at lower computational effort.

6.3.2 Real-World Experiments - Differential Drive Robot

To qualitatively assess the behavior of CIAO-NMPC (Algorithm 5), it was tested in dynamic
real-world scenarios with freely moving humans. A representative example is depicted
in Figure 30. Note that CIAO has no knowledge of the humans’ future movements. It is
instead considering all humans as static obstacles in their current position. A differential
drive robot is used, this time with a horizon of 5 s and a control frequency of 10 Hz resulting
in a total of 405 optimization variables (including slacks). For these experiments CIAO was
implemented as a C++ ROS-module, the distance function was realized as distance field
based on the code by Lau et al. [20]. Initial guesses and reference paths were computed
using an A* algorithm [11].

Since GuSTO is not suitable for receding horizon control (RHC), we used an extended
version of the elastic-band (EB) method [34]. To obtain comparable results, we used the

33

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

same A* planner and localization method with both algorithms. In summary CIAO and
the elastic band (EB) approach show similar behavior. In contrast to EB, CIAO computes
kinodynamically feasible and guaranteed continuous time collision free trajectories. Fur-
ther it has a notion of time for the planned motion, such that predictions for dynamic
environments can be incorporated in future work.

7 Conclusions
In this deliverable we have detailed the quantitative motion planning architecture devel-
oped in the ILIAD project, a benchmark of the state of the art of planning algorithms and
novel techniques to further improve safety and efficiency of the ILIAD planning system.
The benchmark and the real-work experiments show the efficiency and the reliability
of the developed solution. Overall the techniques allow for a safe and human-aware
long-term robot operation in intralogistic settings.

References
[1] Joel A. E. Andersson, Joris Gillis, Greg Horn, James B. Rawlings, and Moritz Diehl.

“CasADi: a software framework for nonlinear optimization and optimal control”. In:
Mathematical Programming Computation (2018).

[2] Henrik Andreasson, Jari Saarinen, Marcello Cirillo, Todor Stoyanov, and Achim J
Lilienthal. “Fast, continuous state path smoothing to improve navigation accuracy”.
In: Int. Conf. on Robotics and Automation (ICRA). 2015.

[3] Holger Banzhaf, Luigi Palmieri, Dennis Nienhüser, Thomas Schamm, Steffen Knoop,
and J Marius Zöllner. “Hybrid curvature steer: A novel extend function for sampling-
based nonholonomic motion planning in tight environments”. In: 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC). IEEE. 2017,
pp. 1–8.

[4] Riccardo Bonalli, Abhishek Cauligi, Andrew Bylard, and Marco Pavone. “GuSTO:
Guaranteed Sequential Trajectory Optimization via Sequential Convex Program-
ming”. In: Int. Conf. on Robotics and Automation (ICRA). 2019.

[5] Oliver Brock and Oussama Khatib. “Elastic Strips: A Framework for Motion Genera-
tion in Human Environments”. In: Int. Journal of Robotics Research 21.12 (2002),
pp. 1031–1052. DOI: 10.1177/0278364902021012002.

[6] Iain Dunning, Joey Huchette, and Miles Lubin. “JuMP: A Modeling Language for
Mathematical Optimization”. In: SIAM Review 59.2 (2017), pp. 295–320. DOI: 10.
1137/15M1020575.

[7] Timm Faulwasser and Rolf Findeisen. “Nonlinear Model Predictive Control for
Constrained Output Path Following”. In: TAC 61.4 (2016), pp. 1026–1039. DOI: 10.
1109/TAC.2015.2466911.

[8] Thierry Fraichard and Alexis Scheuer. “From Reeds and Shepp’s to continuous-
curvature paths”. In: IEEE Transactions on Robotics 20.6 (2004), pp. 1025–1035.

[9] J. V. Frasch, A. J. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and M. Diehl.
“An Auto-generated Nonlinear MPC Algorithm for Real-Time Obstacle Avoidance
of Ground Vehicles”. In: Proc. of the European Control Conf. (ECC). 2013, pp. 4136–
4141.

[10] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual.

34

http://dx.doi.org/10.1177/0278364902021012002
http://dx.doi.org/10.1137/15M1020575
http://dx.doi.org/10.1137/15M1020575
http://dx.doi.org/10.1109/TAC.2015.2466911
http://dx.doi.org/10.1109/TAC.2015.2466911

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

[11] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science
and Cybernetics 4.2 (1968), pp. 100–107. DOI: 10.1109/TSSC.1968.300136.

[12] Eric Heiden, Luigi Palmieri, Kai O. Arras, Gaurav S. Sukhatme, and Sven Koenig.
“Experimental Comparison of Global Motion Planning Algorithms for Wheeled
Mobile Robots”. In: arXiv preprint arXiv:2003.03543 (2020).

[13] Sylvia L. Herbert, Mo Chen, SooJean Han, Somil Bansal, Jaime F. Fisac, and Claire J.
Tomlin. “FaSTrack: a Modular Framework for Fast and Guaranteed Safe Motion
Planning”. In: Proc. of the IEEE Int. Conf. on Decision and Control (CDC). 2017,
pp. 1517–1522. DOI: 10.1109/CDC.2017.8263867.

[14] HSL. A collection of Fortran codes for large scale scientific computation. http://www.
hsl.rl.ac.uk. 2011.

[15] Lucas Janson, Brian Ichter, and Marco Pavone. “Deterministic sampling-based
motion planning: Optimality, complexity, and performance”. In: The International
Journal of Robotics Research 37.1 (2018), pp. 46–61.

[16] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. “Fast marching
tree: A fast marching sampling-based method for optimal motion planning in many
dimensions”. In: Int. Journal of Robotics Research 34 (2015).

[17] Sertac Karaman and Emilio Frazzoli. “Sampling-based algorithms for optimal mo-
tion planning”. In: The international journal of robotics research 30.7 (2011), pp. 846–
894.

[18] LE Kavraki, P Svestka, J-C Latombe, and MH Overmars. “Probabilistic roadmaps for
path planning in high-dimensional configuration spaces”. In: IEEE Transactions on
Robotics and Automation 12 (1996).

[19] Tomasz P. Kucner, Martin Magnusson, Erik Schaffernicht, Victor H. Bennetts, and
Achim J. Lilienthal. “Enabling Flow Awareness for Mobile Robots in Partially Ob-
servable Environments”. In: IEEE Robotics and Automation Letters 2.2 (Apr. 2017),
pp. 1093–1100. ISSN: 2377-3766. DOI: 10.1109/LRA.2017.2660060.

[20] Boris Lau, Christoph Sprunk, and Wolfram Burgard. “Efficient grid-based spatial
representations for robot navigation in dynamic environments”. In: Robotics and
Autonomous Systems 61.10 (2013), pp. 1116–1130. DOI: 10.1016/j.robot.2012.08.010.

[21] Jean-Paul Laumond, S Sekhavat, and F Lamiraux. “Guidelines in nonholonomic mo-
tion planning for mobile robots”. In: Robot motion planning and control. Springer,
1998, pp. 1–53.

[22] Steven M. LaValle. Planning Algorithms. Cambridge Univ. Press, 2006.

[23] Steven M LaValle, Michael S Branicky, and Stephen R Lindemann. “On the relation-
ship between classical grid search and probabilistic roadmaps”. In: Int. Journal of
Robotics Research 23 (2004).

[24] Steven M. LaValle and James J. Kuffner Jr. “Randomized Kinodynamic Planning”. In:
Int. Journal of Robotics Research 20.5 (2001), pp. 378–400. DOI: 10.1177/02783640122067453.

[25] Maxim Likhachev, David I Ferguson, Geoffrey J Gordon, Anthony Stentz, and Sebas-
tian Thrun. “Anytime Dynamic A*: An Anytime, Replanning Algorithm.” In: ICAPS.
Vol. 5. 2005, pp. 262–271.

[26] A. Liniger, A. Domahidi, and M. Morari. “Optimization-based autonomous racing
of 1:43 scale RC cars”. In: Optimal Control Applications and Methods 36.5 (2015),
pp. 628–647.

35

http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/CDC.2017.8263867
http://www.hsl.rl.ac.uk
http://www.hsl.rl.ac.uk
http://dx.doi.org/10.1109/LRA.2017.2660060
http://dx.doi.org/10.1016/j.robot.2012.08.010
http://dx.doi.org/10.1177/02783640122067453

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

[27] Tomás Lozano-Pérez and Michael A Wesley. “An algorithm for planning collision-
free paths among polyhedral obstacles”. In: Communications of the ACM 22 (1979).

[28] Michael Neunert, Cedric de Crousaz, Fadri Furrer, Mina Kamel, Farbod Farshid-
ian, Roland Siegwart, and Jonas Buchli. “Fast Nonlinear Model Predictive Control
for Unified Trajectory Optimization and Tracking”. In: Int. Conf. on Robotics and
Automation (ICRA). 2016, pp. 1398–1404. DOI: 10.1109/ICRA.2016.7487274.

[29] L. Palmieri, L. Bruns, M. Meurer, and K. O. Arras. “Dispertio: Optimal Sampling for
Safe Deterministic Motion Planning”. In: IEEE Robotics and Automation Letters 5.2
(2019). ISSN: 2377-3774. DOI: 10.1109/LRA.2019.2958525.

[30] Luigi Palmieri and Kai O Arras. “A novel RRT extend function for efficient and
smooth mobile robot motion planning”. In: Int. Conf. on Intelligent Robots and
Systems (IROS). Chicago, USA, 2014.

[31] Luigi Palmieri and Kai O Arras. “Distance metric learning for RRT-based motion
planning with constant-time inference”. In: 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2015, pp. 637–643.

[32] Luigi Palmieri, Tomasz P Kucner, Martin Magnusson, Achim J Lilienthal, and Kai O
Arras. “Kinodynamic motion planning on Gaussian mixture fields”. In: Int. Conf. on
Robotics and Automation (ICRA). Singapore, 2017.

[33] Ernesto Poccia. “Deterministic Sampling-Based Algorithms for Motion Planning
under Differential Constraints”. MA thesis. Stanford University, University of Pisa,
2017.

[34] Sean Quinlan and Oussama Khatib. “Elastic Bands: Connecting Path Planning and
Control”. In: Int. Conf. on Robotics and Automation (ICRA). Vol. 2. 1993, pp. 802–807.
DOI: 10.1109/ROBOT.1993.291936.

[35] James Reeds and Lawrence Shepp. “Optimal paths for a car that goes both forwards
and backwards”. In: Pacific Journal of Mathematics 145 (1990).

[36] Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. “Integrated online
trajectory planning and optimization in distinctive topologies”. In: Robotics and
Autonomous Systems 88 (2017), pp. 142–153. DOI: 10.1016/j.robot.2016.11.007.

[37] Tobias Schoels, Luigi Palmieri, Kai O Arras, and Moritz Diehl. “An NMPC Approach
using Convex Inner Approximations for Online Motion Planning with Guaranteed
Collision Avoidance”. In: Int. Conf. on Robotics and Automation (ICRA). 2020.

[38] John Schulman et al. “Motion planning with sequential convex optimization and
convex collision checking”. In: Int. Journal of Robotics Research 33.9 (2014), pp. 1251–
1270. DOI: 10.1177/0278364914528132.

[39] N. Sturtevant. “Benchmarks for Grid-Based Pathfinding”. In: Transactions on Com-
putational Intelligence and AI in Games 4 (2012).

[40] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. “The Open Motion Planning Library”.
In: IEEE Robotics & Automation Magazine 19.4 (Dec. 2012). http://ompl.kavrakilab.
org, pp. 72–82. DOI: 10.1109/MRA.2012.2205651.

[41] Chittaranjan Srinivas Swaminathan, Tomasz Piotr Kucner, Martin Magnusson, Luigi
Palmieri, and Achim J Lilienthal. “Down the CLiFF: Flow-aware trajectory planning
under motion pattern uncertainty”. In: Int. Conf. on Intelligent Robots and Systems
(IROS). 2018.

[42] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl. “Time-
Optimal Path Tracking for Robots: a Convex Optimization Approach”. In: TAC 54
(2009), pp. 2318–2327.

36

http://dx.doi.org/10.1109/ICRA.2016.7487274
http://dx.doi.org/10.1109/LRA.2019.2958525
http://dx.doi.org/10.1109/ROBOT.1993.291936
http://dx.doi.org/10.1016/j.robot.2016.11.007
http://dx.doi.org/10.1177/0278364914528132
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://dx.doi.org/10.1109/MRA.2012.2205651

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D5.3

[43] Tomáš Vintr et al. “Time-varying pedestrian flow models for service robots”. In:
Proc. of the European Conf. on Mobile Robots (ECMR). 2019.

[44] A. Wächter and L. Biegler. IPOPT - an Interior Point OPTimizer. https://projects.coin-
or.org/Ipopt. 2009.

[45] Anna Yershova and Steven M LaValle. “Deterministic sampling methods for spheres
and SO(3)”. In: IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004. Vol. 4. IEEE. 2004, pp. 3974–3980.

[46] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. “Optimization-Based
Collision Avoidance”. In: arXiv preprint arXiv:1711.03449 (2017).

[47] Zhijie Zhu, Edward Schmerling, and Marco Pavone. “A Convex Optimization Ap-
proach to Smooth Trajectories for Motion Planning with Car-Like Robots”. In:
Proc. of the IEEE Int. Conf. on Decision and Control (CDC). 2015, pp. 835–842. DOI:
10.1109/CDC.2015.7402333.

[48] Matt Zucker, Nathan Ratliff, Anca D. Dragan, Mihail Pivtoraiko, Matthew Klin-
gensmith, Christopher M. Dellin, J. Andrew Bagnell, and Siddhartha S. Srinivasa.
“CHOMP: Covariant Hamiltonian Optimization for Motion Planning”. In: Int. Journal
of Robotics Research 32.9–10 (2013), pp. 1164–1193. DOI: 10.1177/0278364913488805.

37

http://dx.doi.org/10.1109/CDC.2015.7402333
http://dx.doi.org/10.1177/0278364913488805

	Introduction
	Architecture
	Hierarchical Global Motion Planning
	Benchmarking of Global Motion Planning Algorithms
	Approach
	Evaluation
	Environments
	Metrics

	Benchmark Implementation
	Results
	Moving AI Scenarios
	Polygon-based Environments
	Procedurally-generated grid environments
	Planning and Post-Smoothing

	General Observations
	Planning Time
	Quality of Anytime Solutions
	Variability of the Results
	Post-smoothing Synergies
	Environment Complexity
	Influence of the Steer Function

	Safety with Deterministic Sampling
	Introduction
	Dispertio
	The Dispersion Optimization Algorithm

	Discussion

	NMPC for Navigation in Cluttered Environments
	The Approach
	The CIAO-iteration

	CIAO-based Motion Planning
	CIAO for Trajectory Optimization
	CIAO-NMPC

	Experiments and Discussion
	Trajectory Optimization Benchmark
	Real-World Experiments - Differential Drive Robot

	Conclusions

