9

ILIAD

Intra-Logistics with Integrated Automatic Deployment:
Safe and Scalable Fleets in Shared Spaces

H2020-1CT-2016-2017
Grant agreement no: 732737

DELIVERABLE 6.4
Perception system for detecting boxes and wrapping

Due date: month 24 (December 2018)
Deliverable type: R
Lead beneficiary: ORU

Dissemination Level: PUBLIC

Main author: Todor Stoyanov and Martin Magnusson (ORU)

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

1 Introduction

In this deliverable we outline the development of a perception system within Task T6.4
of the ILIAD project, targeted at the detection of plastic wrapping and goods placed on
pallets. We describe several distinct components developed and evaluated within the
project, outline the integration of said components within the ILIAD framework, and
identify directions for future improvement of the overall system.

This deliverable is structured around the two tasks investigated: identification of the
presence and configuration of goods stored on pallets is discussed in Section 2; detecting
the presence of plastic wrapping of pallets with goods is discussed in Section 3. This
deliverable summarises the efforts pursued within task T6.4, focusing on perception
relevant for autonomous manipulation and handling of goods. Some of the problems
discussed here are specific instantiations of the more general semantic mapping problem,
which is the subject of task T1.4. The main difference is that in T6.4 we specifically need
to consider tight requirements on accuracy, governed by the manipulation tasks. In this
deliverable we focus on methods targeted on manipulation, in which the scale of the
semantic maps may be sacrificed for higher accuracy.

Our overarching aim within task T6.4 is thus to develop, evaluate, and deploy a set of
specific perception methods that provide input to the other manipulation-related tasks
within WP6.

2 Object pose estimation

Visual object recognition is an extensively studied problem that has benefited extensively
from the recent surge in artificial neural network research. Within ILIAD we are interested
in a more specific instance of object recognition than the commonly investigated generic
object recognition task.

In particular, we are interested in detecting the relative position and orientation of
goods, with respect to either a global reference system, or a robot centric one. The primary
reasoning for that requirement is that object detection in ILIAD serves as an input to
the goods handling pipeline: we are interested in identifying poses with respect to a
coordinate system that can be related precisely to the base of the robot arms used.

In addition to strict requirements on object pose accuracy, the scenario addressed
here poses additional challenges: varying illumination conditions and low illumination in
shelves, low-texture and symmetric objects, clutter, occlusions, and tightly stacked objects.
As such, the methods developed within ILIAD make use of depth data to augment visual
information. A possible simplyfing assumption is knowledge of the type of products
we need to detect: as our target scenarios feature pallets stacked with homogeneous
products, and a warehouse management system aware of the location and product types
of each pallet. While this assumption is reasonable for the ILIAD usecase, we have not as
yet imposed it, in an effort to keep the developed methods more generally applicable.

To address the problem of object pose estimation we developed two distinct systems.
The first system is based on the VoxNet [18] architecture, and is a purely geometric object
pose estimation algorithm. That system, along with evaluations carried out on ILIAD
scenarios is briefly described in Section 2.1. A purely depth-based recognition system
however struggles in cases where geometric texture is low: as in for example when uniform
goods are stacked very closely together. In addition, the method evaluated, like most
state of the art in the field, offers only single-shot predictions: i.e., based on a single view
of the scene. To counter these limitations, we developed a system for object detection
and fusion of multiple single view predictions into a consistent semantic model (outlined
in Section 2.2). The system takes into account both appearance and depth information,

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

-

camera scan cnn recognition goods detection clouds registration

Figure 1: An overview of a volumetric obejct recognition system. The pipeline starts by
acquiring a model of the environment by means of a moving RGB-D sensor. The model
is reconstructed uisng the SDFTracker algorithm [6]. Next, a 3D Convolutional Neural
Network classifies regions based on their likelihood of containing target objects. After a
filtering step, object candidate locations are used to seed a local registration procedure
that determines the poses of detected goods.

as well as cues provided by a semantic segmentation algorithm, to produce a semantic
map of medium-scale environments. Finally, in Section 2.3 we deploy an object pose
estimation method that uses the semantic model as a base and integrates pose predictions
from a sequence of scene observations to produce accurate object pose estimation.

2.1 Single-shot object detection

In this section, we briefly outline a volumetric object recognition system developed as an
MSc project in collaboration between Pisa University and Orebro University. An overview
of the system design is shown in Figure 1. The overall reasoning behind the proposed
pipeline is to perform object recognition and detection on complete fused workspace
models, instead of relying on single-view information. Prior work [5] has demonstrated
that classical computer vision (local keypoint detection / description) performs better on
multi-view fused information than on single-view or even noise-filtered single-view data.

Several recent object recognition frameworks have proposed methods for transferring
Convolutional Neural Networks (CNNs) to the domain of 3D data. Notably, the VoxNet [18]
architecture proposes a CNN architecture with three-dimensional convolutional filters
that operate on ordered occupancy grid data, while PointNet [21] extends the proposed
approach to unorganized point cloud data. Due to their applicability to range data, both
architectures have seen wide applicability in the robotics community (e .g., Wang et al.
[28] and Zaganidis et al. [32]). In this section, we adapt and deploy a variant of VoxNet
that operates on truncated signed distance fields (TSDFs), instead of on occupancy maps.
The overall object recognition and pose estimation pipeline proposed proceeds in four
phases:

Scanning phase: In this step the SDFTracker algorithm [6] is used to simultaneously
track the pose of the camera and reconstruct a TSDF model of the workspace. The
obtained model then serves as an input to the next phase.

Recognition phase: A sliding window of fixed size is convolved with the workspace model.
For each window we run an instance of the modified VoxNet classification CNN that
results in a confidence vector. The confidences for each object type and background
class are then stored in a volumetric grid and passed on to the next stage. The
procedure is illustrated in Figure 2: the dark red shaded region indicates the extent
of the TSDF model, while the gray shaded window shows the extent of a single
sliding window. At each subsequent step the window is moved with a stride of half
its size.

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

Figure 2: An illustration from one of the test scenarios for the proposed pipeline. The
current point cloud from the RGB-D sensor is shown, with an overlay that encodes the
extent of the TSDF model (red) and the initial position of one sliding filter (gray), centered
around the location of the red dot in the picture.

Filtering phase: We pass a non-max suppression filter over the output from the previous
stage and identify object candidate locations.

Refinement phase: If the confidence score is above a pre-set threshold, each candidate
location serves as an initial guess of the pose of an object instance. We then use
this initial guess to run a local registration refinement, using point-to-plane ICP
between an object model from a database and the TSDF model. If the ICP fitness
score (i .e., the overlap between the object model and the workspace model) is above
a second threshold, we report the detected object instance and its pose.

The CNN architecture is based directly on VoxNet, with minor modifications. We
borrow the original architecture, but add batch normalisation and dropout regularisation
to improve training performance. We also rescale the TSDF values in the interval [0, 1]. The
network is trained on a set of partial observations of a sub-set of objects from the ILIAD
scenario, with example RGB and TSDF views shown in Figure 3. We train using the Adam
Optimizer and employ early stopping. Initial tests of the system in simplified conditions
showed promising results, with an average accuracy of the CNN object recognition phase
of 81 %.

The full perception system has been integrated at the experimental setup with the
ILIAD manipulator system at Pisa University and undergone application-based testing.
The results from these tests indicate that while the system is capable of detecting well
separated objects with good accuracy, closely stacked scenarios present difficulties, re-
sulting in few and inaccurate detections. This limitation stems from the original system
design that relies on a high amount of geometric features, which are absent in case of
tightly packed uniform goods, and can only be mitigated by the inclusion of additional
sensing modalities. The work presented in the following two sections is an attempt to
move in that direction and provide more reliable detection of objects in cluttered scenes.

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

(a) Big senap box (b) Small senap box (c) Pudding box

Figure 3: An illustration of three objects used in the initial tests of the recognition system,
along with rendered views of their associated TSDF models.

2.2 Semantic 3D map for manipulation
2.2.1 Motivation

In this section, we propose a 3D mapping system to produce highly accurate object-
aware semantic scene reconstruction. Our work benefits from incorporating state of
the art RGB-D SLAM and deep-learning-based instance segmentation techniques [9, 29].
Unlike previous related works [19, 20, 23], which solely use semantic information for data
fusion, we employ rich segmentation information from CNNs to increase the robustness
of camera tracking through a joint cost function wherein all given information is used: the
depth, RGB image, and segmentation information. We also develop a CNN architecture
beyond the original Mask R-CNN [23] to input RGB image and output adaptive weights
for the cost function used in the sensor pose estimation process. In contrast to existing
approaches that update the probabilities for all elements (surfels or voxels) in the 3D map,
we reduce the space complexity by a more efficient strategy based on instance labels. In
addition to the highly accurate semantic scene reconstruction, we correct misclassified
regions using two proposed criteria which rely on location information and pixel-wise
probability to the class. An example of a semantic object map reconstructed by our system
is shown in Figure 4. Details of the work presented in this section is also available in Hoang
etal. [11].

2.2.2 Methodology

Our pipeline is composed of three main components as illustrated in Figure 5. The input
RGB-D data is processed through a semantic instance segmentation stage, followed by a
frame-to-model alignment stage, and finally a model fusion stage. In the following, we
summarise the key elements of our method.

Segmentation: Produce object masks with semantic labels using our CNN architecture.

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

Figure 4: An instance-aware semantic 3D map of an office environment produced by the
proposed semantic mapping system.

The developed architecture also predicts weights for the joint cost function for
camera tracking.

Tracking: Estimate camera pose within the ElasticFusion pipeline using our proposed
joint cost function. We combine the cost functions of geometric, photometric, and
semantic estimates in a weighted sum. The adaptive weights are generated by the
segmentation process above.

Fusion and Segmentation Improvement: Fuse segmentation information into 3D map
using our instance-based semantic fusion. To improve segmentation accuracy,
misclassified regions are corrected by two criteria which reply on a sequence of
CNN predictions.

Segmentation Network In our framework, we employ an end-to-end CNN framework, Mask
R-CNN, for generating a high-quality segmentation mask for each instance. Mask R-
CNN has three outputs for each candidate object, a class label, a bounding-box offset,
and a mask. Its procedure consists of two stages. In the first stage, candidate object
bounding boxes are proposed by a Region Proposal Network (RPN). In the second stage,
classification, bounding-box regression, and mask prediction are performed in parallel on
each small feature map, which is extracted by RoIPool. Note that to speed up inference and
improve accuracy the mask branch is applied to the highest scoring 100 detection boxes
after running the box prediction. The mask branch predicts a binary mask from each
Rol using an FCN architecture [16]. The binary mask is a single m x m output regardless
of class, which is generated by binarizing the floating-number mask or soft mask at a
threshold of 0.5.

To integrate deep-learning based segmentation and classification into our system,
we extend Mask R-CNN to identify object outlines at the pixel level while simultaneously
generating an adaptive weight used in camera pose tracking stage as shown in Figure 6.
A fourth banch is added to our CNN framwork, which shares computation of feature

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

(Input [Segmentation)

Data Network Sensor Pose Estimation

F Minimization of
-| F - photometric error
' - point-plane error

- segmentation difference

1 1

Fusion and Segmentation
Improvement

\ Depth /

Figure 5: Flow of the proposed framework for object-level semantic mapping. The seg-
mentation network first yields masks and probabilities specified for each category. Then
the output of the segmentation stage along with the depth map and RGB frame are used
for camera pose estimation. Finally, input data and semantic information are fused into
the 3D map based on a transformation matrix estimated from the previous stage.

, ™
Mask R-CNN Region
Proposal
Rol
Align
' Feature ma
. RGB CNN p
Image

Figure 6: CNN architecture. Extending Mask R-CNN to predict masks and class probabili-
ties while simultaneously yielding an adaptive weight for camera tracking.

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

maps with Mask R-CNN branches and outputs the weight by a fully connected layer. In
general, the network consists of a backbone CNN, a region proposal network (RPN), a
ROI classifier, a bounding Box Regressor, a mask branch, and a camera tracking weight
estimator. The CNN backbone is a standard convolutional neural network that is used for
extracting a feature map. This convolutional feature map not only becomes the input for
the other stages of Mask R-CNN, but also shares computation with our extended branch
for adaptive weight estimation. Therefore, the developed network receives an RGB image,
and returns a set of per pixel class probabilities and weights used in the cost function
in the subsequent alignment stage. The weight estimation is treated as a classification
problem where the target is a binary decision whether or not the given RGB image should
be used in the registration process. In other words, we aim to train our weight predicting
model as a binary classifier, where one class signifies that the RGB image contains useful
information for the subsequent registration process, while the other class indicates the
converse. The probability predicted from classification model is considered as an adaptive
weight for our joint cost function for camera pose estimation.

Camera Tracking To perform camera tracking, our object-oriented mapping system main-
tains a fused surfel-based model of the environment (similar to the model used by Elas-
ticFusion [29]). Here we borrow and extend the notation proposed in the original Elas-
ticFusion paper. The model is represented by a cloud of surfels ./ ¢, where each surfel
consists of of a position p € R®, normal n € R3, colour ¢ € N3, weight w € R, radius r € R,
initialisation timestamp ¢, and last updated timestamp ¢. In addition, each surfel also
stores an object instance label [, € N. Each object instance o is associated with a discrete
probability distribution over potential class labels, P(l, = [;) over the set of class labels,
lieX.

The image space domain is defined as 2 ¢ N? , where an RGB-D frame is composed of a
color map and a depth map D of depth pixels d : 2 — R. We define the 3D back projection
of a point u € Q given a depth map D as p(u,D) = K~'@d(u), where K is the camera
intrinsics matrix and # the homogeneous form of u. The perspective projection of a 3D
point p =[x, y,z]" is defined as u = 7(K p), where 7t(p) = (x/z, y/z). In the following, we
describe our proposed approach for combined ICP pose estimation.

Our approach aims to estimate a sensor pose that minimises the cost over a combina-
tion of the global point-to-plane energy, photometric error and semantic difference. We
wish to minimise a joint optimisation objective:

Ecombined = Eicp tw rgb Ergb + Wsem Esem ey

where Eip, Wrgp Erghy aNd Wgem Esem are the geometric, photometric and semantic error
terms respectively. The photometric error function is weighted by a factor predicted from
our the CNN. The weight for semantic error is defined as wge,, = N,,/N,,, where N,, is the
number of non-background pixels and N, is the number of pixels per frame.

The details of first two terms in Equation (1) can be found in Whelan et al. [29)]. Eicp
is the point-to-plane error metric in which the object of minimisation is the sum of the
squared distance between a point from a live surface measurement and the tangent
plane at its correspondence point from the model prediction. The cost function performs
well in environments with high geometric texture, however tracking failures can occur
in case there are not enough features to fully constrain all 6 DOFs of the camera pose.
For instance, if the measured points are located on planar surfaces then the point-to-
plane error metric will fail to register successive views. This is because there will be no
mechanism to guarantee that a global minimum can be reached by shifting source points
to target points in the direction perpendicular to the normals. Steinbriicker et al. [24] used

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

the color information to overcome this. wg, Eygp, is the cost over the photometric error
between the current color image and the predicted a model color from the last frame.

A key distinction between our approach and ElasticFusion is that instead of only
estimating the camera pose via geometric and photometric data, we additionally employ
semantic information to perform frame-to-frame tracking. The cost we wish to minimise
depends on the difference in predicted likelihood values between the label probability
maps. To simplify minimising the cost function, we only take the probability of the most
likely class on each pixelwise probability vector Q(u, P) = max P(I;). We denote values of
Q(u, P) over a given image as semantic probability map. So based on this simplification,
the semantic probability error can be formulated as:

Eyem= Y (Q(u, P,)— Q(E, 1), P,_y)) (2)

uef)

In words, P, and P,_; are per-pixel independent probability distributions over the
class labels from the frame at time step ¢ and ¢ — 1 respectively. The vector ¥(¢, u) is the
warped pixel and defined according to the incremental transformation &:

W(&, u)=n(K exp(é)Tp(u, D,)) 3)

Finally, we find the transformation by minimizing the objective (1) through Gauss-
Newton non-linear least-squares with a three level coarse-to-fine pyramid scheme.

Fusion and Segmentation Improvement Given a frame RGB-D at time step ¢, each mask M
from Mask R-CNN must be connected to an instance in the 3D map. Otherwise, it will
be assigned as a new instance. To find the corresponding instance, we use the tracked
camera pose and existing instances in the map built at time step ¢ —1 to predict binary
masks via splatted rendering. The percent overlap between the mask M and a predicted
mask M for object instance o is computed as U(M, M) = (M N M)/M. Then the mask M is
mapped to object instance o which has the predicted mask M with largest overlap, where
U(M,M)>0.3.

Unlike existing work [19, 20, 23] where each element in a 3D map (e .g., surfel or TSDF
maps) stores a probability distribution over all classes, we propose to assign an object
instance label o to each surfel and then this label is associated with a discrete probability
distribution over potential class labels, P(L, = I;) over the set of class labels, /; € L. In
consequence, we need only one probability vector for all surfels belonging to the same
object entity. This makes a big difference when the number of surfels is much larger
than the number of classes. To update the class probability distribution, means of a
recursive Bayesian update is used in [10]. However, this scheme often results in an overly
confident class probability distribution that contains scores unsuitable for ranking in
object detection [19]. In order to make the distribution become more even, we update
the class probability by simple averaging:

1 t
PUIL,..0= 2> (pl1) @
j=1

Moreover, existing work only store the probability distribution over the class labels,
and miss the background probability from the binary mask branch. Conversely, we
enrich segmentation information on each surfel by adding the probability to account
for background/object predictions. To that end, each surfel in our 3D map has a non-
background probability attribute p,.

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

As presented in He et al. [9] the binary mask branch first generates an m x m floating-
number mask which is then resized to the Rol size, and binarised at a threshold of 0.5.
Therefore, we are able to extract a per-pixel non-background probability map with the
same image size 480 x 640. Given the RGB-D frame at time step ¢, a non-background
probability p,(I,) is assigned to each pixel. Camera tracking and the 3D back projection
enables us to update all the surfels with the corresponding probability as follows:

1 t
Po = ;;p,-(h) 5)

Despite the power and flexibility of Mask R-CNN, it usually misclassified object bound-
ary regions as background. In other words, the detailed structures of an object are often
lost or smoothed. Thus, there is still much room for improvement in segmentation. We
observe that many of the pixels in the misclassified regions have a non-background
probability just slightly smaller than 0.5, while the soft probabilities mask for real back-
ground pixel is often far below the threshold. Based on this observation, we expect to
achieve a more accurate object-aware semantic scene reconstruction by considering
non-background probability of surfels within an n frames sequence. With this goal, each
possible surfel s (0.4 < p, < 0.5) is associated with a confidence (s). If a surfel is identified
for the first time, its associated confidence is initialized to zero. Then, when a new frame
arrives, we increment the confidence ¥(s) < ¥(s)+1 only if the corresponding pixel of that
surfel satisfies two criteria: (i) its non-background probability is greater than 0.4; (ii) there
is at least one object pixel inside its 6-neighborhood. After n frames, if the confidence
() exceeds the threshold o e, We assign surfel s to the closest instance. Otherwise,
¥(s) is reset to zero. Here, we found 7 =10 and 0 ypjec = 10 provide good performance.

2.2.3 Evaluation

We have evaluated our system by performing experiments on the TUM [25] and YCB
video [31] datasets. These experiments are aimed at evaluating both trajectory estimation
and surface reconstruction accuracy. A comparison against most related works is also
performed here.

For all tests, we run our system on a standard desktop PC running 64-bit Ubuntu 16.04
Linux with an Intel Core i7-4770K 3.5 GHz and a nVidia GeForce GTX 1080 Ti 6 GB GPU.
Our pipeline is implemented in Python with Tensorflow 1.6 for segmentation and C++
with CUDA for mapping. The input is standard 640 x 480 resolution RGB-D video.

To train our CNNs, We start with a weights file that has been trained on the ImageNet
dataset [7] with a ResNet-101 [8] backbone. We finetune layers of Mask R-CNN on the
COCO dataset with 10 common object classes in indoor environments (backpack, chair,
keyboard, laptop, monitor, computer mouse, cell phone, sink, refrigerator, microwave)
and on a portion of the YCB video data set not used in the evaluations. To train the weight
estimator branch, we split SceneNN dataset [13] into two groups based on camera pose
ground truth and trajectory estimation of ElasticFusion using only photometric error.

Camera Pose Tracking We compare the trajectory estimation performance of our system to
two most related works MaskFusion and Fusion++ on the widely used RGB-D benchmark
of [25]. This benchmark is one of the most popular datasets for the evaluation of RGB-D
SLAM systems. The dataset covers a large variety of scenes and camera motions and
provides sequences for debugging with slow motions as well as longer trajectories with
and without loop closures. Each sequence contains the color and depth images, as well
as the ground-truth trajectory from the motion capture system. To evaluate the error in

10

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

Table 1: Comparison of ATE RMSE on RGB-D SLAM benchmark. All units given are in
metres.

PCL- | Kintinuous | Elastic | Mask | Fusion++ | Proposed
KinFu Fusion | Fusion | Fusion++

fr1_desk 0.073 0.037 0.020 0.034 0.049 0.022
fr1_room 0.187 0.075 0.068 0.153 0.235 0.065
fr1_desk2 0.102 0.071 0.048 0.093 0.153 0.056
fr1_360 - 0.116 0.108 0.157 - 0.126
fr1_teddy - 0.132 0.083 0.129 - 0.095
fr2_desk 0.103 0.034 0.071 0.108 0.114 0.083
fr2_xyz 0.077 0.029 0.011 0.041 0.020 0.025
fr2_rpy - 0.018 0.015 0.076 - 0.012
fr3_long_office 0.086 0.030 0.017 0.102 0.108 0.085
fr3_large_cabinet - 0.144 0.099 0.133 - 0.052

Table 2: Comparison of surface reconstruction accuracy results on the YCB objects (mm).

ElasticFusion | MaskFusion | Our System
YCB video 0007 9.6 7.3 6.5
YCB video 0036 8.1 6.4 5.7
YCB video 0072 10.1 9.4 8.7
Our sequence 01 7.1 6.7 3.7
Our sequence 02 7.3 6.6 4.1
Our sequence 03 7.5 6.2 3.4

the estimated trajectory by comparing it with the ground-truth, we adopt the absolute
trajectory error (ATE) root-mean-square error metric (RMSE) as proposed in [25].

Table 1 shows the results. From these we can see the performance of our system is
comparable to state of the art classical approaches, and outperforms both MaskFusion and
Fusion++. Results for Fusion++ are taken from the respective publication as presented by
the authors, and values for MaskFusion are calculated from MaskFusion implementation.
While the original ElasticFusion algorithm still obtains the best overall ATE performance,
the results of our approach are comparable. Despite this relative similarity in the average
trajectories, our approach performs better in reconstructing the relevant object-scale
detail, as discussed in the next sub-section.

Reconstruction It should be noted that a good performance on a camera trajectory bench-
mark does not always imply a high quality surface reconstruction. We have evaluated
our system by performing experiments on the Yale-CMU-Berkeley (YCB) Object and
Model set [4]. We finetuned our network on the training set of the YCB-Video dataset.
It contains 92 real video sequences for 21 object instances. 89 videos along with 80,000
synthetic images are used for training. We evaluate on the remaining test videos from
the original data set, as well as on three video sequences we acquired independently in
scenes featuring a larger number of objects and more complex camera trajectories.

In order to evaluate surface reconstruction quality, we compare the object models
obtained through our approach to the ground truth YCB object models. Note that the

11

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

15mm

omm

(d) 02-EF

15mm

(g) 0036-MF (h) 01-MF (i) 02-MF (j) 03-MF

15mm

(k) 0007-Proposed (1) 0036-Proposed (m) 01-Proposed (n) 02-Proposed (o) 03-Proposed

Figure 7: Heat maps showing reconstruction error of ElasticFusion (EF), MaskFusion
(MF), and our proposed system on the remaining test videos from The YCB-video dataset
(0007, 0036, 0072) and three video sequences (01, 02, 03) we acquired independently in
scenes featuring a larger number of objects and more complex camera trajectories.

ground truth object models are only used here to compute evaluation metrics, unlike
in prior works like SLAM++ which use them within the tracking framework. For every
object present in the scene, we first register the reconstructed model M to the ground
truth model G. Next, we project every vertex from M onto G, and compute the distance
between the original vertex and its projection. Finally, we calculate and report the mean
distance u, over all model points and all objects.

Table 2 and Figure 7 show the mean reconstruction error over the six sequences
produced by our system, MaskFusion and ElasticFusion. Our method consistently results
in the lowest reconstruction errors over all datasets. From this comparison it is evident
that our approach benefits greatly from the use of the proposed joint cost function with
adaptive weights. Interestingly we observe an increase in accuracy is achieved when
more segmented objects appeared in the reconstructed environment, suggesting that
our framework makes efficient use of the available semantic information to improve
surface reconstruction quality. In other words, when the number of objects of interest
increases the semantic probability map becomes more textured, which leads to a better
reconstruction performance. We also note that in our aproach all surfels on objects
of interest are always active, while ElasticFusion segments these surfels into inactive if
they have not been observed for a period of time J;. This means that object surfels are
updated all the time. As a results, our framework is able to produce a highly accurate
object-oriented semantic map.

Segmentation Accuracy Evaluation In this section, we show on the YCB video dataset that
our system leads to an improvement in the 2D instance labelling over the baseline single
frame predictions generated by Mask-RCNN. Our 2D masks are obtained by reprojecting

12

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

I Single frame
I Projected from our 3D map

81.5

loU (%)

Video 0007 Video 0036 Video 0072

Figure 8: Results of segmentation accuracy evaluation on YCB videos.

500 —— Fusing all surfel.s
—— Mask-based fusion
)
3400
S
)
o 300
(o)}
3
=
2200
o
€
s
100
-
0

1 2 3 4 5
Number of surfels (million)

Figure 9: Memory usage for storing class probabilities.

the reconstructed 3D model. We use the Intersection over Union (IoU) metric for this
evaluation, which measures the number of pixels common between the grounth-truth
and prediction masks divided by the total number of pixels present across both masks.
The results of this evaluation are shown in Figure 8. We observe that the segmenation per-
formance improved, on average, from 63.5% for a single frame to 83.4% when projecting
the predictions from the 3D map.

Run-time Performance and Memory Usage Our current system does not run in real time be-
cause of heavy computation in instance segmentation. Our CNN requires 350 ms, while
camera pose estimation, fusion and segmentation require a further 70 ms on a typical
sample of RGB-D SLAM benchmark [25].

We compared our mask-based fusion method with other approaches [19, 20, 23]
which assign class probabilities to each element of the 3D map rather than to each mask.

13

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

The memory usage of the proposed method is significantly reduced compared to the
conventional approach over all samples as shown in Figure 9. The average memory usage
of the proposed method is 5.7 % of those conventional approaches.

2.3 Pose Estimation
2.3.1 Motivation

In this section we describe Object-RPE (Reconstruction and Pose Estimation): a system for
online object pose estimation that builds on top of the high-quality instance-aware seman-
tic 3D map introduced in Section 2.2 and extends it to produce a complete instance-aware
semantic reconstruction and 6D object pose estimation framework. The work benefits
from integrating a state-of-the-art deep learning-based pose estimation technique [28]
into our 3D scene reconstruction system. Intuitively, by combining pose predictions
from multiple camera views, the accuracy of the estimated 3D object pose can be im-
proved. Based on this, our framework deploys simultaneously a 3D mapping algorithm
to reconstruct a semantic model of the environment, and an incremental 6D object pose
recovering algorithm that carries out predictions using the reconstructed model. We
demonstrate that we can exploit multiple viewpoints around the same object to achieve
robust and stable 6D pose estimation in the presence of heavy clutter and occlusion, as
illustrated by the example shown in Figure 10. The work presented in this section will be
presented at the ECMR conference [12].

2.3.2 Methodology

The proposed pipeline is illustrated in Figure 11. While Section 2.2 presented our approach
for segmentation, registration, and fusion [11], this section presents a 6D object pose
estimator that exploits multiple views of the same instance and our high-quality semantic
map to accurately predict the pose of an object under heavy occlusion.

Multi-view Object Pose Estimation Given an RGB-D frame sequence, the task of 6D object
pose estimation is to estimate the rigid transformation from the object coordinate system
0 to a global coordinate system ¢. We assume that the 3D model of the object is available
and the object coordinate system is defined in the 3D space of the model. The rigid trans-
formation consists of a 3D rotation R(w, ¢,) and translation T(X, Y, Z). The translation
T is the coordinate of the origin of 0 in the global coordinate frame ¥, and R specifies
the rotation angles around the X, Y, and Z axis of the object coordinate system &

Our approach outputs the object poses with respect to the global coordinate system
by combining predictions from different viewpoints. For each frame at time ¢, we apply
DenseFusion to masks back-projected from the current 3D map. The estimated object
poses are then transferred to the global coordinate system ¢ and serve as measurement
inputs for an extended Kalman filter (EKF) based pose update stage.

Single-view based prediction: In order to estimate the pose of each object in the scene
from single views, we apply DenseFusion to masks back-projected from the current 3D
map. The network architecture and hyperparameters are similar as introduced in the
original paper [28]. The image embedding network consists of a ResNet-18 encoder
followed by 4 up-sampling layers as a decoder. The PointNet architecture is a multi-layer
perceptron (MLP) followed by an average-pooling reduction function. The iterative pose
refinement module consists of 4 fully connected layers that directly output the pose
residual from the global dense feature. For each object instance mask, a 3D point cloud is
computed from the predicted model depth pixels and an RGB image region is cropped
by the bounding box of the mask from the predicted model color image. First, the image

14

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

Figure 10: Example showing a colored 3D map with object models re-projected in the
scene, using the object pose provided by the proposed system. Note that these poses have
not been post-processed with ICP.

(Input Data \ Segmentation Network

Sensor Pose Estimatiun\

Minimization of
- photometric error

.
. ‘ }" - point-plane error

- segmentation difference

Object Pose Estimation Fusion

Figure 11: Overview of the proposed system for pose estimation.

15

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

6D Object
Pose

= —
Pixel-wise

Pose
PointNet Dense Fusion

Predictor

Object Pose t
Estimation Thread

Reconstruction
Thread i Classes ! AL

(Softmax)

™ Mask R-CNN Boundary Boxé

N Branches)

._ inary askké Fusi

RGB Feature . Soft Mask ,f usion

Image % Maps N =
o

Figure 12: CNN architectue. Extending Mask R-CNN to predict masks and classes probabil-
ities while simultaneously yielding an adaptive weight for camera tracking. DenseFusion
uses the predicted model depth map and predicted model masks to output object pose
predictions.

crop is fed into a fully convolutional network and then each pixel is mapped to a color
feature embedding. For the point cloud, a PointNet-like architecture is utilized to extract
geometric features. Having generated features, the next step combines both embeddings
and outputs the estimation of the 6D pose of the object using a pixel-wise fusion network.
Finally, the pose estimation results are improved by a neural network-based iterative
refinement module.

A key distinction between our approach and DenseFusion is that instead of directly
operating on masks from the segmentation network, we use predicted 2D masks that are
obtained by reprojecting the current scene model. As illustrated in Figure 13 our semantic
mapping system leads to an improvement in the 2D instance labeling over the baseline
single frame predictions generated by Mask R-CNN. As a result, we expect that our object
pose estimation method benefits from the use of the more accurate segmentation results.

Object pose update: For each frame at time ¢, the estimates obtained by DenseFusion
and camera motions from the registration stage are used to compute the pose of each
object instance with respect to the global coordinate system %. The pose is then used as
ameasurement update in a Kalman filter to estimate an optimal 6D pose of the object.
Since we assume that the measured scene is static over the reconstruction period, the
object’s motion model is constant. The state vector of the EKF combines the estimates of
translation and rotation:

x=[X Y Z ¢ ¢ y]' 6)

Let x; be the state at time ¢, f(: denote the predicted state estimate and pP- denote
predicted error covariance at time ¢ given the knowledge of the process and measurement
at the end of step r —1, and let X, be the updated state estimate at time ¢ given the pose
estimated by DenseFusion z,. The EKF consists of two stages prediction and measurement
update (correction) as follows.

16

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

N

(b) Ground truth

W R

(c) Mask R-CNN (d) Ob]ect RPE

I-. l

(e) frame 1916 (f) Ground truth (g) Mask R-CNN (h) Object-RPE

Figure 13: Examples of masks generated by Mask R-CNN and produced by reprojecting
the current scene model.

Prediction:
)A(; S)A(t_l (7)
P =P, ®)
Measurement update:
X, =X, ® K,(z, 0%]) €)
K, =P (R, +P)" (10)
Py = (Isxe — K)P, (1n)

Here, © and & are the pose composition operators. K, is the Kalman gain update. The
6 x 6 matrix R, is measurement noise covariance, computed as:

Ry = plsxe (12)

where u is the average distance of all segmented object points from the corresponding
3D model points transformed according to the estimated pose.

2.3.3 Evaluation

We evaluated our system on the YCB-Video [31] dataset and on a newly collected ware-
house object dataset, using products from Orkla Foods. The YCB-Video dataset was split
into 80 videos for training and the remaining 12 videos for testing. For the warehouse
object dataset, the system was trained on 15 videos and tested on the other 5 videos. Our
experiments are aimed at evaluating both surface reconstruction and 6D object pose esti-
mation accuracy. A comparison against the most closely related works is also performed
here.

For all tests, we ran our system on a standard desktop PC running 64-bit Ubuntu 16.04
Linux with an Intel Core i7-4770K 3.5 GHz and a nVidia GeForce GTX 1080 Ti 6 GB GPU.
Our pipeline is implemented in C++ with CUDA for RGB-D image registration. The Mask
R-CNN and DenseFusion codes are based on the publicly available implementations by
Matterport! and Wang?. In all of the presented experimental setups, results are generated

Thttps://github.com/matterport/Mask_RCNN
2https://github.com/j96w/DenseFusion

17

https://github.com/matterport/Mask_RCNN
https://github.com/j96w/DenseFusion

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

(a) Waffle (b) Jacky (d) Sotstark

IAILIVYWOL
FNAIVHOL

(e) Onos

(i) Small Jacky (j) Pallet (k) Half Pallet

Figure 14: The set of 11 objects in the warehouse object dataset.

from RGB-D video with a resolution of 640x480 pixels. The DenseFusion networks were
trained for 200 epochs with a batchsize of 8. Adam [15] was used as the optimizer with
learning rate set to 0.0001.

The Warehouse Object Dataset Unlike scenes recorded in the YCB-Video dataset or other
publicly available datasets, warehouse environments pose more complex problems, in-
cluding low illumination inside shelves, low-texture and symmetric objects, clutter, and
occlusions. To advance warehouse application of robotics as well as to thoroughly evaluate
our method, we collected an RGB-D video dataset of 11 objects as shown Figure 14, which
is focused on the challenges in detecting warehouse object poses using an RGB-D sensor.
The dataset consists of over 20,000 RGB-D images extracted from 20 videos captured by
an ASUS Xtion PRO Live sensor, the 6D poses of the objects and instance segmentation
masks generated using the LabelFusion framework [17], as well as camera trajectories
from a motion capture system developed by Qualisys®. Calibration is required for both the
RGB-D sensor and motion capture system shown in Figure 15. We calibrated the motion
capture system using the Qualisys Track Manager (QTM) software. For RGB-D camera
calibration, the intrinsic camera parameters were estimated using classical black-white
chessboard and the OpenCV library. In order to track the camera pose through the motion
capture system, we attached four spherical markers on the sensor. In addition, another

Shttps://www.qualisys.com

18

https://www.qualisys.com

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

(©)

Figure 15: We collected a dataset for the evaluation of reconstruction and pose estima-
tion systems in a typical warehouse using (a) a hand-held ASUS Xtion PRO LIVE sensor.
Calibration parameters were found by using (b) a chessboard and (c) reflective markers
detected by the motion capture system.

Figure 16: Examples of 3D object-aware semantic maps from the YCB-Video dataset
(above) and the warehouse object dataset (below).

four markers were also placed on the outer corners of a calibration checkerboard. By
detecting these markers, we were able to estimate the transformation between the pose
from the motion capture system and the optical frame of the RGB-D camera.

Reconstruction Results In order to evaluate surface reconstruction quality, we compare
the reconstructed model of each object to its ground truth 3D model. For every object
present in the scene, we first register the reconstructed model M to the ground truth
model G by a user interface that utilizes human input to assist traditional registration
techniques [17]. Next, we project every vertex from M onto G and compute the distance

19

Deliverable D6.4

H2020-ICT-2016-2017: 732737 ILIAD

6'S6 176 L'€6 9'¢6 0'€6 € 19 NVAN
9'c6 0’16 1'16 7'c6 5’26 6°C 29 Youq Weoy 190
6'8L 9¢L Szl 1L 8'69 9% 29 durep~oS1e[BIIX0 ZS0
ce8 8L TLL €9, 6L 6'¢ 9¥ durepoe31e[160
686 9'26 6'L6 186 $'/6 v 9 1 IRW o8IB[010
6°L6 2'96 2'96 2'96 2'S6 'S GG SI0SSIDS™ 0
L'S6 2’16 9'06 €06 L'68 L9 VL Y20[q PoOM~9€0
1'86 8'96 8'96 9'96 0'96 'S 8'G [p 1emod6gQ
1'66 G'L6 €6 8'96 T'L6 ¥'S A 8nwczo
L'€6 8'06 €06 568 2’88 VL 88 MOqH20
926 €'96 6'S6 5’96 8'66 a4 e 19SUB[O YOI 120
€66 2'86 6'L6 L6 1'L6 6% 8'G aseq 10yond 610
6°L6 v'26 8'96 8'96 9'96) 29 eURURQ 10
L'V6 6'26 526 226 €16 €9 VL ueo yeowr penod 010
066 7'86 2’86 0'86 186 6V GG X0q unePRs 600
¥'86 9'26 L6 €6 5’96 e 9'G xoq Surppnd 800
686 1'86 ¥'L6 T'L6 9'96 ¥'S 8'9 uedYSy eUN) 200
€86 626 6'L6 L'L6 L6) TS o[10qpIEISIUI 900
896 9'66 256 L'v6 976 LS 79 ueo~dnos~0jewo) o0
1'86 7.6 0.6 VL6 S'L6 €'C L X0q 1e3ns"$00
€26 6'96 2'96 2'96 5’66 8v A X0(19YIBI €00
926 026 5’96 8'96 7'96 Sy LS UBD JOUD I9ISBW 200
dd¥-199[q0 | Dd-Ad-Wd-dd | dd-Wd-4d | Wd-4d | (4Q) uoisngesuaq | Ad¥-199[qQ | uorsnjonserg

uonewnsy asod 09

(W) uonodNNsu0ddy

.wuoo.mﬂo dDOA 94l uo sjjnsal Aoemooe uoneuwnsa asod pue uononIiSuodal adelins Jo QOwEMQEOU ‘€ 9lqel

20

Deliverable D6.4

H2020-ICT-2016-2017: 732737 ILIAD

L'69 199 €69 779 09 0L 08 NVIIN
c'g9 7'€9 1'€9 I'%9 685 ol cel 19[ed Ry 110
¥'29 €99 979) €29 c'o1 LT 191rRd 010
I'sL €29 €99 9'69 1'€9 29 VL amdjewoy 600
0L 9'99 659 729 9'8g € 8'G xoq sunmed g00
L'29 €9 2°€9 %9 L'6S (a4 € X0q MINI IS 200
yoL 199 LS9 7'€9 109 6'9 '8 UBOSOUO 900
S'69 299 €69 729 9'85 6'C €L UBO IBISIOS GO0
€89 829 §L9 £'99 €9 L 6L TR {SUBYS H00
A2 €89 599 59 765 8'c 9'9 xoq~Ayoe["g00
8'69 299 159 €99 €19 6'9 VL x0q Aoel [rews—z00
L'89 7'G9 I'%9 2'€9 09 29 €8 X0q yeAsey 100
dd4-199[q0 | 0d-dd-Wd-4d | dd-IWd-4d | Wd-dd | (I@) uoisngasuag | AdY-199[qQ | uorsngonserg

uonewnsy asod (09

(W) uonoNIsSuoddy

.wuuw.mn—o 9SnoyarleM 9] uo S}nsal Aoeinooe uoneuwnsa asod Ppue uo1dNInsu0dal adelmns Jo QOwENQEOU ‘¥ 9[qeLl

21

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

between the original vertex and its projection. Finally, we calculate and report the mean
distance u, over all model points and all objects.

The results of this evaluation on the reconstruction datasets are summarised in Table 3
and Table 4. Qualitative results are shown in Figure 16. We can see that our reconstruction
system significantly outperforms the baseline. While ElasticFusion results in the lowest
reconstruction errors on two YCB objects (006_mustard_bottle and 011_banana), our
approach achieves the best performance on the remaining objects. The results show that
our reconstruction method has a clear advantage of using the proposed registration cost
function. In addition, we are able to keep all surfels on object instances always active,
while ElasticFusion has to segment these surfels into inactive areas if they have not been
observed for a period of time J,. This means that the object surfels are updated all the time.
As aresult, the developed system is able to produce a highly accurate object-oriented
semantic map.

Pose Estimation Results We use the average closest point distance (ADD-S) metric [28, 31]
for evaluation. We report the area under the ADD-S curve (AUC) following PoseCNN [31]
and DenseFusion [28]. The maximum threshold is set to 10 cm. The object pose predicted
from our system at time ¢ is a rigid transformation from the object coordinate system &
to the global coordinate system ¢. To compare with the performance of DenseFusion,
we transform the object pose to the camera coordinate system using the transformation
matrix estimated from the camera tracking stage. Tables 3 and 4 present a detailed eval-
uation for all the 21 objects in the YCB-Video dataset and 11 objects in the warehouse
dataset. Object-RPE with the full use of projected mask, depth and color images from
the semantic 3D map achieves superior performance compared to the baseline single
frame predictions. We observe that in all cases combining information from multiple
views improved the accuracy of the pose estimation over the original DensFusion. We
see an improvement of 2.3 % over the baseline single frame method with Object-RPE,
from 93.6 % to 95.9 % for the YCB-Video dataset. We also observe a marked improve-
ment, from 60.5 % for a single frame to 69.7 % with Object-RPE on the warehouse object
dataset. Furthermore, we ran a number of ablations to analyse Object-RPE including (i)
DenseFusion using projected masks (DF-PM) (ii) DenseFusion using projected masks
and projected depth (DF-PM-PD) (iii) DenseFusion using projected masks, projected
depth, and projected RGB image (DF-PM-PD-PC). DF-PM performed better than Dense-
Fusion on both datasets (+0.6 % and +3.9 %). The performance benefit of DF-PM-PD was
less clear as it resulted in a very small improvement of +0.1 % and +0.9 % over DF-PM.
For DF-PM-PD-PC, performance improved additionally with +0.5 % on the YCB-Video
dataset and +1.7 % on the warehouse object dataset. The remaining improvement is due
to the fusion of estimates in the EKE The run-time performance of our system is currently
slower than real time because of heavy computations in the instance segmentation, with
an average computational cost of 500 ms per frame.

3 Plastic detection

One complication that needs to be addressed for deploying robots for object picking in
warehouses is that pallets that enter the warehouse are often wrapped in plastic film, to
prevent objects from falling out when the pallet is moved (as seen in Figure 17. The robot
must be able to cut the plastic so that objects can be removed (which is addressed in T6.3),
and, before it can do that, it must also determine whether or not a pallet is wrapped.

In T6.4, we have developed a method for classifying pallets as “wrapped” or “non-
wrapped”, based on estimation of a parametric surface reflectance function coupled
with a support-vector machine (SVM) classifier. This was in part developed as an MSc

22

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

Figure 17: (Left) Full pallet with plastic wrapping and (right) without wrapping, ready for
object picking.

thesis project at Orebro University by Bastien Veyssiere from Université Toulouse III Paul
Sabatier [27]. Also the BSc theses of Frans Anton [2] and Olle Back [3] at Orebro University
contributed to this work. Figures 18-20 are reprinted from Veyssiere [27].

Our method uses point clouds with intensity data from a Kinect One RGB-D sensor
(or, optionally, a 3D lidar). The main steps of the method are (i) point cloud segmentation
to isolate the pallet and the goods on it from the background, (ii) estimation of the surface
reflectance function from the backscattered intensity at each point on the object, and (iii)
an SVM classifier that uses the parameters of the reflectance function to determine if the
pallet is wrapped or not.

In related work, Tatoglu and Pochiraju [26] used the intensity from a lidar to esti-
mate diffuse and specular reflectance properties, and demonstrated their approach for
segmenting an outdoor scene with a statue. Classification accuracy was merely 70 %,
which indicates the difficulty of classifying materials using range sensors common in the
robotics community. Kerl et al. [14] presented an approach to recover the diffuse albedo
of surfaces in a scene using a Kinect One camera. Exploiting the fact that this sensor
provides both an IR image, with illumination from a projector on-board the sensor, a
corresponding depth image, and a colour image using ambient lighting, they transfer
an illumination-independent albedo estimate computed from the IR and depth images
to the colour domain. In contrast to our work, only the diffuse albedo component is
reconstructed, and not the full reflectance properties. Wurm et al. [30] trained an SVM
classifier using the returned range and intensity values from a lidar scanner in order to
segment outdoor point clouds into vegetation vs asphalt. In contrast to the work proposed
here, their method can only provide a binary classification of pre-trained classes of mate-
rials, and does not aim to reproduce the full BRDF (bidirectional reflectance distribution
function).

The initial segmentation can be implemented in a fairly simple way, given that we
are only interested in finding pallets that are fully packed with products. Knowing the
standardised size of pallets, and using the assumptions that pallets are placed at known
pick slots and that ones that potentially are wrapped also have objects stacked to at
least a certain minimum height, segmenting the pallets (and their products) that are
under consideration for the method can be done with a simple Euclidean region-growing
segmentation.

After the segmentation step, we have for each pallet a point cloud with intensity values
representing the amount of light from the Kinect’s projector that is backscattered into
its camera. The intensity depends on the reflectance properties of the material and the
incident angle of the light, but also on the distance between the sensor and the surface.

23

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

Figure 18: 3D point clouds from a Kinect One of a box at different distances. Colours show
backscattered intensity. Left: default intensity values (strongly dependent on distance to
surface). Right: re-scaled intensity values (constant at all distances).

The backscattered intensity that is measured for each pixel can be modelled with the
so-called rendering equation

L™(p, wo):f L(P,—w;) f;(P, w;, w,)(w; - np)dw;, (13)
;€S2 (P)

which describes L™(P, w,) the amount of light reflected from point P in direction w, as a
function of: L(P,—w;), the light reaching P from direction w;; f(P, w;, ®,), the reflectance
function at P for the two directions w; and w,; and (w; - np), the incidence angle.

Since the light L measured at the sensor is attenuated proportional to distance squared,
this function is strongly dependent on distance to the surface. As the classifier needs to
be independent of the distance, we need to re-scale the intensity values. For this purpose
we adopt the scaling function of Rodriguez-Gonzalvez et al. [22]. Figure 18 demonstrates
the result of of this re-scaling step.

Given a point cloud of a single pallet, with range-compensated intensity values, we
can use the measured intensity L™ and incident angle ;- n, to estimate the unknown
reflectance function f;, which, in turn, indicates the material of the surface. The function
f: belongs to a class called bidirectional reflectance distribution functions (BRDFs). Given
an incoming light direction ; and an outgoing direction w,, a BRDF returns the ratio of
light that is scattered into direction o,,.

A Kinect One point cloud of a full pallet contains enough readings to make it possible
to estimate the BRDF from a single image. In this case, since we use the light emitted by
the sensor itself, we have w; = w,, for all points. After computing the normal n and the
cosine of the angle of incidence (w; - n) for all points on the pallet, we fit a normalised
Blinn-Phong BRDF [1] to the measured angles and intensities. Specifically, using the
normalised Blinn-Phong model

k, 8+f
for=— + = kyn-h)/ (14)

we estimate the parameters k; (amount of diffuse reflection), k, (amount of glossy reflec-
tion) and f (surface smoothness) using COBYLA optimisation.

For this estimation, we assume that the visible surface of the pallet is homogeneous
(made of the same material). However, we have found that also for mixed pallets (see
Figure 19a) this procedure results in a BRDF estimate that makes it possible to determine

24

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

(b)

(0) (d)
Figure 19: Test objects used for developing the plastic detector. Above: pallets with mixed
products. Below: homogeneous cardboard sheet without and with plastic film.

if the pallet is wrapped or not, as indicated in Figure 20. We also qualitatively verified the
reflectance data from the Kinect sensor by point measurements from a LightTec Mini-Diff
instrument for reflectance characterisation (Figure 20e). Comparing Figures 20c and 20d
to Figure 20e, we can see that the shape of the reflectance plot is similar for the Kinect
data and the Mini-Diff reference data.

Having estimated the parameters of the BRDF for the pallet, we have trained an SVM
classifier to determine if the pallet is wrapped or not. While it may be possible to achieve
the same goal with deep learning rather than via a user-defined parametric function, we
have chosen to adopt the method presented here because recovering the full BRDF from
a surface in uncontrolled lighting settings is a goal that is worth pursuing in itself, with
potential applications in, e .g., computer graphics, building information modelling (BIM),
and augmented reality. The work presented in this deliverable is a first step towards that
goal.

We validated the approach on the two pallets shown in Figures 19a and 19b, with and
without plastic wrapping. For these tests, we used 384 Kinect One images of the mixed
pallet (19a) with wrapping and 323 image without, and 89 imaged of the homogeneous
pallet (19b) with wrapping and 82 images without. (We found that a y? kernel gave the
best results overall.) Using leave-one-out cross validation we achieved 92 % classification
accuracy on the mixed pallet and 98 % accuracy on the homogeneous pallet. Training
on all data from mixed pallet, we achieved 97 % accuracy on the mixed pallet and 89 %
accuracy on the homogeneous pallet. This classifier that was trained on the mixed pallet
has 97 % precision and 81 % recall on the homogeneous pallet.

The target performance for the plastic perception system in ILIAD (as specified in
the working document “Technical requirements and performance measures (September 3,
2018)”) is to have a binary classifier that can detect whether or not a pallet is wrapped

25

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

i

Intensity
Intensity

Cosine

Cosine

(a) Mixed pallet (Figure 19a), without wrapping. (b) Mixed pallet (Figure 19a), with wrapping.

*hx
wE*

Intensity
Intensity

o
05 06 07 08 09 1
Cosine

Cosine

(c) Cardboard, without wrapping (Figure 19c). (d) Cardboard, with wrapping (Figure 19d).

Intensity
=
* x

* K %

o

02
FE KO R KOR R KR R RO
KR K KON E KK R E R RN ERRRODERRER

1

05 06 0.7 08 09
Cosine

(e) Reference measurement for (c)-(d). Blue:
without wrapping. Red: with wrapping.

Figure 20: Reflectance measurements from the mixed pallet and cardboard sheet in
Figure 19. The horizontal axis shows the cosine of the incident angle. The vertical axis
shows the measured intensity. (a)-(d) Kinect One data. (e) Reference measurement with
a LightTec Mini-Diff scattering instrument.

26

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

with an accuracy of > 90 %. This target has been met, based on the results shown here [2,
27]. However, we acknowledge the fact that these results are from a lab setup with limited
amounts of data, and that the system should to be trained on more data, from real-
world warehouses, before a confident claim on accuracy can be made. We will further
evaluate the perception system with larger real-world data sets for the final Milestone 4
demonstrator.

4 Summary

In this deliverable, we have reported on the software and hardware implementation used
in ILIAD for providing object poses for manipulation as well as a dense semantic 3D map
of the working area. We have also reported on the software and hardware implementation
of our system for detecting whether or not a pallet has wrapping that needs to be removed
before picking.

The outputs of these perception modules are used as input for the manipulation
modules of T6.5 and T6.3, respectively; for picking objects as well as cutting the plastic
wrapping of pallets that need to be unwrapped before they can be handled.

References

[1] Tomas Akenine-Moller, Eric Haines, and Natty Hoffman. Real-Time Rendering. 3rd.
A K Peters Ltd., 2008.

[2] Frans Anton. “Mobile Robot Reflectance Acquisition to Detect Plastic Wrapping on
Pallets”. Bachelor’s Thesis. Orebro University, June 2018.

[3] Olle Back. “Mobile Robot Reflectance Acquisition to Detect Plastic Wrapping on
Pallets”. Bachelor’s Thesis. Orebro University, Jan. 2019.

[4] BerkCallietal. “Benchmarking in manipulation research: The YCB object and model
set and benchmarking protocols”. In: arXiv preprint arXiv:1502.03143 (2015).

[5] Daniel R Canelhas, Todor Stoyanov, and Achim J Lilienthal. “Improved local shape
feature stability through dense model tracking”. In: 2013 IEEE/RS] International
Conference on Intelligent Robots and Systems. IEEE. 2013, pp. 3203-3209.

[6] Daniel R Canelhas, Todor Stoyanov, and Achim J Lilienthal. “SDF tracker: A parallel
algorithm for on-line pose estimation and scene reconstruction from depth images”.
In: 2013 IEEE/RS] International Conference on Intelligent Robots and Systems. IEEE.
2013, pp. 3671-3676.

[7] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE
conference on computer vision and pattern recognition. leee. 2009, pp. 248-255.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning
for image recognition”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 770-778.

[9] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. “Mask r-cnn”. In:
Proceedings of the IEEE international conference on computer vision. 2017, pp. 2961-
2969.

[10] Alexander Hermans, Georgios Floros, and Bastian Leibe. “Dense 3d semantic map-
ping of indoor scenes from rgb-d images”. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2014, pp. 2631-2638.

27

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

[11] Dinh-CuongHoang, Todor Stoyanov, and Achim]J Lilienthal. “High-quality Instance-
aware Semantic 3D Map Using RGB-D Camera”. In: arXiv preprint arXiv:1903.10782
(2019).

[12] Dinh-CuongHoang, Todor Stoyanov, and Achim J Lilienthal. “High-quality Instance-
aware Semantic 3D Map Using RGB-D Camera”. In: Proceedings of the European
Conference on Mobile Robots (ECMR). 2019.

[13] Binh-Son Hua et al. “Scenenn: A scene meshes dataset with annotations”. In: 2016
Fourth International Conference on 3D Vision (3DV). IEEE. 2016, pp. 92-101.

[14] Christian Kerl, Mohamed Souiai, Jirgen Sturm, and Daniel Cremers. “Towards
lumination-Invariant 3D Reconstruction Using ToF RGB-D Cameras”. In: 2nd
International Conference on 3D Vision. 2014, pp. 39-46.

[15] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[16] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks
for semantic segmentation”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 3431-3440.

[17] Pat Marion, Peter R Florence, Lucas Manuelli, and Russ Tedrake. “Label Fusion:
A Pipeline for Generating Ground Truth Labels for Real RGBD Data of Cluttered
Scenes”. In: Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2018, pp. 1-8.

[18] Daniel Maturana and Sebastian Scherer. “Voxnet: A 3d convolutional neural network
for real-time object recognition”. In: Proc. of the IEEE/RS] International Conference
on Intelligent Robots and Systems. IEEE. 2015, pp. 922-928.

[19] John McCormac, Ronald Clark, Michael Bloesch, Andrew J Davison, and Stefan
Leutenegger. “Fusion++: Volumetric Object-Level SLAM”. In: arXiv preprint arXiv:1808.08378
(2018).

[20] John McCormac, Ankur Handa, Andrew Davison, and Stefan Leutenegger. “Seman-
ticfusion: Dense 3d semantic mapping with convolutional neural networks”. In:
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2017, pp. 4628-4635.

[21] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas] Guibas. “Pointnet: Deep learning
on point sets for 3d classification and segmentation”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 652-660.

[22] P Rodriguez-Gonzalvez, D. Gonzalez-Aguilera, H. Gonzalez-Jorge, and D. Hernandez-
Lopez. “Low-Cost Reflectance-Based Method for the Radiometric Calibration of
Kinect 2”. In: IEEE Sensors (2016).

[23] Martin Riinz and Lourdes Agapito. “MaskFusion: Real-Time Recognition, Tracking
and Reconstruction of Multiple Moving Objects”. In: arXiv preprint arXiv:1804.09194
(2018).

[24] Frank Steinbriicker, Jiirgen Sturm, and Daniel Cremers. “Real-time visual odometry
from dense RGB-D images”. In: Computer Vision Workshops (ICCV Workshops),
2011 IEEE International Conference on. IEEE. 2011, pp. 719-722.

[25] Jirgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cre-
mers. “A benchmark for the evaluation of RGB-D SLAM systems”. In: Proc. of the
IEEE/RS] International Conference on Intelligent Robots and Systems. IEEE. 2012,
pp. 573-580.

28

H2020-ICT-2016-2017: 732737 ILIAD Deliverable D6.4

(26]

(27]

(28]

(29]

(30]

(31]

(32]

Akin Tatoglu and Kishore Pochiraju. “Point Cloud Segmentation with LIDAR Reflec-
tion Intensity Behavior”. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). 2012, pp. 786-790.

Bastien Veyssiere. “Plastic wrapping detection application based on reflectance
models for mobile robots”. Master’s Thesis. UPSSITECH, Université Toulouse III
Paul Sabatier, Aug. 2018.

Chen Wang et al. “DenseFusion: 6D Object Pose Estimation by Iterative Dense
Fusion”. In: arXiv preprint arXiv:1901.04780 (2019).

Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, Andrew J Davison, and
Stefan Leutenegger. “ElasticFusion: Real-time dense SLAM and light source esti-
mation”. In: The International Journal of Robotics Research 35.14 (2016), pp. 1697—
1716.

Kai M. Wurm, Henrik Kretzschmar, Rainer Kiimmerle, Cyrill Stachniss, and Wol-
fram Burgard. “Identifying vegetation from laser data in structured outdoor envi-
ronments”. In: Robotics and Autonomous Systems 62.5 (2014), pp. 675-684. DOI:
10.1016/j.robot.2012.10.003.

Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered scenes”. In:
arXiv preprint arXiv:1711.00199 (2017).

Anestis Zaganidis, Li Sun, Tom Duckett, and Grzegorz Cielniak. “Integrating deep
semantic segmentation into 3-d point cloud registration”. In: IEEE Robotics and
Automation Letters 3.4 (2018), pp. 2942-2949.

29

http://dx.doi.org/10.1016/j.robot.2012.10.003

	Introduction
	Object pose estimation
	Single-shot object detection
	Semantic 3D map for manipulation
	Motivation
	Methodology
	Evaluation

	Pose Estimation
	Motivation
	Methodology
	Evaluation

	Plastic detection
	Summary

